JPH10233434A - Electrostatic adsorbent and adsorber - Google Patents

Electrostatic adsorbent and adsorber

Info

Publication number
JPH10233434A
JPH10233434A JP3755997A JP3755997A JPH10233434A JP H10233434 A JPH10233434 A JP H10233434A JP 3755997 A JP3755997 A JP 3755997A JP 3755997 A JP3755997 A JP 3755997A JP H10233434 A JPH10233434 A JP H10233434A
Authority
JP
Japan
Prior art keywords
electrostatic
adsorbed
attraction
contact portion
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3755997A
Other languages
Japanese (ja)
Inventor
Azusa Shimamura
あずさ 島村
Nobuo Tsumaki
伸夫 妻木
Tadashi Otaka
正 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3755997A priority Critical patent/JPH10233434A/en
Publication of JPH10233434A publication Critical patent/JPH10233434A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the foreign matter adherence to the specimen back, by a method wherein a projection and a recession to be the contact part and non- contact part with adsorbed element are formed on the adsorbing surface of electrostatic adsorbent so as to utilize the adsorption force of the non-contact part to be the recession for adsorbing the adsorbed elements. SOLUTION: An arm main body 2 made of a dielectric using one end thereof as an adsorbing part is provided on an electrostatic adsorbent so as to fix electrode plates 6, 6' connecting to a lead wire 9 on the non-adsorbing surface side of the adsorbing part of the arm main body 2. Next, projections 4 to be the contact parts with a adsorbed element 1 are formed on the adsorbing surface of the adsorbing part of the arm main body 2 while the other parts excluding the projections 4 are formed into the recessions 5 to be the non-contact parts. In such a constitution, the adsorbed element 1 is adsorbed into the adsorbing surface of the adsorbing part for abutting against the projections 4 to be fixed and held, thereby using the recessions 5 by the action of the static electricity generated by the potential difference between the adsorbed element 1 and the electrode plates 6, 6'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導体またはシリコ
ンウエハのような半導体等、微細加工に供される試料を
固定保持または搬送するために用いる静電吸着体及び静
電吸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck and an electrostatic chuck for use in fixing and holding or transporting a sample to be subjected to fine processing, such as a conductor or a semiconductor such as a silicon wafer.

【0002】[0002]

【従来の技術】半導体ウエハ等の試料にエッチングを施
す場合、あるいはスパッタ、CVD(Chemical Vapo
r Deposition)等による成膜を施す場合には、試料を
装置の所定の位置に固定保持することが必要となる。特
に半導体ウエハ上に微細パターンを加工する場合には、
ウエハのパターン焼き付けのため、反りを矯正し平坦化
を行うので、ウエハを確実に所定の位置に密着固定する
ことが要求される。またエッチングや、スパッタ、CV
D等の装置では、エッチングや成膜時のウエハとウエハ
サセプタの熱伝導率を向上させるためにウエハ裏面にガ
スを導入するが、ウエハとウエハサセプタの隙間が均一
でなければ、熱伝導率を低下させる上に、ウエハ面内で
の温度の不均一ができてしまうために、ウエハを一様に
密着させることのできるウエハサセプタが必要となる。
従来から、このような用途の試料保持手段として、真空
中でも使用が可能であり、またウエハ裏面全面にて一様
に吸着力を発生させることができる静電吸着体を備えた
静電吸着装置が用いられている。静電吸着装置は、真空
中でウエハ保持ができるため、真空中高速搬送の保持装
置としても利用されている。この静電吸着体は、電極板
と誘電体を積層して構成され、電極板と被吸着物である
試料との間に電位差を生じさせることにより、クーロン
力を発生させ誘電体上に試料を吸着保持させるものであ
る。
2. Description of the Related Art Etching of a sample such as a semiconductor wafer or sputtering, CVD (Chemical Vapo)
When a film is formed by (r Deposition) or the like, it is necessary to fix and hold the sample at a predetermined position in the apparatus. Especially when processing fine patterns on semiconductor wafers,
Since the warpage is corrected and flattened for pattern baking of the wafer, it is necessary to securely fix the wafer in a predetermined position. Also, etching, sputtering, CV
In an apparatus such as D, gas is introduced into the back surface of the wafer to improve the thermal conductivity between the wafer and the wafer susceptor during etching or film formation. However, if the gap between the wafer and the wafer susceptor is not uniform, the thermal conductivity is reduced. In addition to lowering the temperature, the temperature in the wafer surface becomes non-uniform, so that a wafer susceptor capable of uniformly contacting the wafer is required.
Conventionally, as a sample holding means for such an application, an electrostatic suction device which can be used even in a vacuum and has an electrostatic suction body capable of uniformly generating a suction force on the entire back surface of a wafer has been developed. Used. Since the electrostatic suction device can hold a wafer in a vacuum, it is also used as a holding device for high-speed transfer in a vacuum. This electrostatic adsorbent is formed by laminating an electrode plate and a dielectric, and generates a Coulomb force by generating a potential difference between the electrode plate and the sample to be adsorbed, thereby causing the sample to be placed on the dielectric. This is to hold by suction.

【0003】静電吸着体は直接ウエハ裏面に接触するた
め、吸着する際にウエハ裏面に異物を付着させる原因と
なる。このような静電吸着装置に関して、例えば、特開
平5−6933号公報では静電吸着体の吸着面に凹部を
形成して、被吸着物との接触部と吸着面全体の面積比を
10〜30%とし、かつ該接触部の表面粗さ(Rmax)を
0.8S以下として異物の付着を防止することが提案さ
れていた。
[0003] Since the electrostatic attraction member directly contacts the back surface of the wafer, it causes foreign substances to adhere to the back surface of the wafer when being attracted. With respect to such an electrostatic attraction device, for example, in JP-A-5-6933, a concave portion is formed on the attraction surface of the electrostatic attraction member, and the area ratio between the contact portion with the object to be attracted and the entire attraction surface is 10 to 10. It has been proposed to set the contact area to 30% and to set the surface roughness (Rmax) of the contact portion to 0.8 S or less to prevent the adhesion of foreign matter.

【0004】最近の半導体製造プロセスではウエハ表面
のみならず、ウエハ裏面への塵埃の付着が問題となって
いる。これは、洗浄工程でのウエハ裏面から表面への異
物の乗り移りや裏面異物の存在によるフォトリソグラフ
ィー工程でのデフォーカスがあるためである。このため
ウエハ裏面をクリーンな状態に保つことが重要視されて
きている。
In recent semiconductor manufacturing processes, there is a problem that dust adheres not only to the front surface of the wafer but also to the back surface of the wafer. This is because there is transfer of foreign matter from the back surface of the wafer to the front surface in the cleaning process and defocus in the photolithography process due to the presence of foreign matter on the back surface. Therefore, keeping the back surface of the wafer clean has been regarded as important.

【0005】上述の技術については、他に特公平7−1
9831号公報に開示の例がある。
[0005] Regarding the above-mentioned technology, see Japanese Patent Publication No. 7-1.
There is an example disclosed in JP-A-9831.

【0006】[0006]

【発明が解決しようとする課題】静電吸着装置で試料、
例えば半導体ウエハを吸着した場合、ウエハ裏面に異物
が付着する理由として次のことが考えられる。第1に、
静電吸着体とウエハの間の接触面での微小滑りによる摩
耗紛が異物としてウエハ裏面に付着する場合がある。静
電吸着体を構成する誘電体は硬質材料であるセラミック
スで作られている場合が多く、焼結によって作られてい
るために、表面の微小な突起がウエハと接触する際の微
小滑りによりウエハを削ってしまい、その摩耗紛がウエ
ハ側に付着することがある。
SUMMARY OF THE INVENTION A sample,
For example, when a semiconductor wafer is sucked, the following can be considered as the reason why foreign matter adheres to the back surface of the wafer. First,
Abrasion powder due to minute sliding on the contact surface between the electrostatic chuck and the wafer may adhere to the back surface of the wafer as foreign matter. In many cases, the dielectric material that composes the electrostatic attraction body is made of ceramics, which is a hard material, and is made by sintering. And the wear powder may adhere to the wafer side.

【0007】第2に、静電吸着装置の製造、加工中、あ
るいは使用中に付着しその後の洗浄でとりきれない異物
や、裏面が汚染されたウエハを吸着した際に静電吸着装
置側に付着堆積してしまった異物が、ウエハ裏面に接触
することや電界の作用によりウエハに転写される場合が
ある。静電吸着体の吸着面とウエハは実際には完全に密
着しているわけではなく、両者の間には表面粗さやうね
りによる微小な隙間が所々に存在した状態となってい
る。その隙間に塵埃が存在した状態で、吸着力を発生さ
せるために電圧を印加すると、塵埃も電界の影響を受け
てウエハ裏面に付着する場合がある。また逆に、裏面が
汚染されたウエハを吸着した際にウエハから静電吸着体
側に異物が転写されることも起こりうるが、吸着面のウ
エハとの接触部面積が大きい場合、そういった転写の確
率は高くなる。よってウエハとの接触面積を小さくした
方が、結果的にウエハは汚染されにくい。
Secondly, when a foreign substance adhered during manufacturing, processing, or use of the electrostatic suction device and cannot be removed by subsequent cleaning, or a wafer whose back surface is contaminated, is attracted to the electrostatic suction device side, In some cases, the deposited foreign matter may be transferred to the wafer by contact with the back surface of the wafer or by the action of an electric field. The suction surface of the electrostatic attraction body and the wafer are not actually completely in close contact with each other, but a small gap due to surface roughness or undulation is present between the two. When a voltage is applied to generate an attraction force in a state where dust is present in the gap, the dust may be affected by the electric field and adhere to the back surface of the wafer. Conversely, foreign substances may be transferred from the wafer to the electrostatic attraction body side when a wafer whose back surface is contaminated is adsorbed. However, when the area of the contact surface of the adsorbed surface with the wafer is large, the probability of such transfer is high. Will be higher. Therefore, the smaller the contact area with the wafer, the less the wafer is contaminated as a result.

【0008】上記従来例では、ウエハ裏面への異物付着
を減少させるために、静電吸着体とウエハとの接触面積
を低減し、非接触部分は異物が付着できないようすき間
をあけるといった方法により対策されているものの、非
接触部とウエハとのすき間(10〜50μm)が大きす
ぎて非接触部での吸着力を得ることが不可能である。従
って所望の吸着力を得るためには一定の接触面積が必要
で、静電吸着体とウエハとの接触面積の低減化が不足し
ており、ウエハ裏面異物の付着を低減する手段としては
まだ不十分であった。
In the above conventional example, in order to reduce the adhesion of foreign matter to the back surface of the wafer, the contact area between the electrostatic attraction body and the wafer is reduced, and a gap is provided in a non-contact portion so that foreign matter cannot be attached. However, the gap (10 to 50 μm) between the non-contact portion and the wafer is too large to obtain a suction force at the non-contact portion. Therefore, a certain contact area is required to obtain a desired suction force, and the reduction of the contact area between the electrostatic adsorber and the wafer is insufficient. As a means for reducing the adhesion of foreign matter on the back surface of the wafer, it is still unsatisfactory. Was enough.

【0009】本発明の目的は、静電吸着装置にて試料吸
着を行う際に、試料裏面の異物付着を低減することにあ
る。
An object of the present invention is to reduce the adhesion of foreign matter on the back surface of a sample when the sample is adsorbed by an electrostatic attraction device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、電極板に誘電体を積層してなり、電極板と被吸着物
間に電位差を生じさせることによって前記誘電体の吸着
面に被吸着物を吸着させる静電吸着体において、静電吸
着体の吸着面表面に被吸着物との接触部及び非接触部と
なる凹凸を形成し、この凹部である非接触部の吸着力を
も利用して被吸着物を吸着させる構成とする。さらに、
前記凹凸形成の際、接触部である凸部の面積が吸着面の
面積の10%未満となるように凹凸を形成する。静電吸
着体は、誘電体に電極を装着して形成してもよい。
In order to achieve the above object, a dielectric is laminated on an electrode plate, and a potential difference is generated between the electrode plate and an object to be adsorbed, so that the surface of the dielectric is adsorbed. In an electrostatic attraction body that adsorbs an object, irregularities are formed on the surface of the adsorption surface of the electrostatic attraction body as a contact portion and a non-contact portion with the object to be adsorbed, and the attraction force of the non-contact portion, which is a concave portion, is also used. To adsorb the object to be adsorbed. further,
In the formation of the irregularities, the irregularities are formed such that the area of the convex portion, which is the contact portion, is less than 10% of the area of the suction surface. The electrostatic attraction body may be formed by mounting electrodes on a dielectric.

【0011】非接触部の吸着力を利用するために、吸着
状態での、非接触部である凹部の底部と被吸着物とのす
き間を0.35〜9.0μmとする。非接触部の吸着力
を利用することにより、必要吸着力を保ったままの状態
で、吸着面に対する接触面積を従来と比較して飛躍的に
小さくすることが可能となる。
In order to utilize the attraction force of the non-contact portion, the gap between the bottom of the concave portion, which is the non-contact portion, and the object to be sucked in the suction state is set to 0.35 to 9.0 μm. By utilizing the suction force of the non-contact portion, it is possible to dramatically reduce the contact area with respect to the suction surface while maintaining the required suction force as compared with the related art.

【0012】静電吸着体の吸着面における接触部の面積
が小さければ小さいほど、静電吸着装置と被吸着物との
摩擦は起こりにくく、被吸着物への異物の転写確率が低
くくなるため、異物付着低減化効果が大きくなる。非接
触部の被吸着物とのすき間を0.35〜9.0μmとし
た場合、非接触であっても吸着力が十分得られるため、
接触部の面積を大幅に低減した場合でも全体として必要
とする吸着力を容易に得ることができる。
The smaller the area of the contact portion on the suction surface of the electrostatic attraction body, the less the friction between the electrostatic attraction device and the to-be-attached object occurs, and the lower the probability of foreign matter transfer to the to-be-adsorbed object. In addition, the effect of reducing the adhesion of foreign substances is increased. When the gap between the non-contact portion and the object to be adsorbed is set to 0.35 to 9.0 μm, sufficient adsorption force can be obtained even in non-contact.
Even when the area of the contact portion is largely reduced, the required suction force can be easily obtained as a whole.

【0013】また、被吸着物との接触部及び非接触部と
なる吸着面表面の凹凸は、エッチングにより形成した構
成とする。吸着面表面の凹凸は、スパッタやCVDで部
分的に成膜を行うことにより形成したものとしてもよ
い。この場合、接触部(凸部)は、静電吸着体を構成す
る誘電体と異なった材質で成膜を行うことにより形成さ
れたものとしてもよい。
[0013] The unevenness of the surface of the suction surface, which is a contact portion and a non-contact portion with the object, is formed by etching. The irregularities on the surface of the adsorption surface may be formed by partially forming a film by sputtering or CVD. In this case, the contact portion (convex portion) may be formed by forming a film with a material different from the dielectric material constituting the electrostatic attraction body.

【0014】また、静電吸着装置を含んでなる半導体製
造装置及び半導体検査装置においては、前記の構成の静
電吸着体を用いた静電吸着装置を備えることで上記の目
的が達成される。
Further, in a semiconductor manufacturing apparatus and a semiconductor inspection apparatus including an electrostatic chuck, the above object is achieved by providing an electrostatic chuck using the electrostatic chuck having the above-described configuration.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。図1は本発明の第1の実施例を示す正
面図、図2はその横断面図である。図1、図2に示す静
電吸着装置は、ウエハ搬送を行うための搬送ロボットに
取り付ける搬送アームに適用した例で、被吸着物(例え
ば半導体ウエハ)1を吸着する静電吸着体100と、静
電吸着体100にリード線9を介して電圧を供給する電
源7と、リード線7に介装されて静電吸着体100に印
加される電圧を断接するスイッチ8と、を含んで構成さ
れている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front view showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof. The electrostatic suction device shown in FIGS. 1 and 2 is an example in which the present invention is applied to a transfer arm attached to a transfer robot for transferring a wafer, and includes an electrostatic suction body 100 that suctions an object to be suctioned (for example, a semiconductor wafer) 1. A power supply 7 for supplying a voltage to the electrostatic attraction body 100 via a lead wire 9 and a switch 8 interposed between the lead wires 7 to disconnect and connect the voltage applied to the electrostatic attraction body 100 are configured. ing.

【0016】静電吸着体100は、誘電体からなり一方
の端部を吸着部3としたアーム本体2と、吸着部3の反
吸着面側に取付けられ、前記リード線9が接続されてい
る電極板6,6’と、を含んで構成されている。吸着部
3の吸着面側には、被吸着物1との接触部4が凸状に形
成されている。図示の例では、アーム本体2を誘電体で
構成し、その端部を拡大して吸着部3としたものである
が、吸着部3のみを誘電体としてもよい。吸着部3の吸
着面には、被吸着物1との接触部(以下、凸部ともい
う)4が形成され、凸部4以外の部分は非接触部(凹
部)5である。
The electrostatic attraction body 100 is made of a dielectric material, and is attached to the arm body 2 having one end portion as an attraction portion 3 and the attraction portion 3 on the side opposite to the attraction surface, to which the lead wire 9 is connected. And electrode plates 6 and 6 ′. On the suction surface side of the suction portion 3, a contact portion 4 with the object 1 is formed in a convex shape. In the illustrated example, the arm body 2 is made of a dielectric material, and its end is enlarged to be the suction portion 3, but only the suction portion 3 may be made of a dielectric material. A contact portion (hereinafter, also referred to as a protrusion) 4 with the object 1 is formed on the suction surface of the suction portion 3, and a portion other than the protrusion 4 is a non-contact portion (recess) 5.

【0017】なお、この実施例では双極型の静電吸着装
置を示したが、被吸着物(半導体ウエハ)1からアース
をとる手段を設けて、あるいは複数の接触部4のうち一
ヶ所以上の部分に導電性材料を用いることにより、単極
型の静電吸着装置とすることもできる。また、図1、図
2では搬送アームの例を挙げたが、本発明はこのような
搬送アームを用いる装置、例えば測長用走査型電子顕微
鏡などの検査装置に限定されるものではなく、エッチン
グ装置やスパッタ装置、CVD装置、イオン打ち込み装
置、EB描画装置など静電吸着装置を用いて半導体ウエ
ハ等を保持固定する装置すべてに有効である。これらウ
エハの平坦化のために大きな面積をもつ静電吸着装置に
本発明を適用する場合には、接触部となる凸部の形状及
び分布は、ウエハの反りを防止できる範囲となるよう配
置、形成しなければならない。これらの装置における静
電吸着装置は吸着面積が大きいため、特に本発明の効果
は高い。
In this embodiment, the bipolar electrostatic chucking device is shown. However, means for grounding the object (semiconductor wafer) 1 is provided, or one or more of the plurality of contact portions 4 are provided. By using a conductive material for the portion, a single-pole type electrostatic adsorption device can be obtained. Although FIGS. 1 and 2 show examples of the transfer arm, the present invention is not limited to an apparatus using such a transfer arm, for example, an inspection apparatus such as a scanning electron microscope for length measurement. The present invention is effective for all devices that hold and fix a semiconductor wafer or the like using an electrostatic suction device such as a device, a sputtering device, a CVD device, an ion implantation device, and an EB drawing device. When the present invention is applied to an electrostatic suction device having a large area for flattening the wafer, the shape and distribution of the convex portions serving as the contact portions are arranged so as to be in a range where the warpage of the wafer can be prevented. Must be formed. The effects of the present invention are particularly high because the electrostatic suction devices in these devices have a large suction area.

【0018】このように構成された静電吸着装置におい
てスイッチ8をオンとして電圧を印加すると、被吸着物
(以下ウエハという)1と静電吸着体の電極板6との間
の電位差によって生じる静電気の作用により、ウエハ1
は吸着部3の吸着面側に吸着され、前記凸部4に当接し
て固定保持される。これにより、ウエハ1の高速での回
転運動や直線運動、上下動などの動作に対してもずれを
生じさせずに搬送が可能となる。
When the switch 8 is turned on and a voltage is applied in the electrostatic chuck having the above-described configuration, the electrostatic force generated by the potential difference between the object (hereinafter referred to as a wafer) 1 and the electrode plate 6 of the electrostatic chuck is generated. Of wafer 1
Is adsorbed on the adsorbing surface side of the adsorbing portion 3 and is fixedly held in contact with the convex portion 4. This makes it possible to transfer the wafer 1 without causing a shift even in operations such as high-speed rotational movement, linear movement, and vertical movement.

【0019】通常、静電吸着装置の吸着面は絶縁性誘電
体で作られるが、その誘電体の材質は硬質材料であるS
iC、Al23、Si34、AlN、Cr23等、焼結で作
られるセラミックスである。それらの誘電体の表面には
微小な突起、および加工の際に残された微小なバリ等が
存在しており、吸着面とウエハが接触する際に微小滑
り、すなわち摩擦が起き、その摩耗紛が付着異物となっ
てウエハ裏面を汚染する。あるいは、単に吸着面とウエ
ハが接触するだけであっても、異物が電界の影響を受け
てウエハ側に転写するといった現象が起こり、ウエハ裏
面が汚染される。
Usually, the attraction surface of the electrostatic attraction device is made of an insulating dielectric material, and the material of the dielectric material is hard material S
iC, Al 2 O 3, Si 3 N 4, AlN, Cr 2 O 3 or the like, a ceramic made by sintering. On the surface of these dielectrics, there are minute protrusions and minute burrs left during processing, and when the suction surface comes into contact with the wafer, minute slippage, that is, friction occurs, and the wear powder Become contaminants and contaminate the back surface of the wafer. Alternatively, even when the wafer is merely brought into contact with the suction surface, a phenomenon occurs in which foreign matter is transferred to the wafer side under the influence of the electric field, and the back surface of the wafer is contaminated.

【0020】本実施例のように吸着面に凹凸を形成し、
ウエハとの接触部である凸部4の総面積を小さくすれ
ば、上記のような異物発生の原因となる摩擦や、異物の
転写が起こる確率が小さくなり、結果としてウエハ裏面
に付着する異物を低減することができる。接触面積を小
さくすればするほど異物付着低減化の効果が高くなる
が、通常では接触面積を小さくすると吸着力が低下し、
ウエハを固定保持できなくなるといった問題が起こる。
しかし、非接触部のウエハとの隙間の大きさを小さく限
定することで、非接触部分であっても吸着力を持つこと
ができるので、この吸着力も利用することにより静電吸
着装置全体として必要な吸着力を得ることが可能とな
る。
As in this embodiment, irregularities are formed on the suction surface,
If the total area of the projections 4 that are the contact portions with the wafer is reduced, the friction that causes the generation of foreign matter as described above and the probability of transfer of foreign matter are reduced, and as a result, foreign matter adhering to the back surface of the wafer is reduced. Can be reduced. The smaller the contact area, the higher the effect of reducing the adhesion of foreign matter, but usually, the smaller the contact area, the lower the adsorption power,
There is a problem that the wafer cannot be fixedly held.
However, by limiting the size of the gap between the non-contact portion and the wafer to a small value, the non-contact portion can have an attractive force even in the non-contact portion. It is possible to obtain an appropriate suction force.

【0021】ここで、図3に被吸着物と吸着面非接触部
(以下誘電体膜という)間の隙間a=0の時の吸着力F
0を100%とした場合の隙間aと吸着力Fの関係を計算し
た結果を示す。この吸着力Fは、隙間a=0のとき以外
では、接触面積はないと仮に考えた場合の力である。こ
こでは、吸着部誘電体の厚さ2mmで、比誘電率600と
300のSiC製の静電吸着体を用いた場合を例として
示している。静電吸着装置の吸着力Fは、次式(1)で
表される。
FIG. 3 shows the suction force F when the gap a = 0 between the object and the non-contact portion of the suction surface (hereinafter referred to as dielectric film).
The result of calculating the relationship between the gap a and the attraction force F when 0 is set to 100% is shown. The suction force F is a force when it is assumed that there is no contact area except when the gap a = 0. Here, an example is shown in which a SiC electrostatic adsorber having a dielectric constant of 600 and 300 and a thickness of the adsorber dielectric of 2 mm is used. The attraction force F of the electrostatic attraction device is expressed by the following equation (1).

【0022】[0022]

【数1】 (Equation 1)

【0023】ε0:真空の誘電率、V:電極間電位差、
a:被吸着物−誘電体膜間の空隙間隔、b:誘電体膜の
厚さ、κ:比誘電率を表す。
Ε 0 : dielectric constant of vacuum, V: potential difference between electrodes,
a: the gap between the substance to be adsorbed and the dielectric film; b: the thickness of the dielectric film; and κ: the relative dielectric constant.

【0024】図3からわかるように、隙間aが大きくな
るほど吸着力Fは小さくなっているが、隙間aが9.0
μm以下の範囲では、比誘電率300の静電吸着体で
は、吸着力は隙間aが大きくなるにつれて次第に低下す
るもののF0の約20%を保持している。この吸着力低
下は、例えば前記の比誘電率κ=300の静電吸着装置
の例では、印加電圧を2倍程度に上げるといった対策を
行うことで十分補うことができる。このことは、静電力
の大きさが電位差の2乗に比例し、かつ吸着部誘電体の
厚さの2乗に反比例する、すなわち電界強度(電位差/
吸着部誘電体厚)の2乗に比例することを示す式(1)
からも明らかである。吸着部誘電体厚については、静電
吸着体自体の強度面や絶縁耐圧の点で問題となるが、可
能な範囲で厚みを変更し、吸着力を確保しても良い。
As can be seen from FIG. 3, the suction force F decreases as the gap a increases, but the gap a is 9.0.
In the range of μm or less, in the electrostatic adsorbent having a relative dielectric constant of 300, the attraction force gradually decreases as the gap a increases, but retains about 20% of F 0 . This decrease in the attraction force can be sufficiently compensated for by taking measures such as increasing the applied voltage to about twice in the above-mentioned example of the electrostatic attraction device having the relative dielectric constant κ = 300. This means that the magnitude of the electrostatic force is proportional to the square of the potential difference and inversely proportional to the square of the thickness of the dielectric of the attracting portion, that is, the electric field strength (potential difference /
Equation (1) indicating that it is proportional to the square of the thickness of the dielectric part of the suction part)
It is clear from. The thickness of the dielectric of the attraction portion is problematic in terms of strength of the electrostatic attraction body itself and withstand voltage, but the thickness may be changed as much as possible to secure the attraction force.

【0025】ところで、被吸着物と誘電体膜との隙間が
小さい方が大きな吸着力を得られるが、図4に示したよ
うに、ウエハ1と静電吸着体の吸着部3の誘電体との隙
間aより大きな異物がウエハ1と静電吸着体の吸着部3
の間に存在した場合には、異物がウエハ裏面に付着して
しまうので、付着異物低減に対して効果がない。現在、
半導体製造における異物の管理基準が対象にしている粒
子は、径が0.2〜0.3μm程度以上のものであり、
また、半導体製造プロセスの微細化によりクリーン化技
術が進んできているため、粒子径の大きな異物は少なく
なってきている。つまり、静電吸着体にウエハに吸着さ
せる際に、最も多く存在している0.2〜0.3μm程
度の粒子径を持つ異物の付着を防止することにより、ウ
エハへの異物付着は大幅に低減できる。そこで、本実施
例では、図5に示すように0.2〜0.3μm程度の径
を持つ異物が静電吸着体の吸着面凹部の中に入り込み、
ウエハに付着できない程度にウエハと誘電体膜との隙間
を空けた。さらに、表面に凹凸を形成する際の加工精度
や、表面粗さ等との関係をも考慮すると、現実的には、
被吸着物吸着時の非接触部における被吸着物と誘電体膜
との隙間aは、0.35μm以上とするのが望ましい。
The smaller the gap between the object to be adsorbed and the dielectric film is, the larger the attraction force can be obtained. However, as shown in FIG. Is larger than the gap a between the wafer 1 and the suction part 3 of the electrostatic suction body.
In the case where the foreign matter is present between the two, the foreign matter adheres to the back surface of the wafer. Current,
Particles targeted by foreign material management standards in semiconductor manufacturing have a diameter of about 0.2 to 0.3 μm or more,
In addition, foreign substances having a large particle diameter have been reduced due to the progress of clean technology due to miniaturization of semiconductor manufacturing processes. That is, when the electrostatic adsorbent is adsorbed on the wafer, the foreign object having a particle diameter of about 0.2 to 0.3 μm, which is most frequently present, is prevented from adhering to the wafer. Can be reduced. Therefore, in the present embodiment, as shown in FIG. 5, foreign matter having a diameter of about 0.2 to 0.3 μm enters into the concave portion of the adsorption surface of the electrostatic adsorption body,
A gap was formed between the wafer and the dielectric film to such an extent that it could not adhere to the wafer. Furthermore, in consideration of the processing accuracy when forming irregularities on the surface and the relationship with the surface roughness, etc., in reality,
It is desirable that the gap a between the object to be adsorbed and the dielectric film in the non-contact portion when the object to be adsorbed is 0.35 μm or more.

【0026】また、式(1)による計算の上では、吸着
面と被吸着物の間全体に隙間がある状態、すなわち接触
面積が0であっても良いことになるが、実際には接触面
積を0とすることは不可能であるため、限りなく0に近
く、かつ被吸着物を保持できる程度の接触面積が必要と
なる。図6に接触面積を低減したときの、被吸着物−誘
電体膜間の隙間aと吸着力Fとの関係を示す。図3と同
じ条件の静電吸着装置を例とし、同様に被吸着物と誘電
体膜間の隙間a=0で、接触面積を100%とした時の
吸着力F0を100%とした。例えば隙間a=2.0μm
のとき、接触面積なしと仮定した場合に得られる吸着力
はもとの隙間a=0のときの吸着力Fの59.2%
(図3)であるが、図6に示したように、接触面積比を
10%とした場合の吸着力は、隙間なし全面接触時の6
3.3%となる。また、接触面積比を更に小さくした1
%の場合には、59.6%となる。このように、接触面
積を低減すると吸着力は小さくはなっているが、その減
少はわずかである。これはウエハと誘電体膜の隙間を狭
く限定することにより非接触部の吸着力を確保している
ためである。
On the basis of the calculation by the equation (1), there may be a state where there is a gap between the adsorption surface and the object to be adsorbed, that is, the contact area may be zero. Since it is impossible to make 0 be 0, a contact area that is as close as possible to 0 and that can hold an object to be adsorbed is required. FIG. 6 shows the relationship between the gap a between the object to be adsorbed and the dielectric film and the attraction force F when the contact area is reduced. An example of the electrostatic suction device under the same conditions as in FIG. 3 was used, and similarly, when the gap a between the object to be sucked and the dielectric film was 0 and the contact area was 100%, the suction force F 0 was 100%. For example, gap a = 2.0 μm
, The suction force obtained assuming that there is no contact area is 59.2% of the suction force F 0 when the original gap a = 0.
(FIG. 3), as shown in FIG. 6, when the contact area ratio is 10%, the attraction force is 6% at the time of full contact without any gap.
It becomes 3.3%. Further, the contact area ratio was further reduced to 1
%, It is 59.6%. As described above, when the contact area is reduced, the attraction force is reduced, but the reduction is slight. This is because the attraction force of the non-contact portion is secured by narrowing the gap between the wafer and the dielectric film.

【0027】図6によれば、被吸着物と誘電体膜間の隙
間a=9μmとし、かつ接触面積比を1%としたときで
も、比誘電率κ=300の誘電体を用いれば、全面接触
の場合の吸着力の約20%を発生できることがわかる。
全面接触の場合の吸着力の約20%を発生できれば、ウ
エハの吸着に支障はない。言い替えると、誘電体の比誘
電率、印加する電圧等を適切に選定することにより、被
吸着物と誘電体膜間の隙間a=9μmとし、かつ接触面
積比を1%としたときでも、十分な吸着力を発生できる
ことがわかる。
According to FIG. 6, even when the gap a between the object to be adsorbed and the dielectric film is set to 9 μm and the contact area ratio is set to 1%, if the dielectric having the relative permittivity κ = 300 is used, It can be seen that about 20% of the attraction force in the case of contact can be generated.
If about 20% of the attraction force in the case of full surface contact can be generated, there is no problem in attracting the wafer. In other words, by appropriately selecting the relative dielectric constant of the dielectric, the applied voltage, and the like, even when the gap a between the object to be adsorbed and the dielectric film is 9 μm and the contact area ratio is 1%, it is sufficient. It can be seen that a high suction force can be generated.

【0028】ウエハへの異物付着数は、ウエハと吸着部
の接触面積に比例する傾向にあるため、吸着部の接触部
(凸部)の面積はウエハを保持できる範囲で、0.1%
〜0.01%程度まで、できる限り小さくすることによ
りウエハ裏面付着異物を低減することができる。また、
静電吸着によりウエハ裏面に付着する大量の異物を効果
的に減少させるためには、ウエハとの接触部の面積は吸
着面の面積の10%未満であることが望ましい。
Since the number of foreign particles adhering to the wafer tends to be proportional to the contact area between the wafer and the suction portion, the area of the contact portion (convex portion) of the suction portion is 0.1% within a range capable of holding the wafer.
Foreign matter adhering to the back surface of the wafer can be reduced by reducing the size as small as possible to about 0.01%. Also,
In order to effectively reduce a large amount of foreign substances adhering to the back surface of the wafer by electrostatic attraction, it is desirable that the area of the contact portion with the wafer is less than 10% of the area of the attraction surface.

【0029】そこで、本実施例では、接触部4の総面積
を吸着面3の面積の10%未満とし、同時に、非接触部
5のウエハ1との隙間を0.35〜9.0μmとした。
接触部4の面積を小さくしても、非接触部5の持つ吸着
力を用いてウエハ1を吸着することにより、必要な吸着
力を発生させ、かつ、ウエハ裏面付着異物を大幅に減少
することができた。
Therefore, in this embodiment, the total area of the contact portion 4 is set to less than 10% of the area of the suction surface 3, and at the same time, the gap between the non-contact portion 5 and the wafer 1 is set to 0.35 to 9.0 μm. .
Even if the area of the contact portion 4 is reduced, the wafer 1 is suctioned by using the suction force of the non-contact portion 5 to generate a necessary suction force and greatly reduce foreign matter adhering to the back surface of the wafer. Was completed.

【0030】なお、静電吸着体の吸着力、吸着面の面
積、ウエハの種類等に応じて、ウエハがたわまない範囲
で、上記吸着面の接触部4の形状は図1のような円形の
島状の他に、多角形の島状や、互いに平行あるいは格子
状、放射状である直線形等、様々な形状とすることがで
きる。
The shape of the contact portion 4 of the suction surface is as shown in FIG. 1 within a range in which the wafer does not bend according to the suction force of the electrostatic suction body, the area of the suction surface, the type of the wafer, and the like. In addition to the circular island shape, various shapes such as a polygonal island shape, a parallel or lattice shape, and a radial linear shape can be used.

【0031】図7は、本発明の第2の実施例を表す横断
面図である。図7は静電吸着体の吸着面の凹凸の形成手
順の例を示すもので、吸着面の凹凸をエッチングにより
形成する場合の図である。まず、吸着部3の吸着面上に
凸部のパターンであるマスク10を形成し、エッチング
を行う。マスクのない部分のみエッチングされて凹部と
なるので、マスクを取り除くと、マスク10があった部
分を凸部とする凹凸が形成される。誘電体の材質により
エッチング条件を選べば良いため、ドライエッチングで
もウェットエッチングでも加工は可能である。
FIG. 7 is a cross sectional view showing a second embodiment of the present invention. FIG. 7 shows an example of a procedure for forming irregularities on the suction surface of the electrostatic attraction body, and is a diagram in a case where the irregularities on the suction surface are formed by etching. First, a mask 10, which is a pattern of convex portions, is formed on the suction surface of the suction section 3, and etching is performed. Since only the portion without the mask is etched to form a concave portion, when the mask is removed, unevenness is formed with the portion where the mask 10 was present as a convex portion. Since etching conditions may be selected depending on the material of the dielectric, processing can be performed by either dry etching or wet etching.

【0032】図8は、本発明の第3の実施例を表す横断
面図である。図8は静電吸着体の吸着面の凹凸の形成手
順の他の例を示すもので、この場合は静電吸着装置の吸
着面の凹凸をスパッタまたはCVDにより形成する。ま
ず、吸着面上に凸部のパターンであるマスク10’を付
け、スパッタまたはCVDにより成膜処理を行うと、マ
スクのない部分にウエハ1との接触部となる凸部が形成
される。成膜処理に用いる材料としては、静電吸着装置
の吸着部を構成する誘電体であるSiC、Al23、Si3
4、AlN、Cr23等のセラミックスと同じ材質であ
っても、また違った材質のものでも可能である。高純度
で熱的に安定な薄膜であれば、半導体膜または絶縁膜の
いずれでもよく、ウエハへの汚染の影響が少ない材料と
して、非晶質シリコンあるいは多晶質シリコンなどのシ
リコン薄膜やSiO2などのシリコン化合物薄膜などがよ
い。また、比誘電率の大きい強誘電体を接触部の形成に
用いれば、大きい吸着力が得られるが、逆に、吸着力を
持たない材質で接触部を形成してもよい。ウエハとの摩
擦に対して低発塵である材料、例えば非晶質ダイヤモン
ド、多結晶ダイヤモンドなどの材料を用いれば、接触時
の発塵を抑えることができるため、ウエハの汚染を低減
することができる。
FIG. 8 is a cross-sectional view showing a third embodiment of the present invention. FIG. 8 shows another example of the procedure for forming the irregularities on the adsorption surface of the electrostatic adsorption body. In this case, the irregularities on the adsorption surface of the electrostatic adsorption device are formed by sputtering or CVD. First, a mask 10 ′, which is a pattern of convex portions, is attached on the suction surface, and a film forming process is performed by sputtering or CVD, and a convex portion serving as a contact portion with the wafer 1 is formed in a portion without the mask. Materials used for the film forming process include SiC, Al 2 O 3 , and Si 3 , which are dielectrics constituting the suction unit of the electrostatic suction device.
The same material as the ceramic such as N 4 , AlN, Cr 2 O 3, or a different material may be used. As long as it is a high-purity and thermally stable thin film, either a semiconductor film or an insulating film may be used. As a material having little influence on contamination of the wafer, a silicon thin film such as amorphous silicon or polycrystalline silicon or SiO 2 is used. And the like. Further, if a ferroelectric substance having a large relative permittivity is used for forming the contact portion, a large attraction force can be obtained. Conversely, the contact portion may be formed of a material having no attraction force. If a material that generates low dust with respect to friction with the wafer, for example, a material such as amorphous diamond or polycrystalline diamond can be used, dust generated at the time of contact can be suppressed, so that contamination of the wafer can be reduced. it can.

【0033】上記実施例は、誘電体に電極を装着した構
成であるが、逆に電極板に誘電体膜を積層成膜し、成膜
段階で誘電体表面に非接触部、接触部となる凹凸を形成
するようにしてもよい。
In the above embodiment, the electrode is mounted on the dielectric. On the contrary, a dielectric film is laminated on the electrode plate, and a non-contact portion and a contact portion are formed on the dielectric surface at the film formation stage. Irregularities may be formed.

【0034】[0034]

【発明の効果】以上述べたように、本発明によれば、静
電吸着装置の吸着面表面の被吸着物との接触面積を大幅
に小さくしたため、静電吸着装置の被吸着物(試料)吸
着による被吸着物裏面付着異物を低減し、最終的に被吸
着物の汚染を減らすことができる。
As described above, according to the present invention, since the contact area of the adsorption surface of the electrostatic attraction device with the object to be adsorbed is greatly reduced, the object to be adsorbed (sample) of the electrostatic attraction device is reduced. Foreign matter adhering to the back surface of the object to be adsorbed due to adsorption can be reduced, and finally, contamination of the object to be adsorbed can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す正面図である。FIG. 1 is a front view showing a first embodiment of the present invention.

【図2】本発明の第1の実施例を示す横断面図である。FIG. 2 is a cross-sectional view showing the first embodiment of the present invention.

【図3】本発明の実施例における、被吸着物−誘電体膜
間の隙間aと吸着力Fの関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a gap a between an object to be adsorbed and a dielectric film and an attraction force F in the example of the present invention.

【図4】従来技術の例をを示す断面拡大図である。FIG. 4 is an enlarged sectional view showing an example of the prior art.

【図5】本発明の第1の実施例の部分を示す拡大図であ
る。
FIG. 5 is an enlarged view showing a part of the first embodiment of the present invention.

【図6】被吸着物−誘電体膜間の隙間aと吸着力Fの関
係を、接触面積比をパラメータにして示すグラフであ
る。
FIG. 6 is a graph showing a relationship between a gap a between an object to be adsorbed and a dielectric film and an attraction force F using a contact area ratio as a parameter.

【図7】本発明の第2の実施例を示す横断面図である。FIG. 7 is a cross sectional view showing a second embodiment of the present invention.

【図8】本発明の第3の実施例を示す横断面図である。FIG. 8 is a cross sectional view showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体ウエハ 2 静電吸着装置 3 吸着面 4 接触部(凸
部) 5 非接触部(凹部) 6・6’ 電極板 7 電源 8 スイッチ 9 リード線 10・10’ マ
スク 100 静電吸着体
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 2 Electrostatic attraction device 3 Suction surface 4 Contact part (convex part) 5 Non-contact part (depressed part) 6.6 'electrode plate 7 Power supply 8 Switch 9 Lead wire 10.10' Mask 100 Electrostatic adsorption body

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 電極板に誘電体を積層してなり、電極板
と被吸着物間に電位差を生じさせることによって前記誘
電体の吸着面に被吸着物を吸着させる静電吸着体におい
て、誘電体の吸着面表面に、被吸着物吸着時に被吸着物
との接触部となる凸部および非接触部となる凹部を形成
し、前記接触部の被吸着物との接触面積を吸着面面積の
10%未満としたことを特徴とする静電吸着体。
1. An electrostatic adsorber comprising an electrode plate and a dielectric layered thereon, wherein a potential difference is generated between the electrode plate and the object to be adsorbed, whereby the object to be adsorbed is adsorbed on the adsorption surface of the dielectric. On the surface of the adsorption surface of the body, a convex portion serving as a contact portion with the object to be adsorbed and a concave portion serving as a non-contact portion when the object is adsorbed are formed, and the contact area of the contact portion with the object to be adsorbed is defined as the area of the adsorption surface. An electrostatic adsorbent characterized by being less than 10%.
【請求項2】 誘電体に電極板を装着してなり、電極板
と被吸着物間に電位差を生じさせることによって前記誘
電体の吸着面に被吸着物を吸着させる静電吸着体におい
て、誘電体の吸着面表面に、被吸着物吸着時に被吸着物
との接触部となる凸部および非接触部となる凹部を形成
し、前記接触部の被吸着物との接触面積を吸着面面積の
10%未満としたことを特徴とする静電吸着体。
2. An electrostatic attraction body comprising an electrode plate mounted on a dielectric and causing a potential difference between the electrode plate and the object to be attracted to attract the object to be attracted to the attraction surface of the dielectric. On the surface of the adsorption surface of the body, a convex portion serving as a contact portion with the object to be adsorbed and a concave portion serving as a non-contact portion when the object is adsorbed are formed, and the contact area of the contact portion with the object to be adsorbed is defined as the area of the adsorption surface. An electrostatic adsorbent characterized by being less than 10%.
【請求項3】 電極板に誘電体を積層してなり、電極板
と被吸着物間に電位差を生じさせることによって前記誘
電体の吸着面に被吸着物を吸着させる静電吸着体におい
て、誘電体の吸着面表面に、被吸着物吸着時に被吸着物
との接触部となる凸部および非接触部となる凹部を形成
し、被吸着物吸着時に、被吸着物と前記非接触部の底部
の間の間隔が0.35〜9.0μmであることを特徴と
する静電吸着体。
3. An electrostatic attraction body comprising a dielectric material laminated on an electrode plate, wherein a potential difference is generated between the electrode plate and the attraction object to cause the attraction object to be attracted to the attraction surface of the dielectric material. On the surface of the adsorbing surface of the body, a convex portion serving as a contact portion with the object to be adsorbed when the object is adsorbed and a concave portion serving as a non-contact portion are formed. Characterized in that the distance between them is 0.35 to 9.0 μm.
【請求項4】 誘電体に電極板に装着してなり、電極板
と被吸着物間に電位差を生じさせることによって前記誘
電体の吸着面に被吸着物を吸着させる静電吸着体におい
て、誘電体の吸着面表面に、被吸着物吸着時に被吸着物
との接触部となる凸部および非接触部となる凹部を形成
し、被吸着物吸着時に、被吸着物と前記非接触部の底部
の間の間隔が0.35〜9.0μmであることを特徴と
する静電吸着体。
4. An electrostatic attraction member mounted on an electrode plate on a dielectric and causing a potential difference between the electrode plate and the attraction object to attract the attraction object onto the attraction surface of the dielectric material, On the surface of the adsorbing surface of the body, a convex portion serving as a contact portion with the object to be adsorbed when the object is adsorbed and a concave portion serving as a non-contact portion are formed. Characterized in that the distance between them is 0.35 to 9.0 μm.
【請求項5】請求項1または2に記載の静電吸着体にお
いて、被吸着物吸着時に被吸着物と前記非接触部の底部
の間の間隔が0.35〜9.0μmであることを特徴と
する静電吸着体。
5. The electrostatic adsorbent according to claim 1, wherein a distance between the object and the bottom of the non-contact portion is 0.35 to 9.0 μm when the object is adsorbed. Characteristic electrostatic adsorbent.
【請求項6】 請求項1乃至5のいずれかに記載の静電
吸着体において、被吸着物との接触部及び非接触部とな
る吸着面表面の凹凸は、エッチングにより誘電体に形成
されたものであることを特徴とする静電吸着体。
6. The electrostatic attraction body according to claim 1, wherein the surface of the attraction surface serving as a contact portion and a non-contact portion with the object to be attracted is formed on the dielectric by etching. An electrostatic attraction body characterized in that it is a material.
【請求項7】 請求項1乃至5のいずれかに記載の静電
吸着体において、被吸着物との接触部及び非接触部とな
る吸着面表面の凹凸は、スパッタもしくはCVDで誘電
体表面に部分的に成膜を行うことにより形成されたもの
であることを特徴とする静電吸着体。
7. The electrostatic attraction body according to claim 1, wherein irregularities on the surface of the attraction surface, which are a contact portion and a non-contact portion with the object, are formed on the dielectric surface by sputtering or CVD. An electrostatic adsorbent formed by partially forming a film.
【請求項8】 請求項7記載の静電吸着体において、吸
着面表面の被吸着物との接触部となる凸部は、該凸部が
形成される誘電体と異なった材質であることを特徴とす
る静電吸着体。
8. The electrostatic adsorbent according to claim 7, wherein the convex portion serving as a contact portion of the surface of the adsorption surface with the object to be adsorbed is made of a material different from a dielectric material on which the convex portion is formed. Characteristic electrostatic adsorbent.
【請求項9】 電極板が装着された誘電体を含んで形成
され前記電極板を介して印加される電圧により前記誘電
体に生じる電位差によって被吸着物を前記誘電体に吸着
する静電吸着体と、前記電極板にリード線を介して接続
された電源と、前記リード線に介装されたスイッチと、
を含んでなる静電吸着装置において、前記静電吸着体が
請求項1乃至8のいずれかに記載の静電吸着体であるこ
とを特徴とする静電吸着装置。
9. An electrostatic attraction member formed to include a dielectric to which an electrode plate is attached and adsorbing an object to be attached to the dielectric by a potential difference generated at the dielectric by a voltage applied through the electrode plate. A power supply connected to the electrode plate via a lead wire, and a switch interposed on the lead wire;
An electrostatic attraction device comprising: an electrostatic attraction device, wherein the electrostatic attraction member is the electrostatic attraction member according to claim 1.
【請求項10】 半導体ウエハを吸着保持する静電吸着
装置を含んでなる半導体製造装置において、前記静電吸
着装置が、請求項9記載の静電吸着装置であることを特
徴とする半導体製造装置。
10. A semiconductor manufacturing apparatus comprising an electrostatic attraction device for attracting and holding a semiconductor wafer, wherein the electrostatic attraction device is the electrostatic attraction device according to claim 9. .
【請求項11】 半導体ウエハを吸着保持する静電吸着
装置を含んでなる半導体検査装置において、前記静電吸
着装置が、請求項9記載の静電吸着装置であることを特
徴とする半導体検査装置。
11. A semiconductor inspection apparatus comprising an electrostatic chuck for holding a semiconductor wafer by suction, wherein the electrostatic chuck is the electrostatic chuck according to claim 9. .
JP3755997A 1997-02-21 1997-02-21 Electrostatic adsorbent and adsorber Pending JPH10233434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3755997A JPH10233434A (en) 1997-02-21 1997-02-21 Electrostatic adsorbent and adsorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3755997A JPH10233434A (en) 1997-02-21 1997-02-21 Electrostatic adsorbent and adsorber

Publications (1)

Publication Number Publication Date
JPH10233434A true JPH10233434A (en) 1998-09-02

Family

ID=12500883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3755997A Pending JPH10233434A (en) 1997-02-21 1997-02-21 Electrostatic adsorbent and adsorber

Country Status (1)

Country Link
JP (1) JPH10233434A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064209A1 (en) * 1998-06-08 1999-12-16 Kuraitekku Co., Ltd. Chuck and suction cup for platy material
JP2000340640A (en) * 1999-05-31 2000-12-08 Toto Ltd Non-contacting electrostatically attracting apparatus
JP2001274228A (en) * 2000-01-20 2001-10-05 Ngk Insulators Ltd Electrostatic chuck
JP2002222851A (en) * 2001-01-29 2002-08-09 Ngk Insulators Ltd Electrostatic chuck and board processor
US6556414B2 (en) 2000-06-02 2003-04-29 Sumitomo Osaka Cement Co., Ltd. Electrostatic and vacuum chucking holding apparatus
WO2008111752A1 (en) * 2007-03-12 2008-09-18 Komico Ltd. Apparatus for transferring a wafer
JP2008227505A (en) * 2007-03-13 2008-09-25 Nikon Corp Exposure apparatus and method of manufacturing device
JP2010040804A (en) * 2008-08-06 2010-02-18 Hitachi High-Technologies Corp Sample carrying mechanism
JP2012514872A (en) * 2009-01-11 2012-06-28 アプライド マテリアルズ インコーポレイテッド Electrostatic end effector apparatus, system, and method for transporting a substrate
JP2014011237A (en) * 2012-06-28 2014-01-20 Ngk Spark Plug Co Ltd Holding device, attraction body, and attraction body attachment device
JP2014039967A (en) * 2012-08-21 2014-03-06 Ulvac Japan Ltd Substrate processing method and substrate
JP2015023168A (en) * 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Plasma processing apparatus, and method of manufacturing stage
JPWO2016052291A1 (en) * 2014-09-30 2017-04-27 住友大阪セメント株式会社 Electrostatic chuck device
WO2021192935A1 (en) * 2020-03-26 2021-09-30 株式会社巴川製紙所 Electrostatic chuck device and sleeve for electrostatic chuck device
JP2022532321A (en) * 2019-07-05 2022-07-14 ベイジン・ナウラ・マイクロエレクトロニクス・イクイップメント・カンパニー・リミテッド Mask structure and FCVA device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064209A1 (en) * 1998-06-08 1999-12-16 Kuraitekku Co., Ltd. Chuck and suction cup for platy material
JP2000340640A (en) * 1999-05-31 2000-12-08 Toto Ltd Non-contacting electrostatically attracting apparatus
JP2001274228A (en) * 2000-01-20 2001-10-05 Ngk Insulators Ltd Electrostatic chuck
US6556414B2 (en) 2000-06-02 2003-04-29 Sumitomo Osaka Cement Co., Ltd. Electrostatic and vacuum chucking holding apparatus
JP2002222851A (en) * 2001-01-29 2002-08-09 Ngk Insulators Ltd Electrostatic chuck and board processor
JP2010521072A (en) * 2007-03-12 2010-06-17 コミコ株式会社 Wafer transfer device
JP4951677B2 (en) * 2007-03-12 2012-06-13 コミコ株式会社 Wafer transfer device
WO2008111752A1 (en) * 2007-03-12 2008-09-18 Komico Ltd. Apparatus for transferring a wafer
KR101119075B1 (en) * 2007-03-12 2012-03-15 주식회사 코미코 Apparatus for transferring a wafer
JP2008227505A (en) * 2007-03-13 2008-09-25 Nikon Corp Exposure apparatus and method of manufacturing device
US8585112B2 (en) 2008-08-06 2013-11-19 Hitachi High-Technologies Corporation Sample conveying mechanism
JP2010040804A (en) * 2008-08-06 2010-02-18 Hitachi High-Technologies Corp Sample carrying mechanism
JP2012514872A (en) * 2009-01-11 2012-06-28 アプライド マテリアルズ インコーポレイテッド Electrostatic end effector apparatus, system, and method for transporting a substrate
JP2014011237A (en) * 2012-06-28 2014-01-20 Ngk Spark Plug Co Ltd Holding device, attraction body, and attraction body attachment device
JP2014039967A (en) * 2012-08-21 2014-03-06 Ulvac Japan Ltd Substrate processing method and substrate
JP2015023168A (en) * 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Plasma processing apparatus, and method of manufacturing stage
JPWO2016052291A1 (en) * 2014-09-30 2017-04-27 住友大阪セメント株式会社 Electrostatic chuck device
JP2022532321A (en) * 2019-07-05 2022-07-14 ベイジン・ナウラ・マイクロエレクトロニクス・イクイップメント・カンパニー・リミテッド Mask structure and FCVA device
WO2021192935A1 (en) * 2020-03-26 2021-09-30 株式会社巴川製紙所 Electrostatic chuck device and sleeve for electrostatic chuck device

Similar Documents

Publication Publication Date Title
JPH10233434A (en) Electrostatic adsorbent and adsorber
JP4418032B2 (en) Electrostatic chuck
TWI534940B (en) High conductivity electrostatic chuck
JP4312394B2 (en) Electrostatic chuck and substrate processing apparatus
US9214376B2 (en) Substrate mounting stage and surface treatment method therefor
KR101119075B1 (en) Apparatus for transferring a wafer
TW200405443A (en) Electrostatic absorbing apparatus
JP5165817B2 (en) Electrostatic chuck and manufacturing method thereof
KR20020019030A (en) Electrostatic chuck and treating device
WO2015076369A1 (en) Electrostatic chuck
JP2008091353A (en) Electrostatic chuck
JP4010541B2 (en) Electrostatic adsorption device
JP4236292B2 (en) Wafer adsorption apparatus and method for manufacturing the same
JP2004022889A (en) Electrostatic chuck
JP4312372B2 (en) Electrostatic chuck and manufacturing method thereof
JP3527823B2 (en) Electrostatic chuck
JP2008300374A (en) Electrostatic suction apparatus
JP3767719B2 (en) Electrostatic chuck
JP2006066857A (en) Bipolar electrostatic chuck
JPH11168132A (en) Electrostatic adsorption device
JP2004014603A (en) Suction chuck
JP7122174B2 (en) ELECTROSTATIC CHUCK AND METHOD FOR MANUFACTURING ELECTROSTATIC CHUCK
JP2002134599A (en) Electrostatic chuck apparatus
JP4030360B2 (en) Electrostatic adsorption apparatus and vacuum processing apparatus using the same
JP3455026B2 (en) Electrostatic chuck