JPH10235174A - Pressurization type gas-mixing method and apparatus therefor - Google Patents

Pressurization type gas-mixing method and apparatus therefor

Info

Publication number
JPH10235174A
JPH10235174A JP4086697A JP4086697A JPH10235174A JP H10235174 A JPH10235174 A JP H10235174A JP 4086697 A JP4086697 A JP 4086697A JP 4086697 A JP4086697 A JP 4086697A JP H10235174 A JPH10235174 A JP H10235174A
Authority
JP
Japan
Prior art keywords
vessel
pressurized
treated water
water
gas mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4086697A
Other languages
Japanese (ja)
Inventor
Masatsugu Yamaguchi
雅嗣 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP4086697A priority Critical patent/JPH10235174A/en
Publication of JPH10235174A publication Critical patent/JPH10235174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a gas dissolving speed and to transfer treated water to a next treatment process while continuously mixing gas with treated water. SOLUTION: Treated water is charged in a vessel 1 into which compressed air is introduced under pressure while centrifugal force is generated by rotating a rotary plate 4 to be allowed to continuously flow down toward the lower part of the vessel 1 while a water film is formed to the entire periphery of the inner wall of the vessel 1 to be brought into contact with compressed air. Air bubble-containing treated water stored in the lower part of the vessel can be transferred to a next treatment process continuously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加圧浮遊選別方法
などに用いる加圧式気体混和方法、およびこれに用いら
れる装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized gas mixing method used in a pressurized flotation method and the like, and an apparatus used for the method.

【0002】[0002]

【従来の技術】水中懸濁物を分離する方法の一例として
気泡析出浮選がある。この方法は、加圧下の水に空気を
溶解させたのちこれを放出し、水の減圧によって微細気
泡を懸濁粒子の界面に析出させ、あるいは析出した気泡
に粒子を付着させ、懸濁粒子を浮上分離するものであ
る。
2. Description of the Related Art One example of a method for separating an aqueous suspension is bubble flotation. In this method, air is dissolved in water under pressure and then released, and fine bubbles are precipitated at the interface of the suspended particles by depressurization of the water, or particles are attached to the precipitated bubbles, and the suspended particles are removed. It floats and separates.

【0003】この方法に用いられる従来の装置は、処理
液を貯留する加圧タンクと、加圧タンクへ圧縮空気を通
気する通気装置と、加圧タンクに隣接して減圧弁などを
介して接続された浮上分離槽とからなる加圧式浮上分離
装置がある。また、1つのタンクを大気圧からの減圧処
理を行う減圧タンクと、懸濁粒子の浮上分離槽として利
用する真空式浮上分離装置などがある。
A conventional apparatus used in this method includes a pressurized tank for storing a processing solution, a ventilating device for ventilating compressed air to the pressurized tank, and a pressure-adjusting valve or the like adjacent to the pressurized tank. And a pressurized flotation device comprising a flotation tank. In addition, there are a decompression tank for performing decompression treatment of one tank from atmospheric pressure, and a vacuum flotation device that uses a flotation tank for suspended particles.

【0004】そして加圧式浮上分離装置では、加圧タン
ク内で処理液を撹拌しつつ強制的に通気を行って処理液
中にガスを溶解させ、この加圧処理の後、減圧弁を介し
て処理液を減圧しつつ浮上分離槽に送ることで、浮上分
離槽内では、溶解したガスが気泡となり、被処理物を処
理液表面に浮遊させ、この浮遊物を掻き取って回収する
ことで固形分を分離するようにしている。
In the pressurized flotation apparatus, the gas is dissolved in the processing liquid by forcibly ventilating the processing liquid in the pressurized tank while stirring the processing liquid. By sending the processing liquid to the flotation tank while reducing the pressure, the dissolved gas becomes bubbles in the flotation tank, and the object to be processed is floated on the surface of the processing liquid, and the suspended matter is scraped and collected. I try to separate the minutes.

【0005】また、真空式浮上分離装置では、タンク内
に供給された一定量の処理液に対して、減圧処理を施し
溶解しているガスを気泡として析出させ、予めタンク内
に備えられている浮遊物の掻き取り手段によって、上記
浮上分離槽と同様に浮遊物を掻き取って回収している。
In the vacuum flotation apparatus, a certain amount of the processing liquid supplied into the tank is subjected to a reduced pressure treatment to dissolve dissolved gas as bubbles, and is provided in the tank in advance. The suspended matter is scraped and collected by the suspended matter scraping means in the same manner as in the flotation tank.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、例えば
上記のいずれの装置においても、タンクは処理水が充満
された後、一旦これを閉鎖し、この閉鎖状態で気体がそ
の飽和状態になるまで通気−溶解作業を行い、しかる後
に減圧弁を開いて処理水を浮上分離槽に移送させる等の
処理を行い、その後に浮遊物の回収を行う等、作業形態
がバッチ式となり、弁の開閉制御など装置が複雑化する
ほか、処理能力に限界があり、また処理能力をあげるた
めには全体を大型化せざるを得なかった。
However, for example, in any of the above-mentioned apparatuses, the tank is once closed after being filled with treated water, and the tank is ventilated in this closed state until the gas becomes saturated. Dissolution work is performed, and then the pressure reducing valve is opened, processing such as transfer of the treated water to the flotation tank is performed, and then the suspended matter is collected. However, the processing capacity is limited and the processing capacity is limited. In order to increase the processing capacity, the entire apparatus must be enlarged.

【0007】さらに、このように大型化したとしても、
圧送空気は処理水内を通気される時の界面と水面のみ接
触しているため、その接触面積は小さく、空気混和効率
が小さく、気体の溶解に時間がかかるため、装置の規模
の割には単位時間当たりの懸濁物の除去量が少なかっ
た。
[0007] Further, even if such a large size,
Since the pressured air contacts only the interface and the water surface when ventilating the treated water, the contact area is small, the air mixing efficiency is small, and it takes time to dissolve the gas. The removal amount of the suspension per unit time was small.

【0008】本発明は、以上の問題点を解決するもので
あって、その目的は、気体の溶解速度を向上し、処理水
に連続的に気体を混和しつつ、懸濁物の除去の為の減圧
を行う次処理工程へ移送できるようにした加圧式気体混
和方法を提供することを目的としている。また、本発明
は以上の方法を達成するための小型かつ簡易な構造の加
圧式混和装置を提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to improve the rate of dissolving gas and to remove suspended solids while continuously mixing gas with treated water. It is an object of the present invention to provide a pressurized gas mixing method that can be transferred to the next processing step for reducing the pressure. Another object of the present invention is to provide a pressurized mixing device having a small and simple structure for achieving the above method.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の方法は、加圧空気が圧入されるベッセル内
に、遠心力を生じさせつつ処理水を投入することによっ
て、ベッセルの内壁全周に水膜wを生じさせながらベッ
セルの下部側に向けて連続的に流下させ、前記加圧空気
と接触・混和させることを特徴とする加圧式気体混和方
法としている。したがって、この方法にあっては、ベッ
セルの内周面上でその全体が処理水の水膜と加圧空気の
接触面積となり、そして流下している間の時間接触させ
ることができるため、従来と比べて接触面積が格段に増
加し、気体溶解速度を増加させることができる。更に、
処理水の導入時に、ベッセルの中心部から内壁めがけて
処理水を飛ばすことにより、ベッセルの内壁に処理水が
届くまでに加圧空気内を飛翔した水滴の表面が接触面積
となり、この状態でも気体溶解速度を増加させることが
できる。
In order to achieve the above object, a method of the present invention is to provide a method in which treated water is supplied while generating centrifugal force into a vessel into which pressurized air is press-fitted. A pressurized gas mixing method is characterized by continuously flowing down toward the lower side of the vessel while forming a water film w all around, and contacting and mixing with the pressurized air. Therefore, in this method, the entire surface of the vessel becomes the contact area between the water film of the treated water and the pressurized air on the inner peripheral surface of the vessel, and can be brought into contact for a period of time while flowing down. In comparison, the contact area is significantly increased, and the gas dissolution rate can be increased. Furthermore,
When treated water is blown from the center of the vessel to the inner wall at the time of introduction of the treated water, the surface of the water droplet flying in the pressurized air until the treated water reaches the inner wall of the vessel becomes a contact area. The dissolution rate can be increased.

【0010】この加圧式気体混和方法において、前記ベ
ッセルの下部に集水した加圧処理水に対する減圧処理に
よって微細気泡を析出し、懸濁粒子を浮上分離する次処
理工程へ該加圧処理水を移送する工程を行うことができ
る。したがって、この方法では、ベッセル下部に流下し
た処理水には十分な気体が含有されており、気体溶解速
度を増加させられた処理水は連続して溜められるため、
ベッセル最下部から順次これを懸濁粒子を浮上分離する
次処理工程に移送することができ、連続処理が可能とな
る。
In this pressurized gas mixing method, the pressure-treated water collected in the lower part of the vessel is subjected to a pressure-reducing treatment to precipitate fine bubbles, and the pressure-treated water is subjected to the next treatment step for floating separation of suspended particles. A transfer step can be performed. Therefore, in this method, the treated water flowing down to the lower part of the vessel contains sufficient gas, and the treated water whose gas dissolution rate has been increased is continuously stored,
This can be sequentially transferred from the bottom of the vessel to the next processing step in which the suspended particles are floated and separated, thereby enabling continuous processing.

【0011】更に、前記目的に対し、本発明の装置は、
下部に一時貯留タンクを設けられて上部適宜位置に加圧
空気導入口を設けた密閉容器型のベッセルと、ベッセル
の上部中心位置内部に回転可能に軸受され、かつ周囲に
多数の開口部を形成した有底容器形の回転板と、回転板
に軸結された駆動モータと、ベッセルの上部中心位置近
傍で前記回転板の内側に向けて開口した処理水導入口と
を備えたことを特徴とする加圧式気体混和装置により達
成している。このような加圧式気体混和装置の構成によ
って、ベッセル内に投入された処理水は回転板の回転に
より遠心力を生じさせられ、ベッセル内壁まで飛ばさ
れ、その内壁を流下する。このような飛翔と流下の間に
加圧された空気が処理水中に十分、しかも均等に速やか
に溶解する。
[0011] Further, for the above-mentioned object, the apparatus of the present invention comprises:
A closed vessel type vessel with a temporary storage tank provided at the lower part and a pressurized air inlet at an appropriate position on the upper part, and a rotatable bearing inside the upper center position of the vessel and numerous openings formed around it A bottomed container-shaped rotating plate, a drive motor connected to the rotating plate, and a treated water inlet opening toward the inside of the rotating plate near the upper center position of the vessel. This is achieved by a pressurized gas mixing device. With such a configuration of the pressurized gas mixing device, the treated water charged into the vessel is caused to generate a centrifugal force by the rotation of the rotating plate, is blown to the inner wall of the vessel, and flows down the inner wall. The air pressurized during such a flight and down flow dissolves sufficiently and evenly quickly in the treated water.

【0012】[0012]

【発明の実施の形態】以下、本発明の好ましい実施の形
態について添付図面を参照して詳細に説明する。図1、
2は本発明の方法を適用した加圧式気体混和装置を示
す。この混和装置は、下部にロート状の縮径部1aを一
体に形成した円筒型密閉容器状のベッセル1と、ベッセ
ル1の底部に設けた一時貯留タンク2とを備えている。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Figure 1,
Reference numeral 2 denotes a pressurized gas mixing device to which the method of the present invention is applied. The mixing device includes a cylindrical closed vessel-shaped vessel 1 integrally formed with a funnel-shaped reduced diameter portion 1a at a lower portion, and a temporary storage tank 2 provided at the bottom of the vessel 1.

【0013】ベッセル1の上部適宜位置には、加圧空気
導入口3が開口されているとともに、中央の内部には回
転板4が回転可能に軸受され、この回転板4はベッセル
1の頂部中心に配置された回転駆動用のモータ5の出力
軸5aに軸結され、この駆動モータ5の回転によって高
速回転される。回転板4は有底容器形であり、その周囲
にはこれの内外を流通させる多数の穴4aを開口形成し
ている。さらに、ベッセル1の上部中心位置近傍には前
記回転板4の内周側に向けて処理水導入口6が開口形成
され、加圧ポンプ8を通じて送られる懸濁物混入状態の
処理水を導入口6を通じて回転板4内に一旦供給し、モ
ータ5の駆動による回転板4の回転による遠心力によっ
て処理水に渦流を生じさせ、穴4aを通じて矢印のごと
く周囲に吹飛ばす。
At an appropriate position above the vessel 1, a pressurized air inlet 3 is opened, and a rotary plate 4 is rotatably supported in the center, and the rotary plate 4 is located at the center of the top of the vessel 1. Is connected to an output shaft 5a of a rotation driving motor 5 disposed at a position indicated by the arrow, and the driving motor 5 rotates at a high speed. The rotating plate 4 has a bottomed container shape, and has a number of holes 4a formed around the rotating plate 4 for flowing inside and outside thereof. Further, a treated water inlet 6 is formed in the vicinity of the upper center position of the vessel 1 toward the inner peripheral side of the rotary plate 4, and the treated water in a suspended state sent through the pressurizing pump 8 is introduced into the inlet. The processing water is once supplied into the rotating plate 4 through the motor 6, and the centrifugal force generated by the rotation of the rotating plate 4 driven by the motor 5 generates a vortex in the treated water, and blows the surrounding water through the hole 4a as indicated by an arrow.

【0014】なお、ベッセル1の直胴部のたて寸法Lは
ベッセル径Dの1/2〜5/2に設定され、回転板4の
径はベッセル径Dの1/3〜2/3に設定され、またそ
の回転数としては最外周速5〜40m/sec程度に設
定することが望ましい。
The vertical dimension L of the straight body portion of the vessel 1 is set to 1/2 to 5/2 of the vessel diameter D, and the diameter of the rotating plate 4 is set to 1/3 to 2/3 of the vessel diameter D. It is desirable to set the number of rotations at the outermost peripheral speed of about 5 to 40 m / sec.

【0015】以上により、ベッセル1内に導入された処
理水は、その導入直後に、ベッセル1の中心部近傍から
内壁めがけて回転板4により水滴の形で飛ばされ、ベッ
セルの内周壁に処理水が届くまでに加圧空気内を飛翔し
て空気が混和される。更に、ベッセル1の内周壁表面で
は、その全体に0.5〜5mmの厚さの薄い水膜Wとな
って付着しつつ回りながら、自然落下により流下し、こ
の流下中同時に導入口3を通じて吹込まれる加圧空気と
接触し、処理水の薄膜W内に空気が混和される。接触面
積が大きいため流下するまでの時間に十分に空気と接触
しつつ、加圧空気の加圧量に応じて溶解するため、従来
の加圧タンク式に比べて短時間で空気混和率を十分に高
いものとすることができる。
As described above, the treated water introduced into the vessel 1 is immediately splashed by the rotary plate 4 from the vicinity of the center of the vessel 1 toward the inner wall in the form of water droplets, and the treated water is deposited on the inner peripheral wall of the vessel. Flies in the pressurized air before the air reaches the air, and is mixed with the air. Further, on the inner peripheral wall surface of the vessel 1, it flows down by spontaneous fall while adhering and rotating as a thin water film W having a thickness of 0.5 to 5 mm on the entire surface thereof, and simultaneously blows through the inlet 3 while flowing down. The air comes into contact with the pressurized air to be mixed into the thin film W of the treated water. Due to the large contact area, it dissolves according to the amount of pressurized air while contacting air enough to flow down, so that the air mixing ratio is shorter than the conventional pressurized tank type. Can be higher.

【0016】そして、空気混和された処理水は、縮径部
1aに集合しつつ、その下部の一時貯留タンク2に蓄え
られ、更に、処理水はこの一時貯留タンク2を経て、浮
上分離槽あるいは真空式浮上分離槽である分離工程7
(水・懸濁物分離手段)に移送される。この分離工程7
では減圧による気泡の発生を促し、これに伴う懸濁物と
気泡との付着によって懸濁物を浮上させ、この浮上した
懸濁物をスカムとしてかき集めることによって固形物分
離が行われることになる。
The treated water mixed with air is stored in a temporary storage tank 2 below the collected water while gathering in the reduced diameter portion 1a. Further, the treated water passes through the temporary storage tank 2 and is floated or separated. Separation process 7 which is a vacuum flotation tank
(Water / suspension separation means). This separation step 7
In this case, the generation of air bubbles due to the reduced pressure is promoted, the suspended matter is caused to float by the adhesion of the suspended matter and the air bubbles, and the solid matter is separated by collecting the floated suspended matter as scum.

【0017】以上の移送動作は、ベッセル1内の空気圧
力によって自動かつ連続的に行うことができ、移送のた
めの制御もベッセル1内の水位を一定範囲に保つように
監視するだけであるため、従来に比べて制御操作を簡単
に行えるとともに、負荷変動への対応もスムーズに行わ
れることになる。なお、以上の実施の形態では、回転板
4を高速回転させることでベッセル1内に導入された処
理水に遠心力を生じさせたが、ベッセル1自体を回転さ
せることで遠心力を生じさせることもできる。
The above-described transfer operation can be performed automatically and continuously by the air pressure in the vessel 1, and the control for the transfer is only to monitor the water level in the vessel 1 within a certain range. In addition, the control operation can be performed easily as compared with the related art, and the response to the load fluctuation can be smoothly performed. In the above-described embodiment, the centrifugal force is generated in the treated water introduced into the vessel 1 by rotating the rotating plate 4 at a high speed. However, the centrifugal force is generated by rotating the vessel 1 itself. Can also.

【0018】[0018]

【実施例】内部容積35l、直胴部の寸法L/径D=5
/3、毎分の処理流量2.5リットル/minのベッセルを用
い、ベッセル内の加圧力300KPa、回転板の周速
7.5m/secでベッセル内に供給される処理水に対する
気体混和を連続的に行い、空気溶解度を出口側で連続計
測した結果、O2換算で平均が20%程度であった。
Embodiment: Internal volume 35 l, dimensions L / diameter D = 5 of straight body
/ 3, using a vessel with a processing flow rate of 2.5 l / min per minute, continuously mixing gas into the processing water supplied into the vessel at a pressure of 300 KPa in the vessel and a peripheral speed of the rotary plate of 7.5 m / sec. to perform, as a result of the continuous measurements of the air solubility in the outlet side, on average O 2 conversion was about 20%.

【0019】[0019]

【発明の効果】以上詳細に説明したように、本発明に係
る加圧式気体混和方法および装置にあっては、次の効果
がある。 水滴・水膜状態で加圧空気と接触するため、接触面積
が大きく、また接触時間も長いので、気体溶解速度を向
上できる。また、従来に比べて加圧空気量も小さくでき
る。 ベッセルの下部側に流下した状態では処理水には十分
な空気が溶解されており、これをこのまま次工程に連続
移送できるため、連続処理が可能となり、処理能力が向
上し、また負荷変動への対応がスムーズになる。 装置の小型化、単純化を図ることができる。
As described in detail above, the pressurized gas mixing method and apparatus according to the present invention have the following effects. Since it comes into contact with pressurized air in the state of water droplets / water films, the contact area is large and the contact time is long, so that the gas dissolution rate can be improved. Further, the amount of pressurized air can be reduced as compared with the related art. In the state of flowing down to the lower side of the vessel, sufficient air is dissolved in the treated water, and this can be continuously transferred to the next process as it is, so that continuous processing is possible, processing capacity is improved, and load fluctuation Correspondence becomes smooth. The device can be reduced in size and simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を適用した加圧式気体混和装置の説
明用断面図である。
FIG. 1 is an explanatory sectional view of a pressurized gas mixing apparatus to which the method of the present invention is applied.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【符号の説明】 1 ベッセル 2 一時貯留タンク 3 加圧空気導入口 4 回転板 4a 穴(開口部) 5 駆動モータ 6 処理水導入口 7 分離工程[Description of Signs] 1 Vessel 2 Temporary storage tank 3 Pressurized air inlet 4 Rotating plate 4a Hole (opening) 5 Drive motor 6 Treated water inlet 7 Separation process

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加圧空気が圧入されるベッセル内に、遠
心力を生じさせつつ処理水を投入することによって、ベ
ッセルの内壁全周に水膜を生じさせながらベッセルの下
部側に向けて連続的に流下させ、前記加圧空気と接触・
混和させることを特徴とする加圧式気体混和方法。
1. A process water is injected into a vessel into which pressurized air is injected while generating a centrifugal force, so that a water film is continuously formed on the entire inner wall of the vessel toward the lower side of the vessel. Flow down and contact with the pressurized air.
A pressurized gas mixing method characterized by mixing.
【請求項2】 前記ベッセルの下部に集水した加圧処理
水に対する減圧処理によって懸濁粒子を取り除く次処理
工程へ該加圧処理水を移送することを特徴とする請求項
1記載の加圧式気体混和方法。
2. The pressurized process according to claim 1, wherein the pressurized process water is transferred to a next process step of removing suspended particles by depressurizing the pressurized process water collected at a lower portion of the vessel. Gas mixing method.
【請求項3】 下部に一時貯留タンクを設けられて上部
適宜位置に加圧空気導入口を設けた密閉容器型のベッセ
ルと、ベッセルの上部中心位置内部に回転可能に軸受さ
れ、かつ周囲に多数の開口部を形成した有底容器形の回
転板と、回転板に軸結された駆動モータと、ベッセルの
上部中心位置近傍で前記回転板の内側に向けて開口した
処理水導入口とを備えていることを特徴とする加圧式気
体混和装置。
3. A closed vessel type vessel having a temporary storage tank provided at a lower portion and a pressurized air introduction port provided at an appropriate position at an upper portion, a rotatable bearing inside an upper central position of the vessel, and a plurality of vessels arranged around the vessel. A bottomed container-shaped rotating plate having an opening formed therein, a drive motor connected to the rotating plate, and a treated water inlet opening toward the inside of the rotating plate near an upper center position of the vessel. And a pressurized gas mixing device.
【請求項4】 前記ベッセルの下部に集水した加圧処理
水を移送されて、大気圧若しくは減圧による処理を行
い、浮き上がる懸濁物を分離する水・懸濁物分離手段が
備えられていることを特徴とする請求項3記載の加圧式
気体混和装置。
4. A water / suspension separating means for transferring the pressurized treated water collected at a lower portion of the vessel, performing a treatment under atmospheric pressure or reduced pressure, and separating a floating suspended matter. The pressurized gas mixing device according to claim 3, wherein:
JP4086697A 1997-02-25 1997-02-25 Pressurization type gas-mixing method and apparatus therefor Pending JPH10235174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086697A JPH10235174A (en) 1997-02-25 1997-02-25 Pressurization type gas-mixing method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086697A JPH10235174A (en) 1997-02-25 1997-02-25 Pressurization type gas-mixing method and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH10235174A true JPH10235174A (en) 1998-09-08

Family

ID=12592454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086697A Pending JPH10235174A (en) 1997-02-25 1997-02-25 Pressurization type gas-mixing method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH10235174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330382B1 (en) * 2000-01-20 2002-03-27 김장현 Use much coeducation tools dissolve
JP2007190463A (en) * 2006-01-17 2007-08-02 Hisashi Furuta Gas dissolver and circulation type bathtub apparatus using the same
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330382B1 (en) * 2000-01-20 2002-03-27 김장현 Use much coeducation tools dissolve
JP2007190463A (en) * 2006-01-17 2007-08-02 Hisashi Furuta Gas dissolver and circulation type bathtub apparatus using the same
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath

Similar Documents

Publication Publication Date Title
JP3945203B2 (en) Liquid defoaming method and apparatus
KR20070097107A (en) Filtration system
JPS5920373B2 (en) Method and device for increasing the oxygen content of water
BRPI0716268A2 (en) Equipment and method for flotation and grading of mineral slurry
JP2003190753A (en) Fine air bubble feeder
JPH10235174A (en) Pressurization type gas-mixing method and apparatus therefor
JP3037689B1 (en) Cleaning method for the rotating cylinder of the horizontal shaft type centrifuge
JP2004290859A (en) Method and apparatus for deaerating liquid
JP3607828B2 (en) Treatment liquid defoaming apparatus, treatment liquid defoaming method, treatment liquid circulation apparatus, and treatment liquid circulation method
JP4325533B2 (en) Suspension separator
CA2069959A1 (en) Method and apparatus for separation by flotation in a centrifugal field
JPH08131711A (en) Continuous defoaming apparatus
JP2004105814A (en) Impeller for mixing gas and liquid
JP2735089B2 (en) How to remove light and fine foreign matter
JPH1119406A (en) Bubble removing device
JPH038322Y2 (en)
JPS6335287B2 (en)
JPH11200270A (en) Waste paper deinking treatment and flotater
JPH09239400A (en) Sludge thickening device
US4088638A (en) Method and apparatus for recovering saponified oil
JPH03267190A (en) Pressure floatation apparatus
JPS6220479Y2 (en)
JPH11319806A (en) Floatation apparatus
JPH0924262A (en) Gas-liquid mixing equipment
JP3079040B2 (en) Oil-water recovery separation equipment