JPH10235142A - Method for control of the number of absorption column circulating pumps of flue gas desulfurization equipment - Google Patents
Method for control of the number of absorption column circulating pumps of flue gas desulfurization equipmentInfo
- Publication number
- JPH10235142A JPH10235142A JP9040790A JP4079097A JPH10235142A JP H10235142 A JPH10235142 A JP H10235142A JP 9040790 A JP9040790 A JP 9040790A JP 4079097 A JP4079097 A JP 4079097A JP H10235142 A JPH10235142 A JP H10235142A
- Authority
- JP
- Japan
- Prior art keywords
- function
- boiler load
- absorption tower
- operating
- boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排煙脱硫装置の吸
収塔循環ポンプ台数制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the number of circulation pumps in an absorption tower of a flue gas desulfurization apparatus.
【0002】[0002]
【従来の技術】従来、吸収剤として石灰(石灰石、消石
灰又は生石灰)を用いた排煙脱硫装置は、一般に図9に
示されるように、下部に形成された液溜り部1の吸収液
2を、複数台(図9の例では十台)の循環ポンプ3の作
動により、上部に配設されたスプレーノズル4から噴霧
して循環させると共に、図示していない石炭焚のボイラ
から供給される排ガスを前記スプレーノズル4から噴霧
された吸収液2と接触せしめた後排出させる吸収塔5の
前記液溜り部1に、酸化用の空気を供給する酸化空気ブ
ロワ6を接続すると共に、液溜り部1内の吸収液2を撹
拌する撹拌機7を設け、後述する母液タンク25から供
給される吸収液23とサイロ8から供給される石灰9を
混合して吸収剤スラリー10を生成し且つ該吸収剤スラ
リー10を前記吸収塔5の液溜り部1に供給するための
吸収剤スラリーピット11を設け、前記吸収塔5の底部
から吸収液2の一部が供給され且つ前記吸収塔5の液溜
り部1へ供給されるカセイソーダ等の中和剤12の一部
が供給され前記吸収液2と中和剤12を混合撹拌する中
和タンク13を設け、該中和タンク13から抽出された
吸収液14を濃縮せしめるシックナ15を設け、該シッ
クナ15で濃縮された吸収液16が供給され該吸収液1
6を撹拌する石膏分離機供給タンク17を設け、該石膏
分離機供給タンク17から抽出される吸収液16を脱水
し石膏19を生成するための石膏分離機20を設け、該
石膏分離機20で脱水された水21が供給され該水21
の一部を前記シックナ15へ供給するための濾液ピット
22を設け、更に、前記シックナ15から上澄みの吸収
液23が供給され該吸収液23の一部を排水処理装置2
4と吸収剤スラリーピット11へ供給し且つ残りを前記
吸収塔5の液溜り部1へ送るための母液タンク25を設
けてなる構成を有している。2. Description of the Related Art Conventionally, a flue gas desulfurization apparatus using lime (limestone, slaked lime or quick lime) as an absorbent generally uses an absorbent 2 in a liquid reservoir 1 formed at a lower portion as shown in FIG. By operating a plurality (ten in the example of FIG. 9) of circulation pumps 3, the fuel is sprayed and circulated from a spray nozzle 4 disposed at an upper portion, and exhaust gas supplied from a coal-fired boiler (not shown). An oxidizing air blower 6 for supplying oxidizing air is connected to the liquid reservoir 1 of the absorption tower 5 which is brought into contact with the absorbent 2 sprayed from the spray nozzle 4 and then discharged. A stirrer 7 for stirring the absorbing liquid 2 in the tank is provided, and an absorbing liquid 23 supplied from a mother liquor tank 25 described later and lime 9 supplied from the silo 8 are mixed to form an absorbent slurry 10 and the absorbent The slurry 10 An absorbent slurry pit 11 for supplying to the liquid reservoir 1 of the tower 5 is provided, and a part of the absorbent 2 is supplied from the bottom of the absorbent tower 5 and supplied to the liquid reservoir 1 of the absorber 5. A neutralization tank 13 to which a part of the neutralizing agent 12 such as caustic soda is supplied and which mixes and stirs the absorbing solution 2 and the neutralizing agent 12 is provided, and a thickener 15 for concentrating the absorbing solution 14 extracted from the neutralizing tank 13. The absorption liquid 16 concentrated by the thickener 15 is supplied and the absorption liquid 1 is supplied.
A gypsum separator supply tank 17 for stirring the gypsum 6 is provided, and a gypsum separator 20 for dehydrating the absorbent 16 extracted from the gypsum separator supply tank 17 to produce gypsum 19 is provided. Dewatered water 21 is supplied and the water 21
A filtrate pit 22 for supplying a part of the absorbent to the thickener 15 is provided. Further, a supernatant absorbent 23 is supplied from the thickener 15 and a part of the absorbent 23 is supplied to a wastewater treatment apparatus 2.
4 and a mother liquor tank 25 for supplying to the absorbent slurry pit 11 and sending the remainder to the liquid reservoir 1 of the absorption tower 5.
【0003】尚、図9中、18は吸収塔5へ適宜補給さ
れる補給水、26は吸収剤スラリー10を吸収塔5へ供
給するための吸収剤スラリーポンプである。[0005] In FIG. 9, reference numeral 18 denotes makeup water which is appropriately supplied to the absorption tower 5, and reference numeral 26 denotes an absorbent slurry pump for supplying the absorbent slurry 10 to the absorption tower 5.
【0004】前述の如き排煙脱硫装置の場合、吸収液2
が循環ポンプ3の作動により循環しており、吸収塔5に
送り込まれた排ガスは、スプレーノズル4から噴霧され
る吸収液2と接触することにより、SO2(硫黄酸化
物)が吸収除去された後、外部へ排出される。In the case of a flue gas desulfurization apparatus as described above, the absorption liquid 2
Is circulated by the operation of the circulation pump 3, and the exhaust gas sent to the absorption tower 5 comes into contact with the absorption liquid 2 sprayed from the spray nozzle 4, whereby SO 2 (sulfur oxide) is absorbed and removed. Later, it is discharged outside.
【0005】一方、前記排ガスからSO2を吸収した吸
収液2の一部は、吸収塔5の液溜り部1の底部から中和
タンク13へ供給され、該中和タンク13において中和
剤12と混合撹拌され、該混合撹拌された吸収液14が
シックナ15へ送られ、該シックナ15において濃縮さ
れ、該濃縮された吸収液16が石膏分離機供給タンク1
7を経て石膏分離機20へ送られ、該石膏分離機20に
おいて水分が除去され石膏19が生成される。On the other hand, a part of the absorbing liquid 2 which has absorbed SO 2 from the exhaust gas is supplied from the bottom of the liquid reservoir 1 of the absorption tower 5 to a neutralization tank 13 where the neutralizing agent 12 Is mixed and stirred, the mixed and stirred absorption liquid 14 is sent to the thickener 15, concentrated in the thickener 15, and the concentrated absorption liquid 16 is supplied to the gypsum separator supply tank 1.
7 and sent to a gypsum separator 20 where the moisture is removed to produce gypsum 19.
【0006】前記石膏分離機20で脱水された水21
は、濾液ピット22を経て前記シックナ15へ戻され、
又、該シックナ15における前記吸収液14の濃縮時に
出る上澄みの吸収液23は、母液タンク25を経て排水
処理装置24と吸収剤スラリーピット11へ供給される
と共に、前記吸収塔5の液溜り部1へ送られる。The water 21 dehydrated by the gypsum separator 20
Is returned to the thickener 15 through the filtrate pit 22,
The supernatant absorbent 23 which is discharged when the absorbent 14 is concentrated in the thickener 15 is supplied to a wastewater treatment device 24 and an absorbent slurry pit 11 through a mother liquor tank 25, and is also supplied to a liquid reservoir of the absorption tower 5. Sent to 1.
【0007】前記吸収剤スラリーピット11へ供給され
た吸収液23は、該吸収剤スラリーピット11において
サイロ8から供給される石灰9と混合され、吸収剤スラ
リー10として吸収剤スラリーポンプ26の作動により
前記吸収塔5の液溜り部1に供給される。The absorbent 23 supplied to the absorbent slurry pit 11 is mixed with the lime 9 supplied from the silo 8 in the absorbent slurry pit 11 and is converted into the absorbent slurry 10 by the operation of the absorbent slurry pump 26. The liquid is supplied to the liquid reservoir 1 of the absorption tower 5.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、前述の
如き従来の排煙脱硫装置においては、循環ポンプ3の運
転台数は、ボイラ負荷指令(発電機出力指令)[MW]
とは無関係に、脱硫性能に余裕を見込んだ台数として略
一定に制御されており、必要以上に噴霧される吸収液2
の量が多くなって消費電力も嵩み無駄が多くなるという
欠点を有していた。However, in the conventional flue gas desulfurization apparatus as described above, the number of operating circulation pumps 3 is determined by the boiler load command (generator output command) [MW].
Irrespective of this, the absorption liquid 2 is controlled to be substantially constant as the number of units in consideration of the margin for the desulfurization performance, and is sprayed more than necessary.
However, there is a disadvantage that the power consumption is increased due to the increase in the amount of waste and the waste is increased.
【0009】このため、最近では、ボイラ負荷目標値に
応じて循環ポンプ3の運転台数を先行的に制御する方法
も提案されている。Therefore, recently, a method has been proposed in which the number of operating circulating pumps 3 is controlled in advance according to the boiler load target value.
【0010】実際の発電所等においては、ボイラの燃料
としてさまざまな種類の石炭が単独で或いはブレンドさ
れて使用され、同じボイラ負荷であっても炭種が異なる
と、排煙脱硫装置に導入される排ガス中のSO2濃度並
びに排ガス量が変化するため、本来ならば、前記炭種の
変更、即ち排ガス中のSO2濃度並びに排ガス量の変化
に応じて循環ポンプ3の運転台数を増減させるのが理想
であるが、前述の如きボイラ負荷目標値に応じて循環ポ
ンプ3の運転台数を先行的に制御する方法の場合、ボイ
ラの燃料として使用される炭種に応じて循環ポンプ3の
運転台数を変化させるようにはなっておらず、どんな炭
種が来てもいいようにある程度の余裕を見込んだ運転台
数を、ボイラ負荷に対する関数として設定しているた
め、依然として無駄が多くなることは避けられないのが
現状であった。In an actual power plant or the like, various types of coal are used alone or as a blend as fuel for a boiler. If the coal type is different even with the same boiler load, it is introduced into a flue gas desulfurization unit. Since the SO 2 concentration and the amount of exhaust gas in the exhaust gas change, the number of operating circulating pumps 3 should be increased or decreased according to the change in the coal type, that is, the change in the SO 2 concentration in the exhaust gas and the amount of exhaust gas. Is ideal, but in the case where the number of operating circulation pumps 3 is controlled in advance according to the boiler load target value as described above, the number of operating circulation pumps 3 depends on the type of coal used as fuel for the boiler. Is not changed, and the number of operating units is set as a function of the boiler load with some allowance so that any coal type can come. At present, it is inevitable that there will be more.
【0011】本発明は、斯かる実情に鑑み、必要以上に
噴霧される吸収液の量を最小限に抑えて消費電力の無駄
を抑制しつつ、所望の脱硫性能を確保し得る排煙脱硫装
置の吸収塔循環ポンプ台数制御方法を提供しようとする
ものである。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a flue gas desulfurization apparatus capable of securing desired desulfurization performance while suppressing waste of power consumption by minimizing the amount of absorbent sprayed more than necessary. It is an object of the present invention to provide a method for controlling the number of circulating pumps in the absorption tower.
【0012】[0012]
【課題を解決するための手段】本発明は、吸収剤として
石灰を用いた吸収液を複数台の循環ポンプの作動により
噴霧して循環させつつ、石炭焚ボイラから排出される排
ガスと接触せしめて排ガス中のSO2を吸収除去する吸
収塔を備えた排煙脱硫装置の吸収塔循環ポンプ台数制御
方法であって、検出される実際の吸収塔入口SO2濃度
と吸収塔入口排ガス量とに基づき、ボイラ負荷に対する
吸収塔入口SO2濃度を表わす第一の関数と、ボイラ負
荷に対する吸収塔入口排ガス量を表わす第二の関数と、
前記第一、第二の関数に基づいて求められるボイラ負荷
に対する吸収すべきSO2量を表わす第三の関数とを時
々刻々書き換えると共に、前記第三の関数と、排煙脱硫
装置固有のSO2量に対する循環ポンプの運転台数を表
わす第四の関数とに基づいて、ボイラ負荷に対する循環
ポンプの運転台数を表わす第五の関数を時々刻々書き換
え、最新となる第五の関数を使用し、与えられるボイラ
負荷目標値に対応させて先行的に循環ポンプの運転台数
を制御することを特徴とする排煙脱硫装置の吸収塔循環
ポンプ台数制御方法にかかるものである。SUMMARY OF THE INVENTION According to the present invention, an absorbent using lime as an absorbent is sprayed and circulated by operating a plurality of circulation pumps while being brought into contact with exhaust gas discharged from a coal-fired boiler. an absorbent tower circulating pump units control method for flue gas desulfurization apparatus comprising an absorption tower for absorbing and removing SO 2 in the exhaust gas, based on the actual absorption tower inlet SO 2 concentration detected and the absorption tower inlet gas amount a first function representing the absorption tower inlet SO 2 concentration to the boiler load, and a second function representing the absorption tower inlet gas amount to the boiler load,
Said first, rewrites every moment and a third function representing the SO 2 amount to be absorbed for boiler load obtained based on the second function, and the third function, flue gas desulfurization device-specific SO 2 The fifth function representing the number of operating circulating pumps with respect to the boiler load is updated every moment based on the fourth function representing the number of operating circulating pumps with respect to the amount, and the fifth function that is the latest is used and given. The present invention relates to a method for controlling the number of circulating pumps of an absorption tower of a flue gas desulfurization device, wherein the number of operating circulating pumps is controlled in advance in accordance with a boiler load target value.
【0013】前記排煙脱硫装置の吸収塔循環ポンプ台数
制御方法においては、運転開始前には、これから使用さ
れる炭種に対応させて、試運転でのデータに基づき前記
第一の関数と第二の関数とを想定し、前記第一、第二の
関数に基づいて前記第三の関数を想定し、該第三の関数
と前記第四の関数とに基づいて前記第五の関数を想定し
ておき、運転開始時には、前記想定した第五の関数を使
用し、与えられるボイラ負荷目標値に対応させて先行的
に循環ポンプの運転台数を制御するようにすることがで
きる。In the method for controlling the number of circulating pumps in the absorption tower of the flue gas desulfurization apparatus, before the operation is started, the first function and the second function are set based on the data of the trial operation in accordance with the type of coal to be used. Assuming the third function based on the first and second functions, and assuming the fifth function based on the third function and the fourth function. In addition, at the start of operation, the number of circulating pumps operated can be controlled in advance in accordance with the given boiler load target value by using the assumed fifth function.
【0014】上記手段によれば、以下のような作用が得
られる。According to the above means, the following effects can be obtained.
【0015】排煙脱硫装置の運転時には、検出される実
際の吸収塔入口SO2濃度と吸収塔入口排ガス量とに基
づき、ボイラ負荷に対する吸収塔入口SO2濃度を表わ
す第一の関数と、ボイラ負荷に対する吸収塔入口排ガス
量を表わす第二の関数と、前記第一、第二の関数に基づ
いて求められるボイラ負荷に対する吸収すべきSO2量
を表わす第三の関数とが時々刻々書き換えられると共
に、該第三の関数と、排煙脱硫装置固有のSO2量に対
する循環ポンプの運転台数を表わす第四の関数とに基づ
いて、ボイラ負荷に対する循環ポンプの運転台数を表わ
す第五の関数が時々刻々書き換えられ、該最新となる第
五の関数が使用され、与えられるボイラ負荷目標値に対
応させて、先行的に循環ポンプの運転台数が制御され
る。During operation of the flue gas desulfurization unit, a first function representing the absorption tower inlet SO 2 concentration with respect to the boiler load, based on the detected actual absorption tower inlet SO 2 concentration and the absorption tower exhaust gas amount, a second function representing the absorption tower inlet gas amount with respect to the load, the first, together with a third function representing the SO 2 amount to be absorbed for boiler load obtained based on the second function is rewritten every moment , and said third function, based on a fourth function representing the number of operating the circulation pump for FGD specific SO 2 amount, the fifth function representing the number of operating the circulation pump for the boiler load occasionally The updated fifth function is used every moment, and the number of operating circulation pumps is controlled in advance in accordance with the given boiler load target value.
【0016】この結果、実際の発電所等において、ボイ
ラの燃料としてさまざまな種類の石炭が単独で或いはブ
レンドされて使用された場合、同じボイラ負荷であって
も炭種の変化により、排煙脱硫装置に導入される排ガス
中のSO2濃度並びに排ガス量は変化するが、本発明に
おいては、最新のデータに基づいて時々刻々書き換えら
れる第五の関数によりボイラ負荷目標値から先行的に循
環ポンプの運転台数を制御しているため、該循環ポンプ
の運転台数は常にその時点における最適な台数となり、
吸収液が必要以上に噴霧されることがなくなり、消費電
力も抑えられ、無駄がなくなる。As a result, when various types of coal are used alone or as a blended fuel as boiler fuel in an actual power plant or the like, even if the boiler load is the same, the flue gas desulfurization occurs due to the change in coal type. Although the SO 2 concentration and the amount of exhaust gas in the exhaust gas introduced into the apparatus change, in the present invention, the circulation pump is preceded from the boiler load target value by a fifth function which is updated every moment based on the latest data. Since the number of operating pumps is controlled, the number of operating circulating pumps is always the optimum number at that time,
Absorbing liquid is not sprayed more than necessary, power consumption is suppressed, and waste is eliminated.
【0017】又、排煙脱硫装置の運転を開始する時点に
おける循環ポンプの運転台数については、前記検出され
る実際の吸収塔入口SO2濃度と吸収塔入口排ガス量の
データを用いることができないため、運転開始前に、こ
れから使用される炭種に対応させて、試運転でのデータ
に基づき前記第一の関数と第二の関数とを想定し、前記
第一、第二の関数に基づいて前記第三の関数を想定し、
該第三の関数と前記第四の関数とに基づいて前記第五の
関数を想定しておき、運転開始時に、前記想定した第五
の関数を使用し、与えられるボイラ負荷目標値に対応さ
せて、先行的に循環ポンプの運転台数を制御するように
し、この後は、前述と同様に、最新のデータに基づいて
第五の関数を時々刻々書き換えつつ、該最新の第五の関
数によりボイラ負荷目標値から先行的に循環ポンプの運
転台数を制御すればよい。[0017] Also, the number of operating the circulation pump at the time of starting the operation of the flue gas desulfurization apparatus, it is not possible to use data of actual absorption tower inlet SO 2 concentration and the absorption tower inlet gas amount of the detected Before the start of operation, in correspondence with the type of coal to be used from now on, assuming the first function and the second function based on data in the test operation, the first and second functions are based on the first and second functions. Assuming a third function,
The fifth function is assumed on the basis of the third function and the fourth function, and at the start of operation, the assumed fifth function is used to correspond to the given boiler load target value. Then, the number of operating circulating pumps is controlled in advance, and thereafter, as described above, the fifth function is rewritten momentarily based on the latest data, and the boiler is operated by the latest fifth function. The number of operating circulation pumps may be controlled in advance from the load target value.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0019】図1〜図8は本発明を実施する形態の一例
であって、図中、図9と同一の符号を付した部分は同一
物を表わしており、基本的な構成は図9に示す従来のも
のと同様であるが、本図示例の特徴とするところは、図
1〜図8に示す如く、濃度分析計27と流量検出器28
とによって検出される実際の吸収塔入口SO2濃度27
aと吸収塔入口排ガス量28aとに基づき、脱硫制御装
置29において、ボイラ負荷に対する吸収塔入口SO2
濃度27aを表わす第一の関数F1(x)(図3参照)
と、ボイラ負荷に対する吸収塔入口排ガス量28aを表
わす第二の関数F 2(x)(図4参照)と、前記第一、
第二の関数F1(x),F2(x)に基づいて求められる
ボイラ負荷に対する吸収すべきSO2量(=吸収塔入口
SO2濃度27a×吸収塔入口排ガス量28a×脱硫効
率)を表わす第三の関数F3(x)(図5参照)とを時
々刻々(およそ30秒に一度)書き換えると共に、該第
三の関数F3(x)と、排煙脱硫装置固有のSO2量に対
する循環ポンプ3の運転台数を表わす第四の関数F
4(x)(図6参照)とに基づいて、ボイラ負荷に対す
る循環ポンプ3の運転台数を表わす第五の関数F
5(x)(図7参照)を時々刻々(例えば30秒に一
度)書き換え、該最新となる第五の関数F5(x)を使
用し、ボイラ制御装置30から与えられるボイラ負荷目
標値31(図8参照)に対応させて、前記脱硫制御装置
29から出力される循環ポンプ制御信号32によって先
行的に循環ポンプ3の運転台数を制御するよう構成した
点にある。FIGS. 1 to 8 show an embodiment of the present invention.
In the figure, portions denoted by the same reference numerals as those in FIG. 9 are the same.
The basic configuration is the conventional one shown in FIG.
It is the same as that of FIG.
As shown in FIGS. 1 to 8, the concentration analyzer 27 and the flow rate detector 28
And the actual absorption tower inlet SO detected byTwoConcentration 27
a and the desulfurization control device based on the
In the installation 29, the absorption tower inlet SO for the boiler loadTwo
First function F representing density 27a1(X) (see FIG. 3)
And the amount 28a of exhaust gas at the inlet of the absorption tower with respect to the boiler load.
Second function F Two(X) (see FIG. 4) and the first,
Second function F1(X), FTwoSought based on (x)
SO to be absorbed for boiler loadTwoQuantity (= absorption tower entrance
SOTwoConcentration 27a × absorption tower inlet exhaust gas amount 28a × desulfurization effect
Rate F)Three(X) (see FIG. 5)
Rewrite every moment (about once every 30 seconds)
Three functions FThree(X) and SO specific to flue gas desulfurization equipmentTwoVs quantity
Function F representing the number of operating circulation pumps 3
Four(X) (see FIG. 6), and
Function F representing the number of operating circulation pumps 3
Five(X) (see FIG. 7) every moment (for example, every 30 seconds).
Degree) rewrite, the latest fifth function FFiveUse (x)
And the boiler load value given from the boiler control device 30
The desulfurization control device corresponding to the standard value 31 (see FIG. 8)
29 by a circulating pump control signal 32 output from
It is configured to control the number of operating circulation pumps 3 in a row.
On the point.
【0020】又、排煙脱硫装置の運転を開始する時点に
おける循環ポンプ3の運転台数については、前記濃度分
析計27と流量検出器28とによって検出される実際の
吸収塔入口SO2濃度27aと吸収塔入口排ガス量28
aのデータを用いることはできないが、運転開始前に
は、これから使用される炭種は予めわかっているため、
該炭種に対応させて、試運転でのデータに基づき前記第
一の関数F1(x)と第二の関数F2(x)とを想定し、
前記第一、第二の関数F1(x),F2(x)に基づいて
前記第三の関数F3(x)を想定し、該第三の関数F
3(x)と前記第四の関数F4(x)とに基づいて前記第
五の関数F5(x)を想定しておき、運転開始時には、
前記想定した第五の関数F5(x)を使用し、前述と同
様、前記ボイラ制御装置30から与えられるボイラ負荷
目標値31に対応させて、前記脱硫制御装置29から出
力される循環ポンプ制御信号32によって先行的に循環
ポンプ3の運転台数を制御するようにしてある。The number of operating circulation pumps 3 at the time of starting operation of the flue gas desulfurization apparatus is determined by the actual concentration of SO 2 concentration 27a at the inlet of the absorption tower detected by the concentration analyzer 27 and the flow rate detector 28. Exhaust gas volume at inlet of absorption tower 28
Although the data of a cannot be used, before starting operation, the coal type to be used is known in advance,
Assuming the first function F 1 (x) and the second function F 2 (x) based on the data at the test run, corresponding to the coal type,
Assuming the third function F 3 (x) based on the first and second functions F 1 (x) and F 2 (x), the third function F 3 (x)
The fifth function F 5 (x) is assumed based on 3 (x) and the fourth function F 4 (x).
Using the assumed fifth function F 5 (x), the circulating pump control output from the desulfurization control device 29 corresponding to the boiler load target value 31 given from the boiler control device 30 as described above. The number of operating circulation pumps 3 is controlled in advance by the signal 32.
【0021】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.
【0022】排煙脱硫装置の運転時には、濃度分析計2
7と流量検出器28とによって検出される実際の吸収塔
入口SO2濃度27aと吸収塔入口排ガス量28aとに
基づき、脱硫制御装置29において、ボイラ負荷に対す
る吸収塔入口SO2濃度27aを表わす第一の関数F
1(x)(図3参照)と、ボイラ負荷に対する吸収塔入
口排ガス量28aを表わす第二の関数F2(x)(図4
参照)と、前記第一、第二の関数F1(x),F2(x)
に基づいて求められるボイラ負荷に対する吸収すべきS
O2量を表わす第三の関数F3(x)(図5参照)とが時
々刻々書き換えられると共に、該第三の関数F3(x)
と、排煙脱硫装置固有のSO2量に対する循環ポンプ3
の運転台数を表わす第四の関数F4(x)(図6参照)
とに基づいて、ボイラ負荷に対する循環ポンプ3の運転
台数を表わす第五の関数F5(x)(図7参照)が時々
刻々書き換えられ、該最新となる第五の関数F5(x)
が使用され、ボイラ制御装置30から与えられるボイラ
負荷目標値31(図8参照)に対応させて、前記脱硫制
御装置29から出力される循環ポンプ制御信号32によ
って先行的に循環ポンプ3の運転台数が制御される。During operation of the flue gas desulfurization unit, the concentration analyzer 2
7 and the flow rate detector 28, based on the actual absorption tower inlet SO 2 concentration 27a and the absorption tower inlet exhaust gas amount 28a, the desulfurization controller 29 indicates the absorption tower inlet SO 2 concentration 27a with respect to the boiler load. One function F
1 (x) (see FIG. 3) and a second function F 2 (x) (FIG. 4) representing the exhaust gas amount 28a at the inlet of the absorption tower with respect to the boiler load.
) And the first and second functions F 1 (x), F 2 (x)
To be absorbed for the boiler load required based on
The third function F 3 (x) (see FIG. 5) representing the O 2 amount is rewritten every moment, and the third function F 3 (x)
And the circulation pump 3 for the SO 2 amount inherent in the flue gas desulfurization unit
Function F 4 (x) representing the number of vehicles operated (see FIG. 6)
, The fifth function F 5 (x) (see FIG. 7) representing the number of operating circulation pumps 3 with respect to the boiler load is rewritten from time to time, and the latest fifth function F 5 (x)
Is used, and the number of operating circulating pumps 3 is preceded by a circulating pump control signal 32 output from the desulfurization control device 29 in accordance with a boiler load target value 31 (see FIG. 8) given from the boiler control device 30. Is controlled.
【0023】この結果、実際の発電所等において、ボイ
ラの燃料としてさまざまな種類の石炭が単独で或いはブ
レンドされて使用された場合、同じボイラ負荷であって
も炭種の変化により、排煙脱硫装置に導入される排ガス
中のSO2濃度並びに排ガス量は変化するが、本図示例
においては、最新のデータに基づいて時々刻々書き換え
られる第五の関数F5(x)(図7において破線は、実
線の場合より硫黄分の少ない石炭が使用された場合の一
例を表わしている)によりボイラ負荷目標値31から先
行的に循環ポンプ3の運転台数を制御しているため、該
循環ポンプ3の運転台数は常にその時点における最適な
台数となり、吸収液2が必要以上に噴霧されることがな
くなり、消費電力も抑えられ、無駄がなくなる。As a result, when various types of coal are used alone or as a blended fuel as boiler fuel in an actual power plant or the like, even if the boiler load is the same, the flue gas desulfurization occurs due to a change in coal type. Although the concentration of SO 2 and the amount of exhaust gas in the exhaust gas introduced into the apparatus change, in the illustrated example, a fifth function F 5 (x) which is updated every moment based on the latest data (the broken line in FIG. This indicates an example in which coal having a lower sulfur content than that of the solid line is used), and the number of operating circulation pumps 3 is controlled in advance from the boiler load target value 31. The operating number is always the optimal number at that time, the absorbing liquid 2 is not sprayed more than necessary, power consumption is suppressed, and waste is eliminated.
【0024】又、排煙脱硫装置の運転を開始する時点に
おける循環ポンプ3の運転台数については、前記濃度分
析計27と流量検出器28とによって検出される実際の
吸収塔入口SO2濃度27aと吸収塔入口排ガス量28
aのデータを用いることができないため、運転開始前
に、これから使用される炭種に対応させて、試運転での
データに基づき前記第一の関数F1(x)と第二の関数
F2(x)とを想定し、前記第一、第二の関数F
1(x),F2(x)に基づいて前記第三の関数F
3(x)を想定し、該第三の関数F3(x)と前記第四の
関数F4(x)とに基づいて前記第五の関数F5(x)を
想定しておき、運転開始時に、前記想定した第五の関数
F5(x)を使用し、前記ボイラ制御装置30から与え
られるボイラ負荷目標値31に対応させて、前記脱硫制
御装置29から出力される循環ポンプ制御信号32によ
って先行的に循環ポンプ3の運転台数を制御するように
し、この後は、前述と同様に、最新のデータに基づいて
第五の関数F5(x)を時々刻々書き換えつつ、該最新
の第五の関数F5(x)によりボイラ負荷目標値31か
ら先行的に循環ポンプ3の運転台数を制御すればよい。The number of operating circulation pumps 3 at the time of starting the operation of the flue gas desulfurization apparatus is determined by the actual concentration of SO 2 concentration 27a at the inlet of the absorption tower detected by the concentration analyzer 27 and the flow rate detector 28. Exhaust gas volume at inlet of absorption tower 28
Since the data of “a” cannot be used, before the start of operation, the first function F 1 (x) and the second function F 2 ( x), the first and second functions F
1 (x), F 2 (x) based on the third function F
3 (x), the fifth function F 5 (x) is assumed based on the third function F 3 (x) and the fourth function F 4 (x), and At the start, the circulating pump control signal output from the desulfurization control device 29 using the assumed fifth function F 5 (x) and corresponding to the boiler load target value 31 given from the boiler control device 30 32, the number of operating circulating pumps 3 is controlled in advance, and thereafter, the fifth function F 5 (x) is updated every moment based on the latest data, and the latest The number of operating circulation pumps 3 may be controlled in advance from the boiler load target value 31 using the fifth function F 5 (x).
【0025】こうして、必要以上に噴霧される吸収液の
量を最小限に抑えて消費電力の無駄を抑制しつつ、所望
の脱硫性能を確保し得る。In this way, a desired desulfurization performance can be secured while minimizing the amount of the absorbing liquid sprayed more than necessary and suppressing waste of power consumption.
【0026】尚、本発明の排煙脱硫装置の吸収塔循環ポ
ンプ台数制御方法は、上述の図示例にのみ限定されるも
のではなく、本発明の要旨を逸脱しない範囲内において
種々変更を加え得ることは勿論である。The method for controlling the number of circulating pumps in the flue gas desulfurization apparatus according to the present invention is not limited to the above-described example, and various changes can be made without departing from the scope of the present invention. Of course.
【0027】[0027]
【発明の効果】以上、説明したように本発明の排煙脱硫
装置の吸収塔循環ポンプ台数制御方法によれば、必要以
上に噴霧される吸収液の量を最小限に抑えて消費電力の
無駄を抑制しつつ、所望の脱硫性能を確保し得るという
優れた効果を奏し得る。As described above, according to the method for controlling the number of circulating pumps of the absorption tower of the flue gas desulfurization apparatus of the present invention, the amount of the absorbing liquid sprayed more than necessary is minimized and the power consumption is reduced. , While maintaining the desired desulfurization performance.
【図1】本発明を実施する形態の一例の全体概要構成図
である。FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention.
【図2】本発明を実施する形態の一例のフローチャート
である。FIG. 2 is a flowchart illustrating an example of an embodiment of the present invention.
【図3】本発明を実施する形態の一例における第一の関
数F1(x)を表わす線図である。FIG. 3 is a diagram illustrating a first function F 1 (x) in an example of an embodiment of the present invention.
【図4】本発明を実施する形態の一例における第二の関
数F2(x)を表わす線図である。FIG. 4 is a diagram illustrating a second function F 2 (x) in an example of an embodiment of the present invention.
【図5】本発明を実施する形態の一例における第三の関
数F3(x)を表わす線図である。FIG. 5 is a diagram illustrating a third function F 3 (x) in an example of an embodiment of the present invention.
【図6】本発明を実施する形態の一例における第四の関
数F4(x)を表わす線図である。FIG. 6 is a diagram illustrating a fourth function F 4 (x) in an example of an embodiment of the present invention.
【図7】本発明を実施する形態の一例における第五の関
数F5(x)を表わす線図である。FIG. 7 is a diagram illustrating a fifth function F 5 (x) in an example of an embodiment of the present invention.
【図8】本発明を実施する形態の一例におけるボイラ負
荷目標値のスケジュールの一例を表わす線図である。FIG. 8 is a diagram illustrating an example of a boiler load target value schedule according to an example of an embodiment of the present invention.
【図9】従来例の全体概要構成図である。FIG. 9 is an overall schematic configuration diagram of a conventional example.
2 吸収液 3 循環ポンプ 5 吸収塔 9 石灰 27a 吸収塔入口SO2濃度 28a 吸収塔入口排ガス量 31 ボイラ負荷目標値 F1(x) 第一の関数 F2(x) 第二の関数 F3(x) 第三の関数 F4(x) 第四の関数 F5(x) 第五の関数2 Absorbent 3 Circulation pump 5 Absorption tower 9 Lime 27a Absorption tower inlet SO 2 concentration 28a Absorption tower inlet exhaust gas amount 31 Boiler load target value F 1 (x) First function F 2 (x) Second function F 3 ( x) Third function F 4 (x) Fourth function F 5 (x) Fifth function
Claims (2)
台の循環ポンプの作動により噴霧して循環させつつ、石
炭焚ボイラから排出される排ガスと接触せしめて排ガス
中のSO2を吸収除去する吸収塔を備えた排煙脱硫装置
の吸収塔循環ポンプ台数制御方法であって、 検出される実際の吸収塔入口SO2濃度と吸収塔入口排
ガス量とに基づき、ボイラ負荷に対する吸収塔入口SO
2濃度を表わす第一の関数と、ボイラ負荷に対する吸収
塔入口排ガス量を表わす第二の関数と、前記第一、第二
の関数に基づいて求められるボイラ負荷に対する吸収す
べきSO2量を表わす第三の関数とを時々刻々書き換え
ると共に、前記第三の関数と、排煙脱硫装置固有のSO
2量に対する循環ポンプの運転台数を表わす第四の関数
とに基づいて、ボイラ負荷に対する循環ポンプの運転台
数を表わす第五の関数を時々刻々書き換え、最新となる
第五の関数を使用し、与えられるボイラ負荷目標値に対
応させて先行的に循環ポンプの運転台数を制御すること
を特徴とする排煙脱硫装置の吸収塔循環ポンプ台数制御
方法。1. An absorption liquid using lime as an absorbent is sprayed and circulated by operating a plurality of circulation pumps, and is brought into contact with exhaust gas discharged from a coal-fired boiler to absorb and remove SO 2 in the exhaust gas. an absorbent tower circulating pump units control method for flue gas desulfurization apparatus comprising an absorption tower for, based on the actual absorption tower inlet SO 2 concentration detected and the absorption tower inlet gas amount, the absorption tower inlet SO for boiler load
It represents a first function representing the 2 concentrations, and a second function representing the absorption tower inlet gas amount to the boiler load, the first, the SO 2 amount to be absorbed for boiler load obtained based on the second function The third function is rewritten momentarily, and the third function and the SO
Based on the fourth function representing the number of operating circulating pumps with respect to the two quantities, the fifth function representing the number of operating circulating pumps with respect to the boiler load is updated every moment, and the latest fifth function is used. A method of controlling the number of circulation pumps operated in a flue gas desulfurization apparatus in advance in accordance with a boiler load target value to be operated.
種に対応させて、試運転でのデータに基づき第一の関数
と第二の関数とを想定し、前記第一、第二の関数に基づ
いて第三の関数を想定し、該第三の関数と第四の関数と
に基づいて第五の関数を想定しておき、運転開始時に
は、前記想定した第五の関数を使用し、与えられるボイ
ラ負荷目標値に対応させて先行的に循環ポンプの運転台
数を制御するようにした請求項1記載の排煙脱硫装置の
吸収塔循環ポンプ台数制御方法。2. Before the start of operation, a first function and a second function are assumed based on data on a test operation in accordance with the type of coal to be used. Assuming a third function based on, the fifth function is assumed based on the third function and the fourth function, at the start of operation, using the assumed fifth function, 2. The method according to claim 1, wherein the number of operating circulation pumps is controlled in advance in accordance with the given boiler load target value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9040790A JPH10235142A (en) | 1997-02-25 | 1997-02-25 | Method for control of the number of absorption column circulating pumps of flue gas desulfurization equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9040790A JPH10235142A (en) | 1997-02-25 | 1997-02-25 | Method for control of the number of absorption column circulating pumps of flue gas desulfurization equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10235142A true JPH10235142A (en) | 1998-09-08 |
Family
ID=12590426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9040790A Pending JPH10235142A (en) | 1997-02-25 | 1997-02-25 | Method for control of the number of absorption column circulating pumps of flue gas desulfurization equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10235142A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109173631A (en) * | 2018-09-19 | 2019-01-11 | 华能辛店发电有限公司 | A kind of energy conservation optimizing method for double tower flue gas desulphurization system of connecting |
CN114632409A (en) * | 2022-02-23 | 2022-06-17 | 国能龙源环保有限公司 | Carbonyl sulfide and hydrogen sulfide removal system suitable for different concentrations and use method thereof |
CN115729181A (en) * | 2022-10-18 | 2023-03-03 | 内蒙古上都发电有限责任公司 | Method and system for improving overflow of absorption tower in limestone-gypsum desulfurization process |
-
1997
- 1997-02-25 JP JP9040790A patent/JPH10235142A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109173631A (en) * | 2018-09-19 | 2019-01-11 | 华能辛店发电有限公司 | A kind of energy conservation optimizing method for double tower flue gas desulphurization system of connecting |
CN114632409A (en) * | 2022-02-23 | 2022-06-17 | 国能龙源环保有限公司 | Carbonyl sulfide and hydrogen sulfide removal system suitable for different concentrations and use method thereof |
CN115729181A (en) * | 2022-10-18 | 2023-03-03 | 内蒙古上都发电有限责任公司 | Method and system for improving overflow of absorption tower in limestone-gypsum desulfurization process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016538989A (en) | Semi-dry simultaneous desulfurization / denitration / demercury equipment and method using circulating fluidized bed | |
CN106178896A (en) | The desulfurizer of a kind of ammonia circulation utilization and method | |
JP3968457B2 (en) | Wet flue gas desulfurization method | |
CA1105371A (en) | Flue gas scrubbing additive utilization | |
WO1996014137A1 (en) | Forced oxidation system for a flue gas scrubbing apparatus | |
JPH10235142A (en) | Method for control of the number of absorption column circulating pumps of flue gas desulfurization equipment | |
CN105664707A (en) | Additive for desulfurization, denitrification and mercury removal of flue gas of thermal power plant and preparation method and application of additive | |
JP3997340B2 (en) | Method of controlling the number of absorption tower circulation pumps in flue gas desulfurization equipment | |
GB2138793A (en) | Method of control for a wet lime-gypsum process desulfurization plant | |
JP3337382B2 (en) | Exhaust gas treatment method | |
CN217016048U (en) | Flue gas desulfurization system | |
JPH11147020A (en) | Method and apparatus for controlling flow rate of absorbent slurry at starting and stop of circulation pump for absorbing column in exhaust gas desulfurization facility | |
CN104645817A (en) | Single-tower multi-pH-value graded spraying control desulfurization system and process | |
JP3864566B2 (en) | Absorbent slurry concentration control device for flue gas desulfurization equipment | |
JPH10249145A (en) | Method of controlling number of absorber circulating pumps of flue gas desurfurizer | |
JP3068452B2 (en) | Wet flue gas desulfurization equipment | |
JP3651918B2 (en) | Control method of wet flue gas desulfurization equipment | |
CN206508794U (en) | The oxidation integrated device of desulfurization pulse suspension | |
JPH11207143A (en) | Desulfurizer for stack gas | |
JPH09327616A (en) | Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization | |
JP3414127B2 (en) | Oxidizing air supply control method and apparatus for flue gas desulfurization equipment | |
JP3575502B2 (en) | Absorbent flow control device for flue gas desulfurization unit | |
JP3241197B2 (en) | Method for controlling the oxidation of calcium sulfite in absorption solution | |
JP2001120947A (en) | Method and device for controlling stack gas desulfurizing device | |
JPH11169658A (en) | Method and device for oxidizing air supply control in flue gas desulfurizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051115 |