JPH10233739A - Optical communication equipment - Google Patents

Optical communication equipment

Info

Publication number
JPH10233739A
JPH10233739A JP9036530A JP3653097A JPH10233739A JP H10233739 A JPH10233739 A JP H10233739A JP 9036530 A JP9036530 A JP 9036530A JP 3653097 A JP3653097 A JP 3653097A JP H10233739 A JPH10233739 A JP H10233739A
Authority
JP
Japan
Prior art keywords
light receiving
signal
circuit
light
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9036530A
Other languages
Japanese (ja)
Other versions
JP3431792B2 (en
Inventor
Naoki Miyano
直樹 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP03653097A priority Critical patent/JP3431792B2/en
Publication of JPH10233739A publication Critical patent/JPH10233739A/en
Application granted granted Critical
Publication of JP3431792B2 publication Critical patent/JP3431792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To conduct optical communication at a low error rate independently a location of the optical communication equipment. SOLUTION: A plurality of light receiving elements PD1-PD5 placed in different directions in the optical communication equipment 23 receive individually an external optical signal. A comparator circuit 43 discriminates a level of a luminous quantity signal from a specific light receiving element connected via a changeover circuit 42, a demodulation circuit 34 demodulates a discrimination signal denoting a discrimination result to obtain a reception data signal. Furthermore, in parallel with the operation above, an error rate of each reception data signal is calculated from the reception data signal obtained by demodulating the luminous quantity signal from all the light receiving elements respectively. A selection circuit 56 selects a light receiving element with a minimum error rate of the reception data signal among the light receiving elements PD1-PD5 as a specific light receiving element and controls a changeover circuit 42 so as to connect the specific light receiving element and the comparator circuit 43. Thus, an optical signal is received by the diversity method and the reception data signal is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、予め定めるデータ
信号を光を用いて送受信する光通信機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication device for transmitting and receiving a predetermined data signal using light.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータ、プリン
タ等の周辺機器、およびPDA(Personal Digital Ass
istant)と称されるような携帯端末を含む電子装置間
で、デジタル信号のデータ信号を相互に送受信するデー
タ通信には、赤外線を用いた赤外線(IR)通信が利用
されている。このために、上述の電子装置には、受光素
子および発光素子を含む光通信機が取付けられている。
2. Description of the Related Art In recent years, peripheral devices such as personal computers and printers and PDAs (Personal Digital Assemblies) have been developed.
Infrared (IR) communication using infrared is used for data communication between electronic devices including a portable terminal called an istant) that mutually transmits and receives digital data signals. For this purpose, an optical communication device including a light receiving element and a light emitting element is attached to the electronic device described above.

【0003】上述の赤外線通信では、送信側電子装置に
取付けられた光通信機は、発光素子から放射される赤外
線の光量を増減させて、送信すべきデジタル信号のビッ
トの0と1とを光量変化で表す光信号を生成して放射す
る。受信側電子装置に取付けられた光通信機は、まず、
該光信号を受光素子で受光して光電変換し、次いで、受
光素子の受光量の変化を予め定める弁別レベルでレベル
弁別することで、デジタル信号のビットを再生する。こ
れら発光素子および受光素子は光学的指向性をそれぞれ
有することが多く、発光素子および受光素子が、各光学
的指向性からそれぞれ定められる許容方位領域内に相互
に存在しないとき、以下に説明するように、デジタル信
号の正確な送受信が困難になっていた。
In the infrared communication described above, an optical communication device attached to a transmission-side electronic device increases or decreases the amount of infrared light radiated from a light-emitting element, and changes the light amount of bits 0 and 1 of a digital signal to be transmitted. Generate and emit an optical signal that represents the change. The optical communication device attached to the receiving electronic device firstly
The light signal is received by the light receiving element, photoelectrically converted, and then the change in the amount of light received by the light receiving element is level discriminated at a predetermined discrimination level, thereby reproducing the bits of the digital signal. These light-emitting elements and light-receiving elements often have optical directivity, respectively. When the light-emitting elements and light-receiving elements do not mutually exist in the allowable azimuth regions respectively defined by the respective optical directivities, as described below. In addition, accurate transmission and reception of digital signals has been difficult.

【0004】図9は、上述の赤外線通信時の受光素子1
と発光素子2,3との位置関係を表す模式図である。こ
の模式図では、受光素子1と発光素子2,3だけを明示
し、電子装置の残余の部品は省略する。受光素子1の受
光許容方位領域5は、受光素子1内で光を受光する受光
面6の中心を通る法線7を中心軸線とした角度θの円錐
内の領域である。また、発光素子2,3の光放射方向
9,10は、発光素子2,3内で発光する発光面11,
12に垂直な法線方向であり、発光許容方位領域は、該
放射方向9,10を中心軸線とする円錐内の領域であ
る。発光素子2は、受光素子1の法線上で受光素子1と
正対する。発光素子3は、受光素子1側を向き、またそ
の発光面12の法線は受光面6の法線と角度βを成す。
角度βは角度θ以上の角度である。
FIG. 9 shows a light receiving element 1 during the above-mentioned infrared communication.
FIG. 3 is a schematic diagram illustrating a positional relationship between the light emitting devices and light emitting elements 2 and 3. In this schematic diagram, only the light receiving element 1 and the light emitting elements 2 and 3 are shown, and the remaining components of the electronic device are omitted. The light receiving permissible azimuth region 5 of the light receiving element 1 is a region within a cone having an angle θ with the center axis as a normal 7 passing through the center of the light receiving surface 6 for receiving light in the light receiving element 1. The light emitting directions 9 and 10 of the light emitting elements 2 and 3 correspond to the light emitting surfaces 11 and
The normal direction perpendicular to 12 and the emission allowable azimuth region are regions within a cone having the radiation directions 9 and 10 as central axes. The light emitting element 2 faces the light receiving element 1 on the normal line of the light receiving element 1. The light emitting element 3 faces the light receiving element 1 side, and the normal line of the light emitting surface 12 forms an angle β with the normal line of the light receiving surface 6.
Is an angle equal to or greater than the angle θ.

【0005】上述の受光素子1と発光素子2との間で光
通信を行う場合、受光素子1の受光面6と発光素子2の
発光面11とが互いに正対するので、受光素子1の受光
量は、レベル弁別動作によってデータ信号を再生するの
に必要な基準量以上になる。ゆえに、受光素子1を含む
受信側光受信機で再生されるデジタル信号のエラーレー
トは、データ通信で許容される最小許容エラーレート未
満になる。また、上述の受光素子1と発光素子3との間
で光通信を行う場合、発光素子3が受光素子1の受光許
容方位領域5外にあるので、受光素子1の光信号の受光
量が、前述の受光量の基準量未満に減少することがあ
る。このとき、受光素子1の受光量変化からデジタル信
号のビットを正確に再生することが困難になり、デジタ
ル信号のエラーレートが前記最小許容エラーレートより
も高くなりやすい。
When optical communication is performed between the light receiving element 1 and the light emitting element 2, the light receiving surface 6 of the light receiving element 1 and the light emitting surface 11 of the light emitting element 2 face each other. Is larger than the reference amount necessary for reproducing the data signal by the level discriminating operation. Therefore, the error rate of the digital signal reproduced by the receiving optical receiver including the light receiving element 1 is less than the minimum allowable error rate allowed in data communication. When optical communication is performed between the light receiving element 1 and the light emitting element 3 described above, since the light emitting element 3 is outside the light receiving allowable azimuth region 5 of the light receiving element 1, the light receiving amount of the light signal of the light receiving element 1 is The amount of received light may be reduced below the reference amount. At this time, it is difficult to accurately reproduce the bits of the digital signal from the change in the amount of light received by the light receiving element 1, and the error rate of the digital signal tends to be higher than the minimum allowable error rate.

【0006】また、上述の光通信機では、上述の受光素
子1に代わって、IR通信ユニットと称される受信素子
14が用いられることがある。この受信素子14は、上
述の受光素子1と同一の受光素子15と、該受光素子1
5から出力される電気信号を波形成形してデジタル信号
を再生するための比較器とが一体化されて形成される。
ゆえに、受信素子14内部の受光素子15の光学的指向
性によって、受信素子14全体が、図10に表すよう
に、受光素子1と同様の光学的指向性を有する。したが
って、この受信素子14で発光素子2からの光信号を受
信してデジタル信号を再生するときには該デジタル信号
のエラーレートは前記最小許容エラーレート未満になる
が、発光素子3からの光信号を受信してデジタル信号を
再生するときには該デジタル信号のエラーレートは最小
許容エラーレート以上になり易い。
In the above-described optical communication device, a receiving element 14 called an IR communication unit may be used instead of the light receiving element 1 described above. The receiving element 14 includes the same light receiving element 15 as the light receiving element 1 described above,
A comparator for reproducing a digital signal by shaping the waveform of the electric signal output from 5 is integrally formed.
Therefore, due to the optical directivity of the light receiving element 15 inside the receiving element 14, the entire receiving element 14 has the same optical directivity as the light receiving element 1 as shown in FIG. Therefore, when the receiving element 14 receives the optical signal from the light emitting element 2 and reproduces the digital signal, the error rate of the digital signal becomes lower than the minimum allowable error rate. When reproducing a digital signal, the error rate of the digital signal tends to be higher than the minimum allowable error rate.

【0007】これらのことから、上述の光通信でデジタ
ル信号を正確に再生させるためには、受光素子1と発光
素子2,3が、各素子1〜3の許容方位領域内に相互に
存在するように配置する必要がある。したがって、これ
らの受光素子1を含む光通信機と、発光素子2,3を含
む光通信機とを、たとえば受光素子1の受光面と発光素
子2,3の発光面とが正確に正対するように配置しなけ
ればならない。これら光通信機が上述の電子装置に内蔵
されているときは、光通信機の配置によって、電子装置
の配置が決定されるので、電子装置の操作者にとって取
扱いが難しいような配置で電子装置を配置しなければな
らなくなることがある。
From the above, in order to accurately reproduce a digital signal in the above-described optical communication, the light receiving element 1 and the light emitting elements 2 and 3 are mutually present in the allowable azimuth region of each of the elements 1 to 3. It is necessary to arrange. Therefore, the optical communication device including the light receiving element 1 and the optical communication device including the light emitting elements 2 and 3 are set so that, for example, the light receiving surface of the light receiving element 1 and the light emitting surface of the light emitting elements 2 and 3 face each other accurately. Must be placed in When these optical communication devices are incorporated in the electronic device described above, the arrangement of the electronic devices is determined by the arrangement of the optical communication devices. May need to be placed.

【0008】さらに、受光素子1または受信素子14と
発光素子2,3との間で光通信を行う場合に、受光素子
1,15の受光許容方位領域5内に発光素子2,3以外
の別光源が存在するとき、該別光源からの外来光が光学
的雑音として受光素子1,15で受光される。この場合
で発光素子2からの光信号を受信するときは、該光信号
の受光量が充分に多いので、たとえば、光信号と光学的
雑音とのS/N比が充分に大きく、上述のデジタル信号
を再生することは容易である。しかしながら、発光素子
3からの光信号を受光するときは、上述のように発光素
子3からの光信号の受光量が低下しているので、たとえ
ば、光信号と光学的雑音とのS/N比が小さくなりやす
く、デジタル信号を正確に再生することが困難になる。
このように、受光素子1または受信素子14と発光素子
2,3との間の光通信では、各素子1〜3,15の光学
的指向性のために、受光素子1,15と発光素子2,3
との配置関係に応じて、光信号の光学的雑音に対する強
さが変化する。
Further, when optical communication is performed between the light receiving element 1 or the receiving element 14 and the light emitting elements 2 and 3, the light receiving elements 1 and 15 have different light receiving azimuthal regions 5 other than the light emitting elements 2 and 3. When a light source is present, extraneous light from the different light source is received by the light receiving elements 1 and 15 as optical noise. In this case, when an optical signal from the light emitting element 2 is received, the received light amount of the optical signal is sufficiently large. For example, the S / N ratio between the optical signal and the optical noise is sufficiently large, and Regenerating the signal is easy. However, when the optical signal from the light emitting element 3 is received, the amount of the optical signal received from the light emitting element 3 is reduced as described above. For example, the S / N ratio between the optical signal and the optical noise is reduced. And it is difficult to accurately reproduce the digital signal.
As described above, in the optical communication between the light receiving element 1 or the receiving element 14 and the light emitting elements 2 and 3, the light receiving elements 1 and 15 and the light emitting element 2 , 3
The strength of the optical signal with respect to the optical noise changes according to the positional relationship between the optical signals.

【0009】さらに、この受光素子1または受信素子1
4を含む光通信機では、発光素子2,3から受光素子
1,15までの距離とデータ通信の送受信の可否との関
係を表す通信性能が、発光素子と別光源と受光素子1,
15との位置関係によって変化する。たとえば、図9,
10で示す位置関係の受光素子1,15と発光素子3と
の間で光通信を行う場合に、別光源が受光素子1または
受信素子14の受信許容方位領域5内にあるとき、該場
合であって別光源がないときよりも光信号の光学的雑音
に対する強さが低下する。ゆえに、このときに発光素子
3と前記光通信機との距離が大きく離れているときに
は、上述のデータ通信に充分な通信性能が得られないこ
とがある。
Further, the light receiving element 1 or the receiving element 1
In the optical communication device including the light emitting element 4, the communication performance indicating the relationship between the distance from the light emitting elements 2 and 3 to the light receiving elements 1 and 15 and the availability of data communication is determined.
It changes depending on the positional relationship with the reference numeral 15. For example, in FIG.
In the case where optical communication is performed between the light receiving elements 1 and 15 and the light emitting element 3 having the positional relationship indicated by 10, when another light source is within the reception allowable azimuthal region 5 of the light receiving element 1 or the receiving element 14, Therefore, the strength of the optical signal with respect to optical noise is lower than when there is no separate light source. Therefore, at this time, if the distance between the light emitting element 3 and the optical communication device is large, communication performance sufficient for the data communication described above may not be obtained.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、送信
側の光通信機と受信側の光通信機との配置位置に拘わり
なく、良好な光通信を行うことができる光通信機を提供
することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical communication device capable of performing good optical communication regardless of the arrangement of the optical communication device on the transmitting side and the optical communication device on the receiving side. It is to be.

【0011】[0011]

【課題を解決するための手段】本発明は、予め定めるデ
ータ信号を光を用いて表す光信号を送受信する光通信機
において、前記光信号を、相互に異なる受光条件で個別
的に受光する複数の受光手段と、複数の受光手段のうち
で、受光状態が最良の受光手段を選択する選択手段と、
選択手段で選択された受光手段から出力された出力信号
を復調して、前記データ信号を得る第1復調手段とを含
むことを特徴とする光通信機である。本発明に従えば、
光通信機は、いわゆるダイバーシティ方式で、光信号を
受信する。この光通信機を受信側光通信機とするとき、
該光通信機は、受信条件の異なる複数の受光手段で光信
号を個別的に受光させ、該複数の受光手段のうちで受光
状態が最良の受光手段を選択手段で選択して、該受光手
段から出力された出力信号を第1復調手段で復調させ
る。これによって、第1復調手段からは、常に最良のデ
ータ信号を得ることができる。またたとえば、受信側の
前記光通信機の受光手段と光信号を送信した送信側の光
通信機の発光手段との位置関係に起因するような受光条
件の変化、および受信側の前記光通信機の受光手段と光
学的雑音の発生源との位置関係に起因するような受光条
件の変化に拘わらず、常に最良の受光条件下で光信号を
受光することができる。
According to the present invention, there is provided an optical communication device for transmitting and receiving an optical signal representing a predetermined data signal using light, wherein a plurality of optical signals are individually received under different light receiving conditions. A light receiving means, and a selecting means for selecting a light receiving means having the best light receiving state among a plurality of light receiving means,
An optical communication device, comprising: a first demodulation unit that demodulates an output signal output from the light receiving unit selected by the selection unit and obtains the data signal. According to the present invention,
An optical communication device receives an optical signal by a so-called diversity system. When this optical communication device is used as a receiving optical communication device,
The optical communication device individually receives optical signals with a plurality of light receiving units having different receiving conditions, and selects a light receiving unit having the best light receiving state among the plurality of light receiving units by a selecting unit. Is demodulated by the first demodulation means. Thus, the best data signal can always be obtained from the first demodulation unit. Further, for example, a change in light receiving conditions caused by a positional relationship between a light receiving unit of the optical communication device on the receiving side and a light emitting unit of the optical communication device on the transmitting side that has transmitted an optical signal, and the optical communication device on the receiving side The optical signal can always be received under the best light receiving condition regardless of the change of the light receiving condition caused by the positional relationship between the light receiving means and the source of the optical noise.

【0012】また本発明は、前記光通信機は、前記各受
光手段から出力された前記出力信号をそれぞれ復調し
て、前記各受光手段に対応したデータ信号を得る第2復
調手段と、第2復調手段で復調された各データ信号毎
に、データ信号の全データ量と、誤りがあったデータ量
との比率を算出する比率算出手段とをさらに含み、前記
選択手段は、すべての受光手段のうちで、比率算出手段
で算出された比率が最小のデータ信号に対応した受光手
段を選択することを特徴とする。本発明に従えば、前記
光通信機の選択手段は、上述の第2復調手段で得られた
データ信号から、比率算出手段にエラーレートと称され
るような上述の比率を算出させて、該比率が最小の光信
号を受信した受光手段を、最良の受光状態の選択手段で
あるとして選択する。一般的に、光通信機間で送受信さ
れる光信号は、ダイバーシティ方式の電波通信機でアン
テナの切換えの指標となる電界強度のようなパラメータ
を持たないことが多いので、光信号そのものから、各受
信手段の受信状態を認識することが困難である。このと
きに上述の選択手段を用いると、全受光手段から最良の
受光状態の受光手段を選択するためのパラメータを容易
に生成することができる。したがって、光信号を用いた
ダイバーシティ方式の光通信機で、最良の受信状態の受
信手段を容易に選択することができる。
Further, according to the present invention, the optical communication device demodulates each of the output signals output from each of the light receiving means to obtain a data signal corresponding to each of the light receiving means. For each data signal demodulated by the demodulation means, further includes a ratio calculation means for calculating a ratio between the total data amount of the data signal and the data amount having an error, wherein the selection means includes a The light receiving means corresponding to the data signal having the smallest ratio calculated by the ratio calculating means is selected. According to the present invention, the selecting unit of the optical communication device causes the ratio calculating unit to calculate the above-mentioned ratio called an error rate from the data signal obtained by the above-mentioned second demodulating unit. The light receiving unit that receives the optical signal with the smallest ratio is selected as the selecting unit for the best light receiving state. In general, optical signals transmitted and received between optical communication devices often do not have parameters such as electric field strength which is an index of antenna switching in a diversity radio communication device. It is difficult to recognize the receiving state of the receiving means. At this time, by using the above-described selecting means, it is possible to easily generate a parameter for selecting the light receiving means in the best light receiving state from all the light receiving means. Therefore, it is possible to easily select the receiving means in the best receiving state in the diversity type optical communication device using the optical signal.

【0013】また本発明は、予め定めるデータ信号を光
の光量で表す光信号を送受信する光通信機において、前
記光信号を、相互に異なる受光条件で個別的に受光する
複数の受光手段と、各受光手段に個別的に対応し、対応
した受光手段から出力された信号の受光レベルを調整す
る複数のレベル調整手段と、調整された複数の信号の中
から、複数の受光手段のうちで受光状態が最良の受光手
段に対応したレベル調整手段で調整された信号を選択す
る信号選択手段と、選択された信号を復調して、前記デ
ータ信号を得る信号復調手段とを含むことを特徴とする
光通信機である。本発明に従えば、光通信機は、複数の
受光手段から出力された信号の受光レベルを、各受光手
段に個別的に対応する各レベル調整手段でそれぞれ調整
する。このレベル調整手段は、たとえばレベル弁別手段
であって、各受光手段から出力されて受光手段の受光量
を信号レベルで表すような信号を予め定める弁別レベル
で、レベル弁別する。信号復調手段は、レベルの調整後
の複数の信号のうちで信号選択手段で選択されたいずれ
か1つの信号を復調して、データ信号を得る。このよう
に、受光手段から出力された信号の受光レベルを調整す
ることがで、該信号が波形成形される。ゆえに、受光状
態が良好な受光手段からの信号の受光レベルを調整する
と、該信号から光学的雑音が除去される考えられる。し
たがって、請求項1のように受光手段から出力された信
号が直接与えられるときと比較して、本請求項のように
レベル調整した後に与えられるほうが、復調手段の復調
動作で光学的雑音の影響を受けにくくなり、確実にデー
タ信号を得ることができる。
The present invention also provides an optical communication device for transmitting and receiving an optical signal representing a predetermined data signal by the amount of light, wherein a plurality of light receiving means for individually receiving the optical signal under mutually different light receiving conditions; A plurality of level adjusting means individually corresponding to each light receiving means and adjusting a light receiving level of a signal output from the corresponding light receiving means; and a light receiving means among a plurality of light receiving means from a plurality of adjusted signals. Signal selecting means for selecting a signal adjusted by the level adjusting means corresponding to the best light receiving means, and signal demodulating means for demodulating the selected signal to obtain the data signal. It is an optical communication device. According to the invention, the optical communication device adjusts the light receiving levels of the signals output from the plurality of light receiving means by the respective level adjusting means individually corresponding to the respective light receiving means. The level adjusting means is, for example, a level discriminating means, and discriminates a signal which is output from each light receiving means and indicates the amount of light received by the light receiving means by a signal level at a predetermined discrimination level. The signal demodulating unit demodulates any one of the plurality of signals whose levels have been adjusted and selected by the signal selecting unit to obtain a data signal. Thus, by adjusting the light receiving level of the signal output from the light receiving means, the signal is shaped into a waveform. Therefore, when the light receiving level of the signal from the light receiving means having a good light receiving state is adjusted, optical noise is considered to be removed from the signal. Therefore, compared with the case where the signal output from the light receiving means is directly given as in claim 1, the signal given after the level adjustment as in this claim is less affected by optical noise in the demodulation operation of the demodulation means. And a data signal can be reliably obtained.

【0014】また本発明は、予め定めるデータ信号を光
の光量で表す光信号を送受信する光通信機において、前
記光信号を、相互に異なる受光条件で個別的に受光する
複数の受光手段と、複数の受光手段のうちで、受光状態
が最良の受光手段を選択する選択手段と、選択手段で選
択された受光手段から出力された信号の受光レベルを調
整するレベル調整手段と、調整された信号を復調して、
前記データ信号を得る信号復調手段とを含むことを特徴
とする光通信機である。本発明に従えば、光通信機は、
複数の受光手段のうちのいずれか1つを選択手段で選択
し、該受光手段から出力され信号の受光レベルをレベル
調整手段で調整した後に、信号復調手段に与える。この
レベル調整手段はすべての受光手段に共用される。これ
によって、請求項3と同様に復調手段の復調動作で光学
的雑音の影響を受けにくくなると同時に、請求項3の光
通信機よりも部品点数を減少させることができる。
The present invention also provides an optical communication device for transmitting and receiving an optical signal representing a predetermined data signal by the amount of light, comprising: a plurality of light receiving means for individually receiving the optical signal under mutually different light receiving conditions; Selecting means for selecting a light receiving means having the best light receiving state among a plurality of light receiving means; level adjusting means for adjusting a light receiving level of a signal output from the light receiving means selected by the selecting means; And demodulate
A signal demodulation means for obtaining the data signal. According to the present invention, the optical communication device comprises:
Any one of the plurality of light receiving means is selected by the selecting means, and the light receiving level of the signal output from the light receiving means is adjusted by the level adjusting means, and is then provided to the signal demodulating means. This level adjusting means is shared by all the light receiving means. As a result, similarly to the third aspect, the demodulation operation of the demodulation means is less affected by optical noise, and the number of components can be reduced as compared with the optical communication apparatus of the third aspect.

【0015】[0015]

【発明の実施の形態】図1は、本発明の第1実施形態の
光通信機23を含む電子装置21の電気的構成を表すブ
ロック図である。電子装置21は、ホスト装置22と光
通信機23とを含んで構成される。ホスト装置22は、
たとえば、パーソナルコンピュータ、プリンタ等の周辺
機器、および携帯端末で実現される。ホスト装置22
は、光通信機23を介して、他の電子装置のホスト装置
との間で、光通信によってデータ信号を授受する。光通
信機23は、たとえば赤外線通信を行う光通信機であっ
て、赤外線の光量変化でデータ信号のビットを表すよう
な光信号を送受信する。ホスト装置22と光通信機23
とは、同一の筺体内部に収納される。
FIG. 1 is a block diagram showing an electrical configuration of an electronic device 21 including an optical communication device 23 according to a first embodiment of the present invention. The electronic device 21 includes a host device 22 and an optical communication device 23. The host device 22
For example, it is realized by a peripheral device such as a personal computer and a printer, and a portable terminal. Host device 22
Transmits / receives a data signal to / from a host device of another electronic device by optical communication via the optical communication device 23. The optical communication device 23 is, for example, an optical communication device that performs infrared communication, and transmits and receives an optical signal that represents a bit of a data signal by a change in the amount of infrared light. Host device 22 and optical communication device 23
Are housed in the same housing.

【0016】光通信機23は、データ変換回路25と、
送信回路26と、受信回路27とを含んで構成される。
データ変換回路25は、送信回路26および受信回路2
7とホスト装置22との間に介在され、データ信号の授
受と変換とを行う。具体的には、データ変換回路25
は、レジスタ31と、制御回路32と、変調回路33
と、復調回路34とを含んで構成される。レジスタ31
は、ホスト装置22から変調回路33に与えられる送信
データ信号、および復調回路34からホスト装置22に
与えられる受信データ信号を記憶する。制御回路32
は、レジスタ31と変調回路33と復調回路34との挙
動に応じて、送信および受信データ信号の授受を制御す
る。変調回路33は、送信データ信号を被変調信号とし
て後述の送信信号を生成して、送信回路26に与える。
送信回路26は、変調回路33で生成された送信信号に
基づいて光量が変化するような後述の光信号を生成し
て、光通信機23外部に送信する。また、受信回路27
は、他の電子装置の光通信機から送信された光信号を、
いわゆるダイバーシティ方式で受信して、後述の弁別信
号を生成する。復調回路34は、受信回路27から出力
された弁別信号を復調して、受信データ信号を得る。変
調回路33と復調回路34とには共通する回路部品があ
るので、これら回路33,34を一体化して、共通する
回路部品を共用する構成であってもよい。
The optical communication device 23 includes a data conversion circuit 25,
It is configured to include a transmission circuit 26 and a reception circuit 27.
The data conversion circuit 25 includes a transmission circuit 26 and a reception circuit 2
7 and the host device 22 for transmitting / receiving and converting data signals. Specifically, the data conversion circuit 25
Is a register 31, a control circuit 32, a modulation circuit 33
And a demodulation circuit 34. Register 31
Stores a transmission data signal supplied from the host device 22 to the modulation circuit 33 and a reception data signal supplied from the demodulation circuit 34 to the host device 22. Control circuit 32
Controls transmission and reception of a received data signal in accordance with the behavior of the register 31, the modulation circuit 33, and the demodulation circuit 34. The modulation circuit 33 generates a transmission signal described later using the transmission data signal as a modulated signal, and supplies the transmission signal to the transmission circuit 26.
The transmission circuit 26 generates an optical signal whose light amount changes, based on the transmission signal generated by the modulation circuit 33, and transmits the signal to the outside of the optical communication device 23. The receiving circuit 27
The optical signal transmitted from the optical communication device of another electronic device,
The signal is received by a so-called diversity method, and a discrimination signal described later is generated. The demodulation circuit 34 demodulates the discrimination signal output from the reception circuit 27 to obtain a reception data signal. Since the modulation circuit 33 and the demodulation circuit 34 have common circuit components, these circuits 33 and 34 may be integrated to share a common circuit component.

【0017】送信回路26は、具体的には、駆動回路3
6と一対の発光素子LED1,LED2とを含んで構成
される。発光素子LED1は、その順方向入力端子が電
圧レベル+Bの電力が常時供給された電源ライン37に
接続され、その順方向出力端子が発光素子LED2の順
方向入力端子と接続される。また、発光素子LED2の
順方向出力端子は、駆動回路36の一方接続端子に接続
される。駆動回路36の他方接続端子が、送信回路26
の信号入力端子として、変調回路33と接続される。駆
動回路36は、いわゆるバッファ回路であって、発光素
子LED2の順方向出力端子と接地ラインとの間に介在
されるトランジスタT1を含む。
The transmission circuit 26 is, specifically, a driving circuit 3
6 and a pair of light emitting elements LED1 and LED2. The light emitting element LED1 has a forward input terminal connected to the power supply line 37 to which power of the voltage level + B is constantly supplied, and a forward output terminal connected to the forward input terminal of the light emitting element LED2. The forward output terminal of the light emitting element LED2 is connected to one connection terminal of the drive circuit 36. The other connection terminal of the drive circuit 36
Is connected to the modulation circuit 33 as a signal input terminal. The drive circuit 36 is a so-called buffer circuit, and includes a transistor T1 interposed between a forward output terminal of the light emitting element LED2 and a ground line.

【0018】受信回路27は、具体的には、複数の受光
素子、切換回路42、比較回路43、および切換制御回
路44を含んで構成される。複数の受光素子は、たとえ
ばフォトダイオードで実現され、以下の説明では5つの
受光素子PD1〜PD5を含むものとする。これらの受
光素子PD1〜PD5は、それぞれ光学的指向性を有
し、光学的指向性によって定められる受信許容方位領域
内に他の電子装置の光通信機の発光素子が存在し、かつ
該発光素子の発光面と受光素子の受光面とが正対すると
きに、最良の受光状態となる。
The receiving circuit 27 specifically includes a plurality of light receiving elements, a switching circuit 42, a comparing circuit 43, and a switching control circuit 44. The plurality of light receiving elements are realized by, for example, photodiodes, and include five light receiving elements PD1 to PD5 in the following description. Each of the light receiving elements PD1 to PD5 has an optical directivity, and a light emitting element of an optical communication device of another electronic device exists in a reception allowable azimuth region defined by the optical directivity, and the light emitting element When the light-emitting surface of the light-receiving element and the light-receiving surface of the light-receiving element face each other, the best light-receiving state is obtained.

【0019】また、全受光素子PD1〜PD5は、受光
面と平行な予め定めるX方向に沿った仮想軸線上に並列
に配置され、かつ、各受光素子PD1〜PD5の受光面
が、相互に異なる方向を向くように配置される。たとえ
ば、上述の受光素子PD1,PD2は、図2に示すよう
に、各受光素子PD1,PD2の受光面45,46の法
線47,48が、X方向から見て取付角度αで交差する
ように配置される。各受光素子PD1,PD2の受光許
容方位領域49,50は、受光面45,46の法線4
7,48を中心軸線とした角度θの円錐内の領域であ
る。前述の取付角度αは角度θの2倍の角度未満に選ば
れる。他の受光素子PD3〜PD5と、受光素子PD2
〜PD4との配置関係は、上述受光素子PD1,PD2
の配置関係と等しい。
Further, all the light receiving elements PD1 to PD5 are arranged in parallel on a virtual axis along a predetermined X direction parallel to the light receiving surface, and the light receiving surfaces of the respective light receiving elements PD1 to PD5 are different from each other. It is arranged to face the direction. For example, as shown in FIG. 2, the normal lines 47 and 48 of the light receiving surfaces 45 and 46 of the light receiving elements PD1 and PD2 intersect at the mounting angle α when viewed from the X direction, as shown in FIG. Placed in The light-receiving permissible azimuth regions 49 and 50 of each of the light-receiving elements PD1 and PD2 correspond to the normal 4
This is a region within a cone having an angle θ with 7, 48 as the central axis. The aforementioned mounting angle α is selected to be less than twice the angle θ. The other light receiving elements PD3 to PD5 and the light receiving element PD2
The arrangement relationship with the light receiving elements PD1, PD2
Is equal to the arrangement relation.

【0020】 2θ>α …(1) これによって、受光素子PD1〜PD5は、X方向に沿
う前記仮想軸線を中心として、順次的に取付角度αずつ
向きがずらされて配置される。各受光素子PD1〜PD
5の角度θは、たとえば45度であり、このときの取付
角度αは、たとえば80度に選ばれる。これによって、
受光素子PD1〜PD5の受光許容方位領域は、YZ平
面内で10度ずつ重なり合って、該YZ平面全域を含
む。これら受光素子PD1〜PD5は、たとえば、電子
装置1内で、YZ平面を全周見通せる場所に取付けられ
ることが好ましい。
2θ> α (1) As a result, the light receiving elements PD1 to PD5 are arranged so as to be sequentially shifted by the mounting angle α around the imaginary axis along the X direction. Each light receiving element PD1 to PD
5 is, for example, 45 degrees, and the mounting angle α at this time is selected to be, for example, 80 degrees. by this,
The light receiving permissible azimuth regions of the light receiving elements PD1 to PD5 overlap by 10 degrees in the YZ plane and include the entire YZ plane. It is preferable that these light receiving elements PD1 to PD5 are attached to, for example, a place in the electronic device 1 where the entire YZ plane can be seen.

【0021】再び図1を参照する。各受光素子PD1〜
PD5の順方向入力端子はすべて接地され、各受光素子
PD1〜PD5の順方向出力端子は、切換回路42の複
数の個別接点に個別に接続される。また、各受光素子P
D1〜PD5の順方向出力端子は、抵抗R3〜R7を個
別に介して、電源ライン37に接続される。これによっ
て、各受光素子PD1〜PD5には、常時予め定める直
流バイアス電圧が与えられる。したがって各受光素子P
D1〜PD5は、切換回路42,51が切換えられた直
後から、安定して出力電流を出力することができる。切
換回路42の共通接点Qは、比較回路43の一方入力端
子と接続される。切換回路42と比較回路43との間に
は、図示しない電流/電圧変換回路が介在される。比較
回路43の他方入力端子には、予め定める弁別レベルの
信号が常時供給される。本実施形態では、弁別レベルが
接地レベルであると仮定する。比較回路43の出力端子
が、受信回路27の出力端子として、復調回路34に接
続される。
Referring back to FIG. Each light receiving element PD1
The forward input terminals of the PD 5 are all grounded, and the forward output terminals of the light receiving elements PD 1 to PD 5 are individually connected to a plurality of individual contacts of the switching circuit 42. Also, each light receiving element P
The forward output terminals of D1 to PD5 are connected to the power supply line 37 via the resistors R3 to R7 individually. Thus, a predetermined DC bias voltage is always applied to each of the light receiving elements PD1 to PD5. Therefore, each light receiving element P
D1 to PD5 can stably output an output current immediately after the switching circuits 42 and 51 are switched. The common contact Q of the switching circuit 42 is connected to one input terminal of the comparison circuit 43. A current / voltage conversion circuit (not shown) is interposed between the switching circuit 42 and the comparison circuit 43. A signal of a predetermined discrimination level is constantly supplied to the other input terminal of the comparison circuit 43. In the present embodiment, it is assumed that the discrimination level is the ground level. An output terminal of the comparison circuit 43 is connected to the demodulation circuit 34 as an output terminal of the reception circuit 27.

【0022】切換回路42は、切換制御回路44の選択
回路56から与えられる後述の第1切換制御信号に応答
して、共通接点Qといずれか1つの特定個別接点とを導
通させる。この特定個別接点は、全受光素子PD1〜P
D5のうちで受光状態が最良のいずれか1つの受光素子
が比較回路43と接続されるように、切換制御回路44
によって選択される。これによって、該特定個別接点と
接続された特定受光素子の後述の光量信号が、比較回路
43に与えられる。比較回路43は、与えられた光量信
号を予め定める弁別レベルでレベル弁別して、後述の弁
別信号を生成する。
The switching circuit 42 conducts the common contact Q and any one of the specific individual contacts in response to a first switching control signal described later provided from the selection circuit 56 of the switching control circuit 44. This specific individual contact is provided for all light receiving elements PD1 to PD
The switching control circuit 44 is connected so that one of the light receiving elements having the best light receiving state among D5 is connected to the comparing circuit 43.
Selected by. As a result, a light amount signal of the specific light receiving element connected to the specific individual contact, which will be described later, is given to the comparison circuit 43. The comparison circuit 43 performs level discrimination of the applied light amount signal at a predetermined discrimination level, and generates a discrimination signal described later.

【0023】切換制御回路44は、切換回路51、比較
回路52、復調回路53、比率算出回路54、メモリ5
5、および選択回路56を含んで構成される。回路51
〜53の構造は前述の回路42,43,34の構造と等
しく、回路52,53と回路43,34との挙動は等し
いので、詳細な説明は省略する。
The switching control circuit 44 includes a switching circuit 51, a comparison circuit 52, a demodulation circuit 53, a ratio calculation circuit 54, a memory 5
5 and a selection circuit 56. Circuit 51
Since the structures of the circuits Nos. 53 to 53 are the same as those of the circuits 42, 43, and 34, and the behaviors of the circuits 52, 53 and the circuits 43, 34 are the same, detailed description will be omitted.

【0024】切換回路51は、共通接点Q2と複数の個
別接点とを有する。各個別接点は、各受光素子PD1〜
PD5の順方向出力端子と個別に接続され、共通接点Q
2は、電流/電圧変換用の抵抗R2を介して電源ライン
37に接続されると共に、比較回路52の一方入力端子
と接続される。切換回路51は、選択回路56から与え
られる後述の第2切換制御信号に応答して、共通接点Q
2と各個別接点とを順次的に導通させる。切換回路51
は、該回路51と前述の切換回路42とを一体化して、
複数の個別接点を共用する構成であってもよい。
The switching circuit 51 has a common contact Q2 and a plurality of individual contacts. Each individual contact is
It is individually connected to the forward output terminal of PD5, and the common contact Q
2 is connected to the power supply line 37 via the current / voltage conversion resistor R2 and to one input terminal of the comparison circuit 52. The switching circuit 51 responds to a later-described second switching control signal supplied from the selection circuit 56,
2 and each individual contact are sequentially conducted. Switching circuit 51
Integrates the circuit 51 and the switching circuit 42 described above,
A configuration in which a plurality of individual contacts are shared may be employed.

【0025】比較回路52は、切換回路51と図示しな
い電流/電圧変換回路とを介していずれか1つの受光素
子から与えられた光量信号を、他方入力端子から供給さ
れる予め定める弁別レベルでレベル弁別して該光量信号
に対応した弁別信号を生成し、該弁別信号を復調回路5
3に与える。復調回路53は、前記弁別信号を復調し
て、得られた受信データ信号を比率算出回路54に与え
る。
The comparison circuit 52 receives the light quantity signal supplied from one of the light receiving elements via the switching circuit 51 and a current / voltage conversion circuit (not shown) at a predetermined discrimination level supplied from the other input terminal. A discrimination signal corresponding to the light amount signal is generated by discrimination, and the discrimination signal is demodulated by a demodulation circuit 5.
Give to 3. The demodulation circuit 53 demodulates the discrimination signal and supplies the obtained reception data signal to the ratio calculation circuit 54.

【0026】比率算出回路54は、受信データ信号のエ
ラーレートを算出して、該受信データ信号を表した光量
信号を出力した受光素子と対応付けて、メモリ55に記
憶する。また比率算出回路54には、データ変換回路2
5の復調回路34からも、受信データ信号が与えられ、
該受信データ信号のエラーレートも算出する。このエラ
ーレートは、メモリ55を介してまたは直接選択回路5
6に与えられる。選択回路56は、切換回路51を制御
するための第2切換制御信号を、切換制御回路44の動
作に応じて後述のように生成する。また、切換回路42
を制御するための第1切換制御信号を、メモリ55に記
憶された複数の受光データのエラーレートに基づいて、
後述のように生成する。
The ratio calculation circuit 54 calculates the error rate of the received data signal, and stores the error rate in the memory 55 in association with the light receiving element that outputs the light amount signal representing the received data signal. The ratio calculating circuit 54 includes the data converting circuit 2
5 also receives a received data signal.
The error rate of the received data signal is also calculated. This error rate is determined via the memory 55 or directly by the selection circuit 5.
6 given. The selection circuit 56 generates a second switching control signal for controlling the switching circuit 51 according to the operation of the switching control circuit 44 as described later. The switching circuit 42
Based on the error rate of the plurality of light reception data stored in the memory 55,
Generated as described below.

【0027】以下に、光通信機23の送信時の挙動を詳
細に説明する。
Hereinafter, the behavior of the optical communication device 23 during transmission will be described in detail.

【0028】最初に、ホスト装置22は、他の電子装置
に与えるべき送信データ信号を、データ変換回路25の
レジスタ31に与えて記憶させる。この送信データ信号
は、たとえば、誤り訂正符号を含むようなデジタル信号
である。制御回路32は、レジスタ31に送信データ信
号が記憶されると、該送信データ信号を変調回路33に
与える。変調回路33は、送信データ信号を被変調信号
として、予め定める搬送波を予め定める変調方式で変調
して、変調信号を生成する。この変調信号は、送信デー
タ信号のビットの値に応じて、予め定める周期毎に信号
レベルが変化する。予め定める変調方式は、たとえば、
赤外線通信のIrDA方式に適合した変調方式である。
First, the host device 22 gives a transmission data signal to be given to another electronic device to the register 31 of the data conversion circuit 25 and stores it. This transmission data signal is, for example, a digital signal including an error correction code. When the transmission data signal is stored in the register 31, the control circuit 32 supplies the transmission data signal to the modulation circuit 33. The modulation circuit 33 generates a modulated signal by modulating a predetermined carrier with a predetermined modulation method using the transmission data signal as a modulated signal. The signal level of the modulated signal changes at predetermined cycles in accordance with the value of the bit of the transmission data signal. The predetermined modulation method is, for example,
This is a modulation method suitable for the IrDA method of infrared communication.

【0029】変調回路33から出力された変調信号は、
駆動回路36の他方接続端子から入力されて、トランジ
スタT1のベース端子に与えられる。トランジスタT1
はスイッチング素子として働き、変調信号の信号レベル
に応じて、発光素子LED2の順方向接続端子と接地ラ
インとの接続を導通または遮断する。これによって、発
光素子LED1,LED2には、変調信号の信号レベル
変化に応答して、電源ライン37から駆動回路36に向
かう方向に電流が供給または遮断される。したがって、
発光素子LED1,LED2からは、前記電流に応答し
た光量の光が、変調信号の信号レベル変化に応答したパ
ルス周期で断続的に放射される。このような一連の動作
によって、送信回路26からは、送信データ信号のビッ
トに対応して光量変化する光信号が、光通信機23外部
に送信される。
The modulation signal output from the modulation circuit 33 is
The signal is input from the other connection terminal of the drive circuit 36 and supplied to the base terminal of the transistor T1. Transistor T1
Functions as a switching element, and connects or disconnects the connection between the forward connection terminal of the light emitting element LED2 and the ground line according to the signal level of the modulation signal. As a result, a current is supplied to or cut off from the power supply line 37 to the drive circuit 36 in response to the change in the signal level of the modulation signal to the light emitting elements LED1 and LED2. Therefore,
From the light emitting elements LED1 and LED2, light of an amount corresponding to the current is emitted intermittently in a pulse cycle corresponding to a change in the signal level of the modulation signal. By such a series of operations, the transmission circuit 26 transmits an optical signal whose light amount changes in accordance with the bit of the transmission data signal to the outside of the optical communication device 23.

【0030】以下に、光通信機23の光信号の受信時の
挙動を詳細に説明する。
Hereinafter, the behavior of the optical communication device 23 when receiving an optical signal will be described in detail.

【0031】全受光素子PD1〜PD5は、各受光素子
PD1〜PD5毎に個別的に、常時光通信機23外部か
らの光を受光し、受光した光を光電変換して、光の受光
量の経時変化に応答して電流量が変化する出力電流を発
生させている。この光の受光量の経時変化は、光信号と
光学的雑音とのS/N比が充分に小さいとき、他の電子
装置の光通信機から送信された光信号の光量変化に応答
して変化する。
All of the light receiving elements PD1 to PD5 individually receive light from outside the optical communication device 23 at all times, individually convert the received light into light, An output current whose current amount changes in response to aging is generated. When the S / N ratio between the optical signal and the optical noise is sufficiently small, the change in the amount of received light changes with the change in the amount of the optical signal transmitted from the optical communication device of another electronic device. I do.

【0032】切換制御回路44は、各受光素子PD1〜
PD5の受光状態を後述の手法で周期的に比較して、受
光状態が最良の特定受光素子を選択する。特定受光素子
が選択されると、切換制御回路44の選択回路56は、
切換回路42に後述の第1切換制御信号を与えて、複数
の個別接点のうちで特定受光素子と接続された特定個別
接点と、共通接点Q1とを接続させる。これによって、
特定受光素子からの出力電流は、まず、切換回路42を
通って図示しない電流/電圧変換回路に与えられ、該回
路で光量信号に変換される。次いで、この光量信号が、
比較回路43に与えられる。光量信号は、具体的には、
特定受光素子からの出力電流を電流/電圧変換して得ら
れ、該特定受光素子での光の受光量を信号レベルで表
す。
The switching control circuit 44 includes the light receiving elements PD1 to PD1.
The light receiving state of the PD 5 is periodically compared by a method described later, and a specific light receiving element having the best light receiving state is selected. When the specific light receiving element is selected, the selection circuit 56 of the switching control circuit 44
A first switching control signal, which will be described later, is given to the switching circuit 42 to connect the specific individual contact among the plurality of individual contacts connected to the specific light receiving element to the common contact Q1. by this,
The output current from the specific light receiving element is first supplied to a current / voltage conversion circuit (not shown) through the switching circuit 42, and is converted into a light amount signal by the circuit. Then, this light amount signal is
It is provided to a comparison circuit 43. The light amount signal is, specifically,
The output current from the specific light receiving element is obtained by current / voltage conversion, and the amount of light received by the specific light receiving element is represented by a signal level.

【0033】比較回路43は、特定受光素子からの光量
信号が与えられると、該光量信号を、予め定める弁別レ
ベルでレベル弁別して、弁別結果を表す弁別信号を生成
する。比較回路43は、請求項のレベル調整手段に相当
する。弁別信号は、光量信号の信号レベルが弁別レベル
以上のときにハイレベルを保ち、光量信号の信号レベル
が弁別レベル未満のときのローレベルを保つような矩形
パルス信号であり、光量信号を波形成形した信号と等価
である。ゆえに弁別信号は、光信号と光学的雑音とのS
/N比が充分に小さいとき、特定受光素子で受光された
光信号の光量変化に応答して、パルスが発生する。この
とき弁別信号からは、光学的雑音に対応する信号レベル
変化が除去されている。
When the light quantity signal from the specific light receiving element is given, the comparison circuit 43 discriminates the light quantity signal at a predetermined discrimination level and generates a discrimination signal representing a discrimination result. The comparison circuit 43 corresponds to a level adjusting unit in the claims. The discrimination signal is a rectangular pulse signal that maintains a high level when the signal level of the light quantity signal is equal to or higher than the discrimination level and maintains a low level when the signal level of the light quantity signal is less than the discrimination level. This is equivalent to the applied signal. Therefore, the discrimination signal is the S signal of the optical signal and the optical noise.
When the / N ratio is sufficiently small, a pulse is generated in response to a change in the amount of light of the optical signal received by the specific light receiving element. At this time, a change in signal level corresponding to optical noise has been removed from the discrimination signal.

【0034】復調回路34は、比較回路43で生成され
た弁別信号を予め定める復調方式で復調して、受信デー
タ信号を得る。制御回路32は、復調回路34で受信デ
ータ信号が得られると、該信号を一旦レジスタ31に記
憶させた後に、レジスタ31からホスト装置22に与え
る。予め定める復調方式は、たとえば赤外線通信のIr
DA方式に適合した復調方式である。このように、復調
回路34の復調動作に弁別信号を用いることで、光量信
号をそのまま用いる場合と比較して、光信号に重畳され
る光学的雑音の影響を除去することができる。
The demodulation circuit 34 demodulates the discrimination signal generated by the comparison circuit 43 by a predetermined demodulation method to obtain a reception data signal. When the demodulation circuit 34 obtains the received data signal, the control circuit 32 temporarily stores the signal in the register 31 and then supplies the signal from the register 31 to the host device 22. The predetermined demodulation method is, for example, Ir communication of Ir.
This is a demodulation method compatible with the DA method. As described above, by using the discrimination signal for the demodulation operation of the demodulation circuit 34, the influence of optical noise superimposed on the optical signal can be removed as compared with the case where the light amount signal is used as it is.

【0035】図3は、上述の光通信機23の切換制御回
路44の具体的な動作を説明するためのフローチャート
である。図1と図3とを参照して、切換制御回路44の
具体的な挙動を説明する。
FIG. 3 is a flowchart for explaining a specific operation of the switching control circuit 44 of the optical communication device 23 described above. The specific behavior of the switching control circuit 44 will be described with reference to FIGS.

【0036】光通信機23に電力が供給されて作動を開
始すると、ステップa1からステップa2に進む。ステ
ップa2では、選択回路56は、切換回路51の切換回
数を計数する変数iに初期値の1を代入して初期化す
る。また、切換回路44内で用いられる各種の変数をす
べて初期化する。次いで、ステップa3では、変数iの
値が複数の受光素子の数未満であるか否かが判定され
る。本実施形態では、具体的に、5未満であるか否かが
判定される。5未満であるときは、ステップa3からス
テップa4以後のエラーレートの算出動作を行う。5以
上のときは、ステップa12以後の特定受光素子の選択
動作を行う。
When power is supplied to the optical communication device 23 and operation starts, the process proceeds from step a1 to step a2. In step a2, the selection circuit 56 substitutes an initial value of 1 into a variable i for counting the number of times of switching of the switching circuit 51 and initializes the variable i. Also, various variables used in the switching circuit 44 are all initialized. Next, in step a3, it is determined whether or not the value of the variable i is less than the number of the plurality of light receiving elements. In the present embodiment, specifically, it is determined whether it is less than 5. If it is less than 5, the operation of calculating the error rate after step a3 to step a4 is performed. If it is 5 or more, the operation of selecting the specific light receiving element after step a12 is performed.

【0037】ステップa4では、選択回路56は、変数
iの値に応答したいずれか1つの受光素子からの光量信
号を、復調回路53で復調させる。具体的には、まず、
選択回路56は、切換回路51内で、変数iの値に応じ
たいずれか1つの個別接点と共通接点Q2とが接続され
るように、最新の第2切換制御信号を生成して切換回路
51に与える。変数iの値は、たとえば、切換回路51
内で複数の個別接点が並べられた順番に対応している。
またこの場合に、いずれか1つの個別接点と切換回路4
2の共通接点Q1と接続された特定個別接点とが同一の
受光素子に接続されるとき、該個別接点を飛ばして次の
順番の個別接点と共通接点Q2とを接続させるような、
最新の第2切換制御信号を生成する。
In step a4, the selection circuit 56 demodulates the light amount signal from any one of the light receiving elements in response to the value of the variable i by the demodulation circuit 53. Specifically, first,
The selection circuit 56 generates the latest second switching control signal in the switching circuit 51 so that any one of the individual contacts corresponding to the value of the variable i and the common contact Q2 are connected. Give to. The value of the variable i is, for example,
In the order in which the plurality of individual contacts are arranged.
In this case, one of the individual contacts and the switching circuit 4
When the specific individual contacts connected to the two common contacts Q1 are connected to the same light receiving element, the individual contacts are skipped, and the individual contacts in the next order and the common contact Q2 are connected.
Generate the latest second switching control signal.

【0038】切換回路51は、与えられた第2切換制御
信号に応答して、共通接点Q2と接続される個別接点を
切換える。切換回路51が前記いずれか1つの個別接点
と共通接点Q2とを接続すると、該個別接点に接続され
た受光素子から比較回路52に光量信号が与えられる。
比較回路52は、前記光量信号をレベル弁別して弁別信
号を生成し、復調回路53に与える。復調回路53は、
この弁別信号を復調して、前記いずれか1つの個別接点
に接続された受光素子に対応した最新の受信データ信号
を得る。各回路51〜53の上述の動作は、復調回路5
3で予め定めるデータ量の受信データ信号が得られるま
で継続して実施される。予め定めるデータ量は、たとえ
ば125バイトであり、復調回路53で得られた受信デ
ータ信号のビット数を計数することがで判定される。
The switching circuit 51 switches an individual contact connected to the common contact Q2 in response to the applied second switching control signal. When the switching circuit 51 connects any one of the individual contacts to the common contact Q2, a light amount signal is supplied to the comparison circuit 52 from the light receiving element connected to the individual contact.
The comparison circuit 52 generates a discrimination signal by level discrimination of the light quantity signal, and supplies the discrimination signal to the demodulation circuit 53. The demodulation circuit 53
The discrimination signal is demodulated to obtain the latest received data signal corresponding to the light receiving element connected to any one of the individual contacts. The above operation of each of the circuits 51 to 53 is performed by the demodulation circuit 5
The operation is continuously performed until a reception data signal having a predetermined data amount is obtained in step 3. The predetermined data amount is, for example, 125 bytes, and is determined by counting the number of bits of the received data signal obtained by the demodulation circuit 53.

【0039】続いて、ステップa5では、比率算出回路
54は、前記最新の受信データ信号の各ビット毎に、デ
ータの送信誤りがあるか否かを判断する。このデータ送
信誤りの判定は、たとえば、受信データ信号にパリティ
と称されるような誤り訂正符号が含まれるとき、該誤り
訂正符号を用いた誤り訂正動作によって実施される。判
定対象のビットに送信誤りがあるときには、ステップa
6で、送信誤りがあったビット数を表す異常ビット変数
に1を累積加算する。また、判定対象のビットに送信誤
りがないときは、ステップa7で、送信誤りのなかった
ビット数を表す正常ビット変数に1を累積加算する。ス
テップa5〜a7の動作を、受信データ信号の全ビット
について繰返し実施し、全ビットの送信誤りの判定が終
了すると、ステップa8に進む。
Subsequently, in step a5, the ratio calculation circuit 54 determines whether or not there is a data transmission error for each bit of the latest received data signal. The determination of the data transmission error is performed by an error correction operation using the error correction code when the received data signal includes an error correction code called parity, for example. If there is a transmission error in the bit to be determined, step a
In step 6, 1 is cumulatively added to the abnormal bit variable indicating the number of bits having a transmission error. If there is no transmission error in the bit to be determined, in step a7, 1 is cumulatively added to a normal bit variable representing the number of bits having no transmission error. The operations of steps a5 to a7 are repeatedly performed for all bits of the received data signal, and when the determination of the transmission error of all bits is completed, the process proceeds to step a8.

【0040】ステップa8では、比率算出回路54は、
ステップa6,a7で算出された受信データ信号の異常
ビット変数および正常ビット変数の値から、最新の受信
データ信号のエラーレートを算出する。エラーレート
は、受信データ信号の全ビット数と、該信号内で誤りが
有ったビット数との比率であり、たとえば、異常ビット
変数の値と正常ビット変数の値との比率で表される。算
出されたエラーレートは、ステップa9で、比率算出回
路54からメモリ55に与えられて記憶される。このと
き、エラーレートには、該エラーレートを算出したとき
に比較回路52に接続されていたいずれか1つの受光素
子を表すデータが関連して記憶される。また比率算出回
路54は、最新のエラーレート算出が終了したことを表
す信号を、選択回路56に与える。
In step a8, the ratio calculation circuit 54
The latest error rate of the received data signal is calculated from the values of the abnormal bit variable and the normal bit variable of the received data signal calculated in steps a6 and a7. The error rate is a ratio between the total number of bits of the received data signal and the number of erroneous bits in the signal, and is represented by, for example, a ratio between a value of an abnormal bit variable and a value of a normal bit variable. . The calculated error rate is provided to the memory 55 from the ratio calculation circuit 54 and stored in step a9. At this time, data indicating any one of the light receiving elements connected to the comparison circuit 52 when the error rate is calculated is stored in association with the error rate. Further, the ratio calculation circuit 54 supplies a signal indicating that the latest error rate calculation has been completed to the selection circuit 56.

【0041】ステップa10では、選択回路56は、切
換回路51の共通接点Q2が、複数の個別接点のうち
で、現在の変数iの値に1加算した値に対応するいずれ
か1つの個別接点と接続されるように、第2切換制御信
号を生成して、切換回路51に与える。切換回路51
は、与えられた最新の第2切換制御信号に応答して、個
別接点を切換えて接続する。これによって、比較回路5
2には、前述のエラーレートの算出時とは別の受光素子
からの光量信号が与えられる。切換回路51が切換えら
れた後、選択回路56は、変数iに1加算して更新し、
その後にステップa3に戻る。
In step a10, the selection circuit 56 determines that the common contact Q2 of the switching circuit 51 is connected to one of the plurality of individual contacts corresponding to a value obtained by adding 1 to the current value of the variable i. A second switching control signal is generated so as to be connected, and supplied to the switching circuit 51. Switching circuit 51
Switches and connects the individual contacts in response to the latest second switching control signal provided. Thereby, the comparison circuit 5
2, a light amount signal from a light receiving element different from that at the time of calculating the above-described error rate is given. After the switching circuit 51 is switched, the selection circuit 56 updates by adding 1 to the variable i,
Thereafter, the process returns to step a3.

【0042】これによって、ステップa3〜a11で実
施されるような、比較回路52から選択回路56に至る
一連のエラーレート算出のための動作は、切換回路51
内で共通接点Q2と接続される個別接点を順次変更しつ
つ、受光素子PD1〜PD5の数よりも1少ない数繰返
される。したがって、メモリ55には、受光素子PD1
〜PD5のうちで、特定受光素子を除く残余の受光素子
に対応したエラーレートが、それぞれ異なる番地に順次
記憶される。ステップa3〜a11の動作が繰返し実施
されている間、切換回路42の共通接点Q1は、いずれ
か1つの特定個別接点と常時接続されている。ゆえに、
上述の算出のための動作の間、比較回路43は、特定受
光素子からの光量信号から弁別信号を生成し、復調回路
34は、該弁別信号を復調して、受信データ信号を生成
している。
Thus, a series of operations for calculating the error rate from the comparison circuit 52 to the selection circuit 56 as performed in steps a3 to a11 are performed by the switching circuit 51.
The number of the individual contacts connected to the common contact Q2 is sequentially changed, and the number is repeated by one less than the number of the light receiving elements PD1 to PD5. Therefore, the memory 55 includes the light receiving element PD1
Error rates corresponding to the remaining light-receiving elements excluding the specific light-receiving element among PD5 through PD5 are sequentially stored at different addresses. While the operations of steps a3 to a11 are repeatedly performed, the common contact Q1 of the switching circuit 42 is always connected to any one specific individual contact. therefore,
During the operation for the above calculation, the comparison circuit 43 generates a discrimination signal from the light amount signal from the specific light receiving element, and the demodulation circuit 34 demodulates the discrimination signal to generate a reception data signal. .

【0043】ステップa3で変数iの値が5以上のと
き、メモリ55には、受光素子PD1〜PD5のうち
で、特定受光素子以外の残余の受光素子に対応した最新
の受信データ信号のエラーレートがすべて記憶されたと
判断される。このとき比率算出回路54は、ステップa
12で、復調回路34から予め定めるデータ量の最新の
受光データ信号を分岐して導入し、該受光データ信号の
エラーレートを算出する。このエラーレートの算出手法
は、ステップa5〜a8の算出手法と等しい。これによ
って、特定受光素子からの光量信号から得られた受光デ
ータ信号のエラーレートが得られる。したがって、ステ
ップa12の処理が終了すると、受光素子PD1〜PD
5に対応した最新のエラーレートがすべて得られる。こ
の特定受光素子に対応した受信データ信号のエラーレー
トは、残余の受光素子に対応した最新の受信データ信号
のエラーレートと同様に、メモリ55に記憶される。ま
たこのエラーレートは、比率算出回路54から直接選択
回路56に与えられても良い。
When the value of the variable i is 5 or more in step a3, the memory 55 stores the error rate of the latest received data signal corresponding to the remaining light receiving elements other than the specific light receiving elements among the light receiving elements PD1 to PD5. Are all stored. At this time, the ratio calculation circuit 54
At 12, the latest light receiving data signal of a predetermined data amount is branched and introduced from the demodulation circuit 34, and the error rate of the light receiving data signal is calculated. The method of calculating the error rate is the same as the method of calculating steps a5 to a8. Thus, the error rate of the light receiving data signal obtained from the light amount signal from the specific light receiving element can be obtained. Therefore, when the processing in step a12 is completed, the light receiving elements PD1 to PD
All the latest error rates corresponding to 5 are obtained. The error rate of the received data signal corresponding to the specific light receiving element is stored in the memory 55 in the same manner as the error rate of the latest received data signal corresponding to the remaining light receiving elements. The error rate may be directly supplied from the ratio calculation circuit 54 to the selection circuit 56.

【0044】次いで、ステップa13で、選択回路56
は、まず、受光素子PD1〜PD5にそれぞれ対応した
最新の受光データ信号のエラーレートを、メモリ55か
らすべて読出し、次いで、全エラーレートの値を比較し
て、値が最小の最小エラーレートがどれであるかを判定
する。さらに、判定された最小エラーレートに対応した
受光素子を、受光状態が最良の特定受光素子として選択
する。
Next, at step a13, the selection circuit 56
First, all the error rates of the latest light receiving data signals corresponding to the light receiving elements PD1 to PD5 are read from the memory 55, and then the values of all error rates are compared. Is determined. Further, the light receiving element corresponding to the determined minimum error rate is selected as the specific light receiving element having the best light receiving state.

【0045】続いて、ステップa13で、選択回路56
は、切換回路42の共通接点Q1が、ステップa13の
選択動作で選択された特定受光素子が接続された特定個
別接点と接続されるように、最新の第1切換制御信号を
生成して、切換回路42に与える。切換回路42は、最
新の第1切換制御信号に応答して、個別接点を切換えて
接続する。これによって、比較回路43には、ステップ
a13の最新の選択動作で選択された特定受光素子から
の光量信号が与えられる。切換回路42を切換えると、
ステップa13からステップa2に戻り、再度変数iに
初期値1を代入して初期化する。これによって、切換制
御回路44では、光送信機23に電力が供給されて作動
する間、エラーレートの算出動作と特定受光素子の選択
動作とが交互に実施される。
Subsequently, at step a13, the selection circuit 56
Generates the latest first switching control signal so that the common contact Q1 of the switching circuit 42 is connected to the specific individual contact to which the specific light receiving element selected by the selecting operation in step a13 is connected. It is given to the circuit 42. The switching circuit 42 switches and connects the individual contacts in response to the latest first switching control signal. As a result, the comparison circuit 43 is supplied with the light amount signal from the specific light receiving element selected by the latest selection operation in step a13. When the switching circuit 42 is switched,
The process returns from step a13 to step a2, and is initialized by substituting the initial value 1 for the variable i again. As a result, in the switching control circuit 44, the operation of calculating the error rate and the operation of selecting the specific light receiving element are performed alternately while the optical transmitter 23 is supplied with power and operates.

【0046】このような一連の動作によって、切換制御
回路44では、受光素子PD1〜PD5からの光量信号
に基づいて、比較回路43に常に受信状態が最良な受光
素子を接続させるように、切換回路42を制御すること
ができる。
With such a series of operations, the switching control circuit 44 controls the switching circuit so that the light receiving element having the best reception state is always connected to the comparing circuit 43 based on the light amount signals from the light receiving elements PD1 to PD5. 42 can be controlled.

【0047】また、上述の光通信機23では、受信デー
タ信号のエラーレートに基づいて、特定受光素子を選択
する。これは、以下の理由のためである。たとえば、I
rDA方式の赤外線通信では、赤外線をパルス状に放射
し、そのパルスの発生パターンをビットの値に応答して
変化させることで、光信号を生成するため、パルス幅未
満の時間単位で受光素子PD1〜PD5の受光量の経時
変化を観察すると、不規則に受光量が増減する。ゆえ
に、光信号では、FM放送の電波通信での受信電界強度
のように、受光素子の受光量の平均値が常に一定とは限
らない。したがって、この受光量をパラメータとして受
光状態の良否を判定することは困難である。ゆえに、受
信データ信号のエラーレートのように、受光状態の良否
に連動して値が増減するような別のパラメータを用いる
ことで、電波通信の受信電界強度を用いたときと同様
に、受光状態が最良の受光素子を選択することができ
る。
In the above-mentioned optical communication device 23, a specific light receiving element is selected based on the error rate of the received data signal. This is for the following reason. For example, I
In the infrared communication of the rDA system, an infrared signal is emitted in the form of a pulse, and the pulse generation pattern is changed in response to a bit value to generate an optical signal. When observing the change with time of the received light amount of PD5, the received light amount fluctuates irregularly. Therefore, in the case of an optical signal, the average value of the amount of light received by the light receiving element is not always constant, such as the intensity of the received electric field in the radio communication of FM broadcasting. Therefore, it is difficult to determine the quality of the light receiving state using the amount of received light as a parameter. Therefore, by using another parameter such as the error rate of the received data signal, the value of which increases or decreases in accordance with the quality of the light receiving state, the light receiving state can be changed in the same manner as when the received electric field strength of the radio communication is used. Can select the best light receiving element.

【0048】また、切換制御回路44には、ホスト装置
22に与えるための受信データ信号を得るための比較回
路43と復調回路34とは別個に、エラーレート算出の
ための比較回路52と復調回路53とが準備されてい
る。これによって、エラーレートの算出動作中には、比
較回路43と復調回路34とは切換制御回路44の動作
とは別個に、特定受光素子からの光量信号に基づいて復
調回路34の復調動作を実施しているので、該復調動作
が途切れない。したがって、エラーレートを用いて受光
状態の選択を行う場合にも、ホスト装置22に与えるた
めの受信データ信号を得るための動作に影響を与えるこ
となく実施することができる。ゆえに、切換回路42以
後の比較回路43とデータ変換回路25とホスト装置2
2との動作は、ダイバーシティ方式を用いない従来技術
の光通信機の比較回路とデータ変換回路とホスト装置と
の動作と同一動作で実施することができる。
The switching control circuit 44 includes a comparison circuit 52 for obtaining a received data signal to be supplied to the host device 22 and a demodulation circuit 34, a comparison circuit 52 for calculating an error rate, and a demodulation circuit. 53 are prepared. Thereby, during the error rate calculation operation, the comparison circuit 43 and the demodulation circuit 34 perform the demodulation operation of the demodulation circuit 34 based on the light amount signal from the specific light receiving element separately from the operation of the switching control circuit 44. Therefore, the demodulation operation is not interrupted. Therefore, even when the light receiving state is selected using the error rate, the selection can be performed without affecting the operation for obtaining the reception data signal to be provided to the host device 22. Therefore, the comparison circuit 43 after the switching circuit 42, the data conversion circuit 25, and the host device 2
2 can be performed by the same operation as the operation of the comparison circuit, the data conversion circuit, and the host device of the optical communication device of the related art that does not use the diversity system.

【0049】さらに、切換制御回路44は、特定受光素
子に対応した最新の受信データ信号は、復調回路34か
ら導入する。これによって、切換制御回路44内で、全
受光素子PD1〜PD5に対応した最新の受信データ信
号のエラーレートを算出するとき、特定受光素子からの
光量信号を復調回路53で復調する必要がない。ゆえ
に、復調回路53での処理動作を簡略化することができ
る。また、特定受光素子からの光量信号を、復調回路5
3で復調させるようにしてもよい。
Further, the switching control circuit 44 introduces the latest received data signal corresponding to the specific light receiving element from the demodulation circuit 34. Accordingly, when calculating the error rate of the latest received data signal corresponding to all the light receiving elements PD1 to PD5 in the switching control circuit 44, it is not necessary to demodulate the light amount signal from the specific light receiving element by the demodulation circuit 53. Therefore, the processing operation in the demodulation circuit 53 can be simplified. Further, the light amount signal from the specific light receiving element is transmitted to a demodulation circuit 5.
3, demodulation may be performed.

【0050】図4は、全各受光素子PD1〜PD5のう
ちで、受光素子PD1,PD2の受光許容方位領域4
9,50の位置関係を表す模式図である。図4(A)は
図2と同様に、受光許容方位領域49,50を、受光素
子PD1〜PD5を並列に並べたX方向から見た図であ
り、図4(B)は、図4(A)のA−A断面を表す模式
図である。図2と図4とを併せて説明する。
FIG. 4 shows the light receiving allowable azimuth region 4 of the light receiving elements PD1 and PD2 among all the light receiving elements PD1 to PD5.
It is a schematic diagram showing the positional relationship of 9,50. FIG. 4A is a diagram of the light-receiving allowable azimuth regions 49 and 50 as viewed in the X direction in which the light-receiving elements PD1 to PD5 are arranged in parallel, similarly to FIG. 2, and FIG. It is a schematic diagram showing the AA cross section of A). 2 and 4 will be described together.

【0051】上述したように、受光素子PD1,PD2
とは、X方向に順次的に並べられ、かつYZ平面内で受
光面の法線47,48の向きが取付角度αだけ相互に異
なるように配置される。このとき、理想的には、受光許
容方位領域49,50の中心軸線となる法線47,48
が、同一のyz平面上の線分となることが好ましい。
As described above, the light receiving elements PD1, PD2
Are sequentially arranged in the X direction, and are arranged such that the directions of the normals 47 and 48 of the light receiving surface differ from each other by the mounting angle α in the YZ plane. At this time, ideally, the normal lines 47 and 48 which are the central axes of the light receiving allowable azimuth regions 49 and 50 are ideal.
Are preferably line segments on the same yz plane.

【0052】このように配置された受光素子PD1に対
して、2つの発光素子61,62を、図2,4に示すよ
うに配置する。領域63は、発光素子62の光信号の放
射方向を表す。発光素子61は、受光素子PD1の法線
47の延長線上に、その発光面が受光素子PD1の受光
面と正対するように配置される。発光素子62は、該法
線47からYZ平面内で角度βだけ異なる方向に、その
発光面が受光素子PD1,PD2側を向く配置される。
角度βは、前述の角度θ以上の角度である。この受光素
子PD1と発光素子61,62との位置関係は、図9で
説明した従来技術での発光素子2,3と受光素子1との
配置関係と等しい。
Two light emitting elements 61 and 62 are arranged as shown in FIGS. 2 and 4 with respect to the light receiving element PD1 thus arranged. The region 63 indicates the direction in which the light emitting element 62 emits an optical signal. The light emitting element 61 is arranged on an extension of the normal line 47 of the light receiving element PD1 such that its light emitting surface faces the light receiving surface of the light receiving element PD1. The light emitting element 62 is arranged so that its light emitting surface faces the light receiving elements PD1 and PD2 in directions different from the normal line 47 by an angle β in the YZ plane.
The angle β is an angle equal to or larger than the angle θ described above. The positional relationship between the light receiving element PD1 and the light emitting elements 61 and 62 is the same as the positional relationship between the light emitting elements 2 and 3 and the light receiving element 1 in the prior art described with reference to FIG.

【0053】この場合、発光素子61は、受光素子PD
1の受信許容角度領域49内に含まれるので、光学的雑
音の発生源が該領域49内に含まれない場合であって該
発光素子61を含む光通信機からの光信号を受光すると
き、全受光素子PD1〜PD5のうちで、受光素子PD
1の受光状態が最良になる。このとき、受光素子PD1
での光信号の受光量は、他の受光素子PD2〜PD5よ
りも強くなる。したがって、受光素子PD1からの光量
信号を復調回路53で復調して得られた受信データ信号
のエラーレートは、光通信で規定される許容エラーレー
トよりも充分に小さくなると考えられる。許容エラーレ
ートは、送信側電子装置と受信側電子装置との間のデー
タ通信で、受信側電子装置が送信データ信号を受信デー
タ信号として正確に再生できなくなって、通信に支障が
生じるような状態での最小エラーレートである。許容エ
ラーレートは、具体的には、データ通信にIrDA方式
の赤外線通信を用いた場合、約10-8である。
In this case, the light emitting element 61 is
Since the optical noise source is included in the reception allowable angle region 49 and the optical signal source is not included in the region 49 and the optical signal from the optical communication device including the light emitting element 61 is received, Among the light receiving elements PD1 to PD5, the light receiving element PD
The light receiving state of 1 is the best. At this time, the light receiving element PD1
The light receiving amount of the optical signal at the light receiving elements PD2 to PD5 becomes stronger than the other light receiving elements PD2 to PD5. Therefore, it is considered that the error rate of the received data signal obtained by demodulating the light amount signal from the light receiving element PD1 by the demodulation circuit 53 is sufficiently smaller than the allowable error rate specified in the optical communication. The permissible error rate is a condition in data communication between the transmitting electronic device and the receiving electronic device in which the receiving electronic device cannot accurately reproduce the transmitted data signal as the received data signal, thereby causing a trouble in the communication. Is the minimum error rate. Specifically, the allowable error rate is about 10 -8 when IrDA infrared communication is used for data communication.

【0054】また、発光素子62は、受光素子PD1の
受光可能角度領域49には含まれないが、受光素子PD
2の受光可能角度領域50に含まれる。ゆえに、光学的
雑音の発生源が該領域50内に含まれない場合であって
該発光素子62を含む光通信機からの光信号を受光する
とき、全受光素子PD1〜PD5のうちで、受光素子P
D2の受光状態が最良になる。このときには、上述の発
光素子61と受信許容角度領域49との場合と同様に、
受光素子PD2からの光量信号を復調回路53で復調し
て得られた受信データ信号のエラーレートは、光通信で
規定される許容エラーレートより充分に小さくなると考
えられる。
The light emitting element 62 is not included in the receivable angle region 49 of the light receiving element PD1,
2 are included in the receivable angle range 50. Therefore, when the source of the optical noise is not included in the area 50 and the optical signal from the optical communication device including the light emitting element 62 is received, of the light receiving elements PD1 to PD5, Element P
The light receiving state of D2 becomes the best. At this time, as in the case of the light emitting element 61 and the reception allowable angle region 49 described above,
It is considered that the error rate of the received data signal obtained by demodulating the light amount signal from the light receiving element PD2 by the demodulation circuit 53 is sufficiently smaller than the allowable error rate specified in the optical communication.

【0055】このように、本実施形態の光通信機では、
複数の受光素子PD1〜PD5のうちのいずれか1つの
受光可能角度領域内に、発光素子が含まれると考えられ
る。したがって、複数の受光素子PD1〜PD5のうち
から、受光可能角度領域内に発光素子を含むいずれか1
つの受光素子を特定受光素子として選択すれば、該受光
可能角度領域内に光学的雑音の発生源がないときには、
エラーレートが充分に低い受信データ信号を得ることが
できる。
As described above, in the optical communication device of the present embodiment,
It is considered that the light-emitting element is included in any one of the light-receiving elements PD1 to PD5 in the receivable angle region. Therefore, any one of the plurality of light receiving elements PD1 to PD5 including the light emitting element in the receivable angle region.
If one light receiving element is selected as a specific light receiving element, when there is no source of optical noise in the receivable angle range,
A received data signal having a sufficiently low error rate can be obtained.

【0056】また、発光素子61を含む光通信機からの
光信号を受光する場合に、受信許容角度領域49内に、
光学的雑音の発生源が存在するとき、受光素子PD1か
らの光量信号を復調回路53で復調して得られた受信デ
ータ信号のエラーレートは、許容エラーレートより大き
くなることがある。この場合、受光素子PD2からの光
量信号を復調回路53で復調して得られた受信データ信
号のほうが、受光素子PD1からの前記受信データ信号
よりもエラーレートが低くなる可能性がある。このよう
なとき、切換制御回路44は、受光素子PD2を特定受
光素子として選ぶので、光学的雑音の発生源と正対する
ような受光素子PD1を避けて、光学的雑音の影響の少
ない受光素子からの光量信号から受光データ信号を得る
ことができる。したがって、光学的雑音の発生源と電子
装置21との位置関係に起因するような、受信データ信
号に対する光学的雑音の影響を小さくすることができ
る。
When an optical signal from an optical communication device including the light emitting element 61 is received, the light receiving angle range 49
When an optical noise source is present, the error rate of the received data signal obtained by demodulating the light amount signal from the light receiving element PD1 by the demodulation circuit 53 may be higher than the allowable error rate. In this case, the reception data signal obtained by demodulating the light amount signal from the light receiving element PD2 by the demodulation circuit 53 may have a lower error rate than the reception data signal from the light receiving element PD1. In such a case, the switching control circuit 44 selects the light receiving element PD2 as the specific light receiving element. Therefore, the switching control circuit 44 avoids the light receiving element PD1 directly facing the source of the optical noise, and starts from the light receiving element with little influence of the optical noise. The light receiving data signal can be obtained from the light amount signal of the second light source. Therefore, the influence of the optical noise on the received data signal, which is caused by the positional relationship between the source of the optical noise and the electronic device 21, can be reduced.

【0057】これらのことから、本実施形態の電子装置
21は、送信側の電子装置の光通信機と受信側の電子装
置21との光通信機23とを、従来技術のように厳密に
位置併せしなくとも、エラーレートが充分低い光通信を
行うことができる。したがって、この通信機23を内蔵
した送信側および受信側電子装置21は、光通信機23
の位置関係に拘わりなく、自由に配置することができ
る。たとえば、これら電子装置21をパーソナルコンピ
ュータとその周辺機器とで実現する場合、光無線通信で
接続されたパーソナルコンピュータと周辺機器とを、操
作者の操作がしやすいように配置することができるの
で、これらコンピュータと周辺機器とを用いた作業の効
率を向上させることができる。したがって、本実施形態
の光通信機23は、電波通信と比較して厳しい法規制が
なく人体に与える影響の少ない光通信の優位性を保った
まま、上述のように送信側および受信側の電子装置21
を任意に配置することができる。またこの光通信機は、
ダイバーシティ方式の電波通信機と比較して、複数準備
すべき受光素子等の部品が小さく消費電力も小さいの
で、光通信機全体の製造コストが低く、消費電力も少な
くすることができる。さらに、光通信機は、上述のダイ
バーシティ方式の電波通信機と比較して、回路構成が簡
単でかつ回路的調整の精度が低いので、容易に製造する
ことができる。
From these facts, the electronic device 21 of the present embodiment strictly positions the optical communication device of the electronic device on the transmitting side and the optical communication device 23 of the electronic device 21 on the receiving side as in the prior art. Even if not combined, optical communication with a sufficiently low error rate can be performed. Therefore, the transmitting and receiving electronic devices 21 incorporating this communication device 23 are
Irrespective of the positional relationship of. For example, when these electronic devices 21 are realized by a personal computer and its peripheral devices, the personal computer and the peripheral devices connected by optical wireless communication can be arranged so that the operator can easily operate them. The efficiency of work using these computers and peripheral devices can be improved. Therefore, the optical communication device 23 of the present embodiment has the advantages of optical communication that is not strictly regulated and has little effect on the human body as compared with radio wave communication, while maintaining the superiority of the optical communication on the transmission side and the reception side as described above. Device 21
Can be arranged arbitrarily. Also, this optical communication device
Compared to a diversity radio communication device, since a plurality of components such as light receiving elements to be prepared are small and power consumption is small, the manufacturing cost of the entire optical communication device is low and power consumption can be reduced. Furthermore, the optical communication device has a simple circuit configuration and low accuracy of circuit adjustment as compared with the above-described diversity radio communication device, and thus can be easily manufactured.

【0058】また、上述の光通信機23では、受信デー
タ信号に送信誤りが発生したとき、受信データ信号に欠
陥が生じるために、送信側の光通信機が送信しようとし
た送信データ信号を、受信側の光通信機で正確に得る事
ができない。このとき、受信側の光通信機23は、受信
データ信号の送信誤りの発生部分を含む一部の光信号
を、送信側の光通信機から再送信させることが多い。こ
のため、エラーレートが許容エラーレート以上に大きい
とき、光信号の再送信量が極めて多量になり、再送信に
時間が掛かる。したがって、1回の光通信に要する通信
時間が長くなるため、電子装置21の操作者が不便を感
じることが多い。本発明の光通信機23では、従来技術
の光通信機のように、送信側および受信側の光通信機2
3の位置の不一致に起因するようなエラーレートの増
加、および受信側の光通信機23と光学的雑音の発生源
との位置関係に起因するようなエラーレートの増加を防
止することができる。ゆえに、受信側の光通信機23に
対して、送信側の光通信機がどの方向にあるときでも、
再送信の回数を減少させて、1回の光通信に要する通信
時間が伸びることを防止することができる。
In the above-described optical communication device 23, when a transmission error occurs in the reception data signal, a defect occurs in the reception data signal. It cannot be obtained accurately by the optical communication device on the receiving side. At this time, the optical communication device 23 on the receiving side often causes the optical communication device on the transmitting side to retransmit a part of the optical signal including the portion where the transmission error of the received data signal has occurred. Therefore, when the error rate is higher than the allowable error rate, the amount of retransmission of the optical signal becomes extremely large, and it takes time to retransmit. Therefore, since the communication time required for one optical communication becomes long, the operator of the electronic device 21 often feels inconvenience. In the optical communication device 23 of the present invention, the optical communication device 2 on the transmission side and the reception side
It is possible to prevent an increase in the error rate caused by the mismatch of the position 3 and an increase in the error rate caused by the positional relationship between the optical communication device 23 on the receiving side and the source of the optical noise. Therefore, when the optical communication device on the transmitting side is in any direction with respect to the optical communication device 23 on the receiving side,
By reducing the number of retransmissions, it is possible to prevent an increase in communication time required for one optical communication.

【0059】図5は、本発明の第2実施形態の光通信機
82を含む電子装置81の電気的構成を表すブロック図
である。電子装置81は電子装置21と同様に、ホスト
装置22と光通信機82とから構成され、光通信機82
は光通信機23に類似の構造を有し、受信回路の構造が
異なり、残余の回路部品の構造および挙動は等しい。同
一構造および挙動の回路部品には、同一の符号を付し、
説明は省略する。
FIG. 5 is a block diagram showing an electrical configuration of an electronic device 81 including an optical communication device 82 according to the second embodiment of the present invention. The electronic device 81 includes a host device 22 and an optical communication device 82, like the electronic device 21.
Has a structure similar to the optical communication device 23, the structure of the receiving circuit is different, and the structure and behavior of the remaining circuit components are the same. Circuit components having the same structure and behavior are given the same reference numerals,
Description is omitted.

【0060】受信回路84は、複数の受信素子と、切換
回路42と、切換制御回路86とから構成される。本実
施形態では、5つの受信素子U1〜U5が含まれるもの
とする。
The receiving circuit 84 includes a plurality of receiving elements, the switching circuit 42, and a switching control circuit 86. In the present embodiment, it is assumed that five receiving elements U1 to U5 are included.

【0061】受信素子U1〜U5は、一方接続端子がす
べて接地され、他方接続端子が切換回路42の複数の個
別接点に個別的に接続される。切換回路42の共通接点
Q1は、データ変換回路25の復調回路53と直結され
る。切換回路42は、切換制御回路86の選択回路56
から与えられる第1切換制御信号によって制御される。
The receiving elements U1 to U5 have one connection terminal all grounded and the other connection terminal individually connected to a plurality of individual contacts of the switching circuit 42. The common contact Q1 of the switching circuit 42 is directly connected to the demodulation circuit 53 of the data conversion circuit 25. The switching circuit 42 is connected to the selection circuit 56 of the switching control circuit 86.
Is controlled by a first switching control signal given by

【0062】受信素子U1〜U5は、いわゆるIR通信
ユニットであり、具体的な電気的構造を、受信素子U1
を例として図6に表す。受信素子U1は、受光素子PD
11と、電流/電圧変換回路88と、比較回路89とを
含んで構成される。受光素子PD11の順方向入力端子
は接地され、その順方向出力端子は電流/電圧変換回路
88の入力端子と接続される。電流/電圧変換回路88
の出力端子は、比較回路89の一方入力端子と接続され
る。比較回路89の他方入力端子には、予め定める弁別
レベルの信号が常時与えられている。比較回路89の出
力端子が、受信素子U1の出力端子として、切換回路4
2の複数の個別接点のうちのいずれか一個別接点に接続
される。比較回路89は、請求項のレベル調整手段に当
たる。
Each of the receiving elements U1 to U5 is a so-called IR communication unit.
Is shown in FIG. 6 as an example. The receiving element U1 is a light receiving element PD
11, a current / voltage conversion circuit 88, and a comparison circuit 89. The forward input terminal of the light receiving element PD11 is grounded, and its forward output terminal is connected to the input terminal of the current / voltage conversion circuit 88. Current / voltage conversion circuit 88
Is connected to one input terminal of the comparison circuit 89. A signal of a predetermined discrimination level is always supplied to the other input terminal of the comparison circuit 89. The output terminal of the comparison circuit 89 serves as the output terminal of the receiving element U1,
It is connected to any one of the plurality of individual contacts. The comparison circuit 89 corresponds to a level adjusting means in the claims.

【0063】受光素子PD11と比較回路89とは、第
1実施形態の受光素子PD1〜PD5と比較回路43,
52と同様に動作し、また電流/電圧変換回路88は、
第1実施形態の受信回路27で図示しなかった電流/電
圧変換回路と同様に動作する。ゆえに、受信素子U1
は、第1実施形態の受信回路27で、比較回路43と、
該回路に切換回路42を介して接続された特定受光素子
と、抵抗R3〜R7のうちのいずれか1つとからなる電
気回路、および、比較回路43と、該回路に切換回路5
1を介して接続されたいずれか1つの受光素子と、抵抗
R2とからなる電気回路と同様に動作し、受光素子PD
11の光の受光量に応答して信号レベルが変化するよう
な光量信号を生成する。受信素子U2〜U5の具体的な
電気的構造および切換回路42との接続は、受信素子U
1と等しいので、説明は省略する。
The light receiving element PD11 and the comparing circuit 89 are the same as the light receiving elements PD1 to PD5 and the comparing circuit 43 of the first embodiment.
52, and the current / voltage conversion circuit 88
The receiving circuit 27 of the first embodiment operates similarly to the current / voltage conversion circuit not shown. Therefore, the receiving element U1
Is the receiving circuit 27 of the first embodiment, the comparison circuit 43,
An electric circuit including a specific light receiving element connected to the circuit via a switching circuit 42, and one of the resistors R3 to R7, a comparison circuit 43, and a switching circuit 5 connected to the circuit;
1 operates in the same manner as an electric circuit composed of any one of the light receiving elements connected through the light receiving element 1 and the resistor R2.
A light amount signal whose signal level changes in response to the amount of received light of No. 11 is generated. The specific electrical structure of the receiving elements U2 to U5 and the connection with the switching circuit 42 are
Since it is equal to 1, the description is omitted.

【0064】受信素子U1〜U5は、図6に示した電気
回路が一体化して形成されている。これら受信素子U1
〜U5は、該受信素子U1〜U5内の受光素子の受光面
と平行な予め定めるX方向に沿った仮想軸線上に並列に
配列され、かつ各受信素子U1〜U5内の受光素子の法
線が、相互に異なる方向に向くように配置される。たと
えば、受信素子U1,U2は、図7および図8に示すよ
うに、各受信素子U1,U2内の受光素子PD11,P
D12の受光面93,92の法線94,95が、X方向
から見て取付角度αで交差するように配置される。各受
光素子PD11,PD12の受光許容方位領域96,9
7は、受光面93,92の法線94,95を中心軸線と
した角度θの円錐内の領域である。前述の取付角度αは
角度θの2倍の角度未満に選ばれる。
The receiving elements U1 to U5 are formed integrally with the electric circuit shown in FIG. These receiving elements U1
To U5 are arranged in parallel on a virtual axis along a predetermined X direction parallel to the light receiving surfaces of the light receiving elements in the receiving elements U1 to U5, and the normal of the light receiving element in each of the receiving elements U1 to U5. Are arranged so as to face mutually different directions. For example, the receiving elements U1 and U2 are, as shown in FIGS. 7 and 8, light receiving elements PD11 and P2 in each of the receiving elements U1 and U2.
The normal lines 94 and 95 of the light receiving surfaces 93 and 92 of D12 are arranged so as to intersect at an attachment angle α when viewed from the X direction. Acceptable light receiving azimuth areas 96, 9 of light receiving elements PD11, PD12
Reference numeral 7 denotes a region within a cone having an angle θ with the normals 94 and 95 of the light receiving surfaces 93 and 92 as central axes. The aforementioned mounting angle α is selected to be less than twice the angle θ.

【0065】 2θ>α …(1) この受光素子PD11,PD12は、第1実施形態の受
光素子PD1,PD2と等価な回路部品であり、受信素
子U1,U2の位置関係は、受光素子PD11,PD1
2の受光許容方位領域97,96の位置関係が受光素子
PD1,PD2の受光許容方位領域49,50と同様の
位置関係を保つように配置されればよい。他の受信素子
U3〜U5と、受光素子U2〜U4との配置関係は、上
述の受光素子U1,U2の配置関係と等しい。これによ
って、受信素子U1〜U5の各受光素子は、前記仮想軸
線を中心として、順次的に取付角度αずつ向きがずらさ
れて配置される。各受光素子の受光許容包囲領域の角度
θは、たとえば45度であり、このときの取付角度α
は、たとえば80度に選ばれる。
2θ> α (1) The light receiving elements PD11 and PD12 are circuit components equivalent to the light receiving elements PD1 and PD2 of the first embodiment, and the positional relationship between the receiving elements U1 and U2 is PD1
The two light-receiving permissible azimuth regions 97 and 96 may be arranged so as to maintain the same positional relationship as the light-receiving permissible azimuth regions 49 and 50 of the light receiving elements PD1 and PD2. The arrangement relation between the other reception elements U3 to U5 and the light reception elements U2 to U4 is equal to the arrangement relation between the light reception elements U1 and U2 described above. As a result, the light receiving elements U1 to U5 are sequentially shifted in direction by the mounting angle α around the virtual axis. The angle θ of the light receiving permissible surrounding area of each light receiving element is, for example, 45 degrees, and the mounting angle α at this time is
Is selected, for example, at 80 degrees.

【0066】これによって、受信素子U1〜U5の受光
素子の受光許容方位領域は、YZ平面内で10度ずつ重
なり合って、該YZ平面全域を含む。このとき、理想的
には、受光許容方位領域49,50の中心軸線となる法
線47,48が同一のyz平面上の線分となることが好
ましい。
As a result, the light receiving permissible azimuth regions of the light receiving elements U1 to U5 overlap by 10 degrees in the YZ plane and include the entire YZ plane. In this case, ideally, it is preferable that the normal lines 47 and 48 which are the central axes of the light-receiving permitted azimuth regions 49 and 50 be line segments on the same yz plane.

【0067】再び図5を参照する。切換制御回路86
は、切換回路51と復調回路53と比率算出回路54と
メモリ55と選択回路56とから生成される。切換回路
51の複数の個別接点は、受信素子U1〜U5の他方接
続端子と個別的に接続され、共通接点Q2は復調回路5
3と直接接続される。復調回路53以後の回路構造およ
び挙動は、第1実施形態の切換制御回路44と等しい。
Referring back to FIG. Switching control circuit 86
Are generated from a switching circuit 51, a demodulation circuit 53, a ratio calculation circuit 54, a memory 55, and a selection circuit 56. The plurality of individual contacts of the switching circuit 51 are individually connected to the other connection terminals of the receiving elements U1 to U5, and the common contact Q2 is connected to the demodulation circuit 5
3 is directly connected. The circuit structure and behavior after the demodulation circuit 53 are the same as those of the switching control circuit 44 of the first embodiment.

【0068】このように、第2実施形態の光通信機82
は、受光素子PD1〜PD5に代わって受信素子U1〜
U5が取付けられ、また比較回路43,52と抵抗R
1,R2とを除去した点が異なり、他の構造は光通信機
23と等しい。この光通信機81は、データ変換回路2
5と送信回路26との動作は、第1実施形態の光通信機
21と等しい。また、受信回路84では、光通信機21
で選択回路56が特定受光素子およびいずれか1つの受
光素子を選んで第1および第2切換制御信号を生成した
代わりに特定受信素子およびいずれか1つの受信素子を
選んで第1および第2切換制御信号を生成する点、切換
回路42,51で選択的に接続した受光素子からの出力
電流を電流/電圧変換したのちレベル弁別して生成した
弁別信号を復調回路3453に与える代わりに切換回路
42,51で選択的に接続された特定受信素子からの弁
別信号を直接復調回路34,53に与える点とが異な
り、他の挙動は等しい。
As described above, the optical communication device 82 of the second embodiment
Are the receiving elements U1 to U5 instead of the light receiving elements PD1 to PD5.
U5 is attached, and the comparison circuits 43 and 52 and the resistor R
1 and R2, and the other structure is the same as that of the optical communication device 23. The optical communication device 81 includes a data conversion circuit 2
5 and the operation of the transmission circuit 26 are the same as those of the optical communication device 21 of the first embodiment. In the receiving circuit 84, the optical communication device 21
Instead of selecting the specific light receiving element and any one of the light receiving elements and generating the first and second switching control signals, the selection circuit 56 selects the specific receiving element and any one of the receiving elements and performs the first and second switching. The point at which the control signal is generated is that instead of supplying the discrimination signal generated by current / voltage conversion of the output current from the light receiving element selectively connected by the switching circuits 42 and 51 and then level discrimination to the demodulation circuit 3453, the switching circuit 42 The difference is that the discrimination signal from the specific receiving element selectively connected at 51 is directly supplied to the demodulation circuits 34 and 53, but other behaviors are the same.

【0069】この光通信機82は、復調回路34,53
で受信データ信号を得るとき、光通信機23で、受光素
子PD1〜PD5からの電流を、切換回路42,51を
介して図示しない電流/電圧変換回路に与えて光量信号
に変換した後に比較回路でレベル弁別していた動作を、
受信素子U1〜U5内で行う。ゆえに、受光素子PD1
1で光を受光してから弁別信号を生成するまでの動作
を、各受信素子U1〜U5で並列に実施することができ
る。したがって、切換回路86で各受光素子に対応した
受信データ信号からエラーレートを算出するとき、受信
素子U1〜U5からは弁別信号が与えられるので、復調
回路53の復調動作から開始される。ゆえに、第1実施
形態の光通信機23のように電流/電圧変換動作とレベ
ル弁別動作とを復調動作前に順次的に実施する場合と比
較して、第2実施形態の光通信機82では、切換制御回
路86内の処理動作を簡略化し、また処理時間を短縮す
ることができる。
The optical communication device 82 includes demodulation circuits 34 and 53
When a received data signal is obtained by the optical communication device 23, the current from the light receiving elements PD1 to PD5 is supplied to a current / voltage conversion circuit (not shown) via the switching circuits 42 and 51 and converted into a light amount signal by the optical communication device 23. The operation that was discriminating the level by
This is performed in the receiving elements U1 to U5. Therefore, the light receiving element PD1
The operation from receiving light at 1 to generating a discrimination signal can be performed in parallel by each of the receiving elements U1 to U5. Therefore, when the switching circuit 86 calculates the error rate from the received data signal corresponding to each light receiving element, the discrimination signal is given from the receiving elements U1 to U5. Therefore, compared with the case where the current / voltage conversion operation and the level discrimination operation are sequentially performed before the demodulation operation as in the optical communication device 23 of the first embodiment, the optical communication device 82 of the second embodiment has The processing operation in the switching control circuit 86 can be simplified and the processing time can be shortened.

【0070】また、上述のように配置された受信素子U
1〜U5の受光素子の位置関係およびその受光可能方位
領域の位置関係は、第1実施形態の受光素子PD1〜P
D5の位置関係および受光可能方位領域の位置関係と等
しい。ゆえに、これら受信素子U1〜U5の受光素子に
対して図2,4と同様に配置された発光素子61,62
からの光信号を受光する場合、受信素子U1〜U5内の
受光素子のうちで発光素子61,62が受信可能方位領
域に含まれる受光素子PD11,PD12の受光状態が
最良になる。このときには、受光素子PD11,PD1
2を含む受信素子U1,U2からの弁別信号を復調回路
53で復調して得られた受信データ信号のエラーレート
が、光通信で規定される許容エラーレートより充分に小
さくなると考えられる。
The receiving element U arranged as described above
The positional relation between the light receiving elements 1 to U5 and the positional relation between the light receiving azimuth regions thereof are as described in the first embodiment.
It is equal to the positional relationship of D5 and the positional relationship of the receivable azimuth region. Therefore, the light emitting elements 61, 62 arranged in the same manner as in FIGS.
When receiving the light signal from the light receiving elements U1 to U5, the light receiving state of the light receiving elements PD11 and PD12 included in the receivable azimuth region of the light emitting elements 61 and 62 among the light receiving elements U1 to U5 is the best. At this time, the light receiving elements PD11, PD1
It is considered that the error rate of the received data signal obtained by demodulating the discrimination signals from the receiving elements U1 and U2 including the signal No. 2 by the demodulation circuit 53 is sufficiently smaller than the allowable error rate specified in the optical communication.

【0071】したがって、第2実施形態の光通信機81
は、上述の受光素子PD11,PD12を含む受信素子
U1,U2を特定受信素子として選択すれば、第1実施
形態の光通信機21と同様に、送信側光通信機と受信側
光通信機との位置関係に拘わりなく、常に最良の受光状
態で光信号を受信することができる。
Therefore, the optical communication device 81 of the second embodiment
If the receiving elements U1 and U2 including the light receiving elements PD11 and PD12 described above are selected as the specific receiving elements, the transmitting optical communication apparatus and the receiving optical communication apparatus can be used similarly to the optical communication apparatus 21 of the first embodiment. Irrespective of the positional relationship, the optical signal can always be received in the best light receiving state.

【0072】さらにまた、発光素子61を含む光通信機
からの光信号を受光する場合に、受信許容角度領域96
内に光学的雑音の発生源が存在するとき、切換制御回路
86は、受光素子PD12を含む受信素子U2を特定受
信素子として選ぶ。これによって、光学的雑音の発生源
と正対するような受信素子U1を避けて、光学的雑音の
影響の少ない受信素子U2からの弁別信号を復調して受
光データ信号を得ることができる。したがって、光学的
雑音の発生源と電子装置81との位置関係に起因するよ
うな、受信データ信号に対する光学的雑音の影響を小さ
くすることができる。さらに、一般的に、受光素子単体
よりも受信素子のほうが、光学的雑音に対する強さが強
い。ゆえに、第1実施形態のように受光素子PD1〜P
D5を単体で配置するよりも、受信素子U1〜U5を配
列するほうが、さらに光学的雑音の影響を小さくするこ
とができる。
Furthermore, when receiving an optical signal from an optical communication device including the light emitting element 61, the reception allowable angle area 96
When there is a source of optical noise inside, the switching control circuit 86 selects the receiving element U2 including the light receiving element PD12 as the specific receiving element. As a result, the reception signal U can be obtained by demodulating the discrimination signal from the reception element U2 which is less affected by the optical noise while avoiding the reception element U1 directly facing the source of the optical noise. Therefore, the influence of the optical noise on the received data signal, which is caused by the positional relationship between the source of the optical noise and the electronic device 81, can be reduced. Further, in general, the receiving element has higher strength against optical noise than the light receiving element alone. Therefore, as in the first embodiment, the light receiving elements PD1 to PD
Arranging the receiving elements U1 to U5 can further reduce the influence of optical noise than arranging D5 alone.

【0073】したがって、第2実施形態の光通信機82
は、第1実施形態の光通信機21と同様に、電波通信よ
りも優位なデータ通信を、送信側および受信側の電子装
置の配置関係に拘わらず実施することができる。また、
ダイバーシティ方式の電波通信機よりも回路構造が簡単
で精度が低く、製造コストの低い光通信機を実現するこ
とができる。さらに、また、本実施形態の光通信機は、
第1実施形態と同様に光信号と光学的雑音との発生源の
位置関係に起因するエラーレートの増加を抑えることが
できる。さらに、光通信機内に受光素子からの出力電流
または光量信号を増幅する増幅回路を備えさせる場合、
本実施形態の光通信機では、増幅回路は受信素子U1〜
U5内に設けられる。ゆえに、第1実施形態の光通信機
と比較して、第2実施形態の光通信機では、受光素子と
増幅回路との間の配線距離が短いので、配線から混入す
る雑音が少なく、また信号の劣化も少ない。これによっ
て、受信素子を用いた光通信機の方が、受光素子を用い
た光通信機よりも光学的雑音に強い。これらのことか
ら、エラーレートが許容エラーレート以上に増加して、
データ通信の送信時間が過大に伸びることを防止するこ
とができる。
Therefore, the optical communication device 82 of the second embodiment
As with the optical communication device 21 of the first embodiment, data communication superior to radio wave communication can be performed regardless of the arrangement of the electronic devices on the transmission side and the reception side. Also,
An optical communication device having a simpler circuit structure, lower accuracy, and lower manufacturing cost than a diversity type radio communication device can be realized. Furthermore, the optical communication device of the present embodiment is
As in the first embodiment, it is possible to suppress an increase in the error rate due to the positional relationship between the sources of the optical signal and the optical noise. Furthermore, when an amplifier circuit for amplifying an output current or a light amount signal from the light receiving element is provided in the optical communication device,
In the optical communication device of the present embodiment, the amplifier circuit includes the receiving elements U1 to U1.
It is provided in U5. Therefore, as compared with the optical communication device of the first embodiment, in the optical communication device of the second embodiment, since the wiring distance between the light receiving element and the amplifier circuit is short, noise mixed from the wiring is small, and the signal Is less deteriorated. Thus, an optical communication device using a receiving element is more resistant to optical noise than an optical communication device using a light receiving element. From these, the error rate increases beyond the allowable error rate,
It is possible to prevent the transmission time of data communication from becoming excessively long.

【0074】[0074]

【発明の効果】以上にように本発明によれば、光通信機
は、いわゆるダイバーシティ方式で、光信号を受信す
る。これによって、受信側の前記光通信機の受光手段と
送信側の光通信機の発光手段との位置関係に起因するよ
うな受光条件の変化、および受信側の前記光通信機の受
光手段と光学的雑音の発生源との位置関係に起因するよ
うな受光条件の変化に拘わらず、常に最良の受信条件下
で光信号を受光することができる。
As described above, according to the present invention, an optical communication device receives an optical signal by a so-called diversity system. Accordingly, a change in the light receiving condition caused by the positional relationship between the light receiving unit of the optical communication device on the receiving side and the light emitting unit of the optical communication device on the transmitting side, and the light receiving unit of the optical communication device on the receiving side and the optical The optical signal can always be received under the best reception conditions regardless of the change in the light reception conditions caused by the positional relationship with the source of the target noise.

【0075】また本発明によれば、前記光通信機の選択
手段は、最良の受光状態の受光手段を選択するためのパ
ラメータとして、各受光手段からの出力信号を復調して
得られたデータ信号のエラーレートを用いる。これによ
って、電波通信での受信電界強度のような、受光状態を
比較するためのパラメータを持たない光信号からを用い
たダイバーシティ方式の光通信機で、最良の受信状態の
受信手段を容易に選択することができる。
Further, according to the present invention, the selection means of the optical communication device includes a data signal obtained by demodulating an output signal from each light receiving means as a parameter for selecting a light receiving means in the best light receiving state. Is used. This makes it easy to select the receiving means with the best reception condition in a diversity optical communication device using an optical signal that does not have a parameter for comparing the light reception condition such as the reception electric field strength in radio communication. can do.

【0076】さらにまた本発明によれば、光通信機は、
複数の受光手段からの信号の受光レベルを、各受光手段
毎に設けられたレベル調整手段で調整した後に選択し
て、信号復調手段に与えて復調させる。これによって、
信号復調手段での復調動作時に、光信号に混入した光学
的雑音の影響を受けにくくなり、確実にデータ信号を得
る事ができる。
Further, according to the present invention, the optical communication device comprises:
The light receiving levels of the signals from the plurality of light receiving means are selected after being adjusted by the level adjusting means provided for each of the light receiving means, and are provided to the signal demodulating means for demodulation. by this,
At the time of demodulation operation by the signal demodulation means, it is hardly affected by optical noise mixed into the optical signal, and a data signal can be obtained reliably.

【0077】また本発明によれば、光通信機は、複数の
受光手段からの信号を選択して、選択された信号の受光
レベルを調整した後に、信号復調手段で復調させる。こ
れによって、復調動作時に光学的雑音の影響を受けにく
くなると同時に、受光素子毎にレベル調整手段を有する
光通信機よりも、部品点数を減少させることができる。
Further, according to the present invention, the optical communication device selects signals from the plurality of light receiving means, adjusts the light receiving levels of the selected signals, and demodulates the signals by the signal demodulating means. This makes it less susceptible to optical noise during the demodulation operation, and can reduce the number of components as compared with an optical communication device having a level adjusting means for each light receiving element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の光通信機23を含む電
子装置21の電気的構成を表すブロック図である。
FIG. 1 is a block diagram illustrating an electrical configuration of an electronic device 21 including an optical communication device 23 according to a first embodiment of the present invention.

【図2】光通信機23内の受光素子PD1,PD2の位
置関係と、該受光素子PD1,PD2と発光素子61,
62の位置関係を表す模式図である。
FIG. 2 shows the positional relationship between the light receiving elements PD1 and PD2 in the optical communication device 23, and the light receiving elements PD1 and PD2 and the light emitting element 61;
It is a schematic diagram showing the positional relationship of 62.

【図3】光通信機23の切換制御回路44の具体的な動
作を表すフローチャートである。
FIG. 3 is a flowchart showing a specific operation of a switching control circuit 44 of the optical communication device 23.

【図4】光通信機23内の受光素子PD1,PD2の位
置関係と、該受光素子PD1,PD2と発光素子61,
62の位置関係を表す模式図である。
FIG. 4 shows the positional relationship between the light receiving elements PD1 and PD2 in the optical communication device 23 and the light receiving elements PD1 and PD2 and the light emitting element 61;
It is a schematic diagram showing the positional relationship of 62.

【図5】本発明の第2実施形態の光通信機82を含む電
子装置81の電気的構成を表すブロック図である。
FIG. 5 is a block diagram illustrating an electrical configuration of an electronic device 81 including an optical communication device 82 according to a second embodiment of the present invention.

【図6】電子装置81の受信素子U1の具体的な電気的
構成を表すブロック図である。
FIG. 6 is a block diagram illustrating a specific electrical configuration of a receiving element U1 of the electronic device 81.

【図7】光通信機82内の受信素子U1,U2の位置関
係と、該受信素子U1,U2とと発光素子61,62の
位置関係を表す模式図である。
FIG. 7 is a schematic diagram showing a positional relationship between the receiving elements U1 and U2 in the optical communication device 82 and a positional relationship between the receiving elements U1 and U2 and the light emitting elements 61 and 62.

【図8】光通信機82内の受信素子U1,U2の位置関
係と、該受信素子U1,U2とと発光素子61,62の
位置関係を表す模式図である。
FIG. 8 is a schematic diagram showing the positional relationship between the receiving elements U1 and U2 in the optical communication device 82 and the positional relationship between the receiving elements U1 and U2 and the light emitting elements 61 and 62.

【図9】光通信機内の受光素子1と発光素子2,3との
位置関係を表す模式図である。
FIG. 9 is a schematic diagram illustrating a positional relationship between the light receiving element 1 and the light emitting elements 2 and 3 in the optical communication device.

【図10】光通信機内の受信素子10と発光素子2,3
との位置関係を表す模式図である。
FIG. 10 shows a receiving element 10 and light emitting elements 2 and 3 in an optical communication device.
It is a schematic diagram showing the positional relationship with.

【符号の説明】[Explanation of symbols]

21,81 電子装置 23,82 光通信機 27,84 受信回路 34,53 復調回路 42,51 切換回路 43,52;89 比較回路 54 比率算出回路 55 メモリ 56 選択回路 PD1〜PD5;PD11,PD12 受光素子 U1〜U5 受信素子 21, 81 Electronic device 23, 82 Optical communication device 27, 84 Reception circuit 34, 53 Demodulation circuit 42, 51 Switching circuit 43, 52; 89 Comparison circuit 54 Ratio calculation circuit 55 Memory 56 Selection circuit PD1 to PD5; PD11, PD12 Light reception Element U1 to U5 Receiver element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 予め定めるデータ信号を光を用いて表す
光信号を送受信する光通信機において、 前記光信号を、相互に異なる受光条件で個別的に受光す
る複数の受光手段と、複数の受光手段のうちで、受光状
態が最良の受光手段を選択する選択手段と、選択手段で
選択された受光手段から出力された出力信号を復調し
て、前記データ信号を得る第1復調手段とを含むことを
特徴とする光通信機。
1. An optical communication device for transmitting and receiving an optical signal representing a predetermined data signal using light, comprising: a plurality of light receiving means for individually receiving the optical signal under mutually different light receiving conditions; Among the means, there is provided a selecting means for selecting the light receiving means having the best light receiving state, and a first demodulating means for demodulating an output signal output from the light receiving means selected by the selecting means to obtain the data signal. An optical communication device, characterized in that:
【請求項2】 前記光通信機は、 前記各受光手段から出力された前記出力信号をそれぞれ
復調して、前記各受光手段に対応したデータ信号を得る
第2復調手段と、第2復調手段で復調された各データ信
号毎に、データ信号の全データ量と誤りがあったデータ
量との比率を算出する比率算出手段とをさらに含み、 前記選択手段は、すべての受光手段のうちで、比率算出
手段で算出された比率が最小のデータ信号に対応した受
光手段を選択することを特徴とする請求項1記載の光通
信機。
2. An optical communication device comprising: a second demodulation unit that demodulates the output signal output from each of the light receiving units to obtain a data signal corresponding to each of the light receiving units; For each demodulated data signal, further comprising a ratio calculating means for calculating a ratio between the total data amount of the data signal and the erroneous data amount, wherein the selecting means comprises: 2. The optical communication device according to claim 1, wherein the light receiving unit corresponding to the data signal having the smallest ratio calculated by the calculating unit is selected.
【請求項3】 予め定めるデータ信号を光の光量で表す
光信号を送受信する光通信機において、 前記光信号を、相互に異なる受光条件で個別的に受光す
る複数の受光手段と、各受光手段に個別的に対応し、対
応した受光手段から出力された信号の受光レベルを調整
する複数のレベル調整手段と、 調整された複数の信号の中から、複数の受光手段のうち
で受光状態が最良の受光手段に対応したレベル調整手段
で調整された信号を選択する信号選択手段と、選択され
た信号を復調して、前記データ信号を得る信号復調手段
とを含むことを特徴とする光通信機。
3. An optical communication device for transmitting and receiving an optical signal representing a predetermined data signal by an amount of light, comprising: a plurality of light receiving means for individually receiving the optical signal under mutually different light receiving conditions; A plurality of level adjusting means for individually adjusting the light receiving level of the signal output from the corresponding light receiving means, and among the plurality of adjusted signals, the light receiving state is best among the plurality of light receiving means. An optical communication device comprising: a signal selecting unit that selects a signal adjusted by a level adjusting unit corresponding to the light receiving unit; and a signal demodulating unit that demodulates the selected signal to obtain the data signal. .
【請求項4】 予め定めるデータ信号を光の光量で表す
光信号を送受信する光通信機において、 前記光信号を、相互に異なる受光条件で個別的に受光す
る複数の受光手段と、複数の受光手段のうちで、受光状
態が最良の受光手段を選択する選択手段と、選択手段で
選択された受光手段から出力された信号の受光レベルを
調整するレベル調整手段と、 調整された信号を復調して、前記データ信号を得る信号
復調手段とを含むことを特徴とする光通信機。
4. An optical communication device for transmitting and receiving an optical signal representing a predetermined data signal by an amount of light, comprising: a plurality of light receiving means for individually receiving the optical signal under mutually different light receiving conditions; Selecting means for selecting the light receiving means having the best light receiving condition, level adjusting means for adjusting the light receiving level of the signal output from the light receiving means selected by the selecting means, demodulating the adjusted signal; A signal demodulation means for obtaining the data signal.
JP03653097A 1997-02-20 1997-02-20 Optical communication equipment Expired - Fee Related JP3431792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03653097A JP3431792B2 (en) 1997-02-20 1997-02-20 Optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03653097A JP3431792B2 (en) 1997-02-20 1997-02-20 Optical communication equipment

Publications (2)

Publication Number Publication Date
JPH10233739A true JPH10233739A (en) 1998-09-02
JP3431792B2 JP3431792B2 (en) 2003-07-28

Family

ID=12472357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03653097A Expired - Fee Related JP3431792B2 (en) 1997-02-20 1997-02-20 Optical communication equipment

Country Status (1)

Country Link
JP (1) JP3431792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850709B1 (en) 1999-01-11 2005-02-01 Internatioal Business Machines Corporation Apparatus and method for improved connectivity in wireless optical communication systems
JP2006203873A (en) * 2004-12-21 2006-08-03 Matsushita Electric Ind Co Ltd Optical receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850709B1 (en) 1999-01-11 2005-02-01 Internatioal Business Machines Corporation Apparatus and method for improved connectivity in wireless optical communication systems
JP2006203873A (en) * 2004-12-21 2006-08-03 Matsushita Electric Ind Co Ltd Optical receiver
JP4704206B2 (en) * 2004-12-21 2011-06-15 パナソニック株式会社 Optical receiver

Also Published As

Publication number Publication date
JP3431792B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
US6262994B1 (en) Arrangement for the optimization of the data transmission via a bi-directional radio channel
US6359712B1 (en) Bidirectional optical communication apparatus and optical remote control apparatus
EP0513710B1 (en) Mobile wireless apparatus
CA2196114A1 (en) Adaptive Power Control and Coding Scheme for Mobile Radio Systems
US8358935B2 (en) Method and apparatus for generating visible signal for data transmission frame in visible-light communication system
WO2007091026A1 (en) Fibre optic system for analogue communication between a first station and a second station comprising an antenna unit
JP2003198464A (en) Optical transmitter-receiver
ES2240363T3 (en) OFDM RECEPTION DEVICE AND METHOD FOR TRAINING IRREGULAR WIDTH BEAMS BASED ON THE CHANNEL PROPERTIES.
JP2001177478A (en) Composite communication method for laser and microwave and its system
US7583899B2 (en) Space optical transmission apparatus and space optical transmission system
JPH10233739A (en) Optical communication equipment
JP2000068938A (en) Optical transmitter-receiver
JP3530191B2 (en) Wireless packet data communication modem and method of using same
CN112152719A (en) Signal transmitting device and method, signal receiving device and method, and communication device
JP2005012509A (en) Remote control system, remote control transmitter used therefor, and electronic device
US20050025495A1 (en) Infrared repeater system, method, and adjustable brightness emitter therefor
CN1327627C (en) Antenna gain determining device and wireless communication appliance
US6931209B2 (en) Remote commander
JP3995925B2 (en) Image display device
CN213342220U (en) Signal transmitting device, signal receiving device, communication equipment and air conditioning unit
JP2009540752A (en) Modulation of carrier radio signals by mobile terminals in wireless communication networks
US5757779A (en) Automatic skywave communications system
JPH04243331A (en) Optical wireless transmitter
JP2000101514A (en) Infrared ray receiver and infrared ray communication system
JP2003332990A (en) Optical transmission module and optical transmitter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees