JPH10233423A - Load locked vacuum processor - Google Patents

Load locked vacuum processor

Info

Publication number
JPH10233423A
JPH10233423A JP9037263A JP3726397A JPH10233423A JP H10233423 A JPH10233423 A JP H10233423A JP 9037263 A JP9037263 A JP 9037263A JP 3726397 A JP3726397 A JP 3726397A JP H10233423 A JPH10233423 A JP H10233423A
Authority
JP
Japan
Prior art keywords
sample
temperature
heating
chamber
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9037263A
Other languages
Japanese (ja)
Inventor
Kenji Morita
憲司 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9037263A priority Critical patent/JPH10233423A/en
Priority to US09/028,171 priority patent/US5914493A/en
Publication of JPH10233423A publication Critical patent/JPH10233423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To notably cut down the time for mounting specimens on a specimen stage wherein the specimen temperature is stabilized and equalized, by a method wherein either one out of the first or the second heating mechanism or both of them for heating the specimens are provided in a carrier chamber. SOLUTION: A carrier chamber 3 is provided with the first heating mechanism wherein a circulation pipe 10 for heating made of copper is assembled into a holder 11 so as to circulate the liquid or gas controlled at a specific temperature by a liquid or gas heater, so that the temperature of the circulated liquid or gas when carried to a processing chamber may be set up to equalize the specimen temperature with that of the specimen stage 7 in the processing chamber in anticipation of the adiabatic expansion in the vacuum exhausting time. Furthermore, the second heating mechanism equipped with a lamp heater or a nichrome heater corresponding to the first mechanism is provided in the carrier chamber 3, thereby enabling the temperature of the specimens 6 to be set up and stabilized at the temperature of the specimen stage 7 within a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【従来の技術】真空中で半導体を製造、検査する装置と
して、試料を直接大気中から処理室に搬入し、試料の1
バッチ毎に排気加熱を繰り返す、所謂バッチ式装置が使
われることは少ない。その理由は、近年半導体の高集積
度化に伴い、半導体を製造、検査をするために必要な条
件、即ち圧力、雰囲気ガス分圧、温度条件を精密に制御
する必要性が益々高まって来ており、バッチ式装置でこ
れらの条件を充たすためには長時間の条件安定化時間が
必要であり、スループットが低いからである。
2. Description of the Related Art As an apparatus for manufacturing and inspecting a semiconductor in a vacuum, a sample is directly carried into the processing chamber from the atmosphere, and the sample is inspected.
A so-called batch-type apparatus that repeats exhaust heating for each batch is rarely used. The reason is that with the recent increase in the degree of integration of semiconductors, the necessity of precisely controlling the conditions necessary for manufacturing and inspecting semiconductors, that is, pressure, atmospheric gas partial pressure, and temperature conditions, has been increasing. In order to satisfy these conditions in a batch-type apparatus, a long stabilization time is required, and the throughput is low.

【0002】このため大気室にセットした試料を、大気
圧の搬送室に搬送し、この搬送室を真空排気して大気圧
から所定圧まで減圧してから、この試料を常に一定の真
空状態と温度状態に保たれた処理室に搬送し、所定の処
理を行なう、ロードロック式真空処理装置が使われるの
が通常である。このロードロック式真空処理装置の試料
の搬送シーケンスの例を図4に示す。
For this reason, a sample set in an atmosphere chamber is transferred to a transfer chamber at atmospheric pressure, and the transfer chamber is evacuated to a reduced pressure from atmospheric pressure to a predetermined pressure. In general, a load-lock type vacuum processing apparatus is used, which is transported to a processing chamber maintained at a temperature state and performs predetermined processing. FIG. 4 shows an example of a sample transfer sequence of the load lock type vacuum processing apparatus.

【0003】処理室1は常に真空状態に保たれており、
搬送室3は真空状態と大気圧状態とを繰り返し、大気室
8は常に大気圧状態である。大気室8のD位置には複数
個の未処理試料と処理済試料がセットされている。複数
個の未処理試料は1個づつ取り出され、D、C、B、
A、E、F、Dの順番で各位置を通過する。搬送は次の
ように行なわれる。仕切り弁2が閉じられ、仕切り弁5
が開けられ、搬送室3は大気圧になっている。大気室8
のD位置にセットされた複数個の試料のうち1個の試料
がC位置を通り、B位置へ搬送される。
[0003] The processing chamber 1 is always kept in a vacuum state.
The transfer chamber 3 repeats the vacuum state and the atmospheric pressure state, and the atmospheric chamber 8 is always at the atmospheric pressure state. A plurality of unprocessed samples and processed samples are set at a position D in the atmosphere chamber 8. A plurality of unprocessed samples are taken out one by one, and D, C, B,
It passes through each position in the order of A, E, F, and D. The transport is performed as follows. Gate valve 2 is closed and gate valve 5 is closed.
Is opened, and the transfer chamber 3 is at atmospheric pressure. Atmosphere 8
One of the plurality of samples set at the D position is transported to the B position through the C position.

【0004】仕切り弁5が閉じられ、搬送室3が真空排
気される。真空状態になると仕切り弁2が開けられ、試
料はB位置からA位置に運ばれる。A位置に運ばれた試
料に対し露光、検査などの所定の処理がなされる。上記
処理の間に搬送室3は再び大気圧に戻され、同上の過程
で次の試料がB位置まで運ばれ、搬送室3は真空状態に
されている。
[0004] The gate valve 5 is closed, and the transfer chamber 3 is evacuated. When a vacuum is established, the gate valve 2 is opened, and the sample is carried from the position B to the position A. Predetermined processing such as exposure and inspection is performed on the sample carried to the position A. During the above processing, the transfer chamber 3 is returned to the atmospheric pressure again, and the next sample is carried to the position B in the same process as above, and the transfer chamber 3 is evacuated.

【0005】Aの処理が完了すると、仕切り弁2が開け
られ、処理が完了した試料がE位置へ取り出される。と
同時にB位置で準備されていた次の試料がA位置に搬送
される。E位置の試料はF位置を通りD位置へ戻る。と
同時にその次の試料が大気室8のD位置からC位置経由
でB位置に搬送される。
When the process A is completed, the gate valve 2 is opened, and the processed sample is taken out to the position E. At the same time, the next sample prepared at the position B is transported to the position A. The sample at position E passes through position F and returns to position D. At the same time, the next sample is transported from the position D in the atmosphere chamber 8 to the position B via the position C.

【0006】試料の搬送には公知の搬送用ロッボトアー
ムなどが用いられる。以上、これらの過程は繰り返され
る。
A known transport robot arm or the like is used for transporting the sample. As described above, these steps are repeated.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
ロードロック式真空処理装置では搬送室で真空排気する
際に、搬送室内の圧力の減圧途上の断熱膨張のため、搬
送室内の雰囲気ガスが冷却され、この冷却されたガスが
試料を冷却し、試料温度を処理温度以下に低下させる。
この温度の低下は条件にもよるが、我々が測定した容積
数十リットルの搬送室の場合、2 〜3 ℃だった。この温
度の低下は、試料寸法を収縮させる。
However, in the conventional load lock type vacuum processing apparatus, when evacuating the transfer chamber, the atmospheric gas in the transfer chamber is cooled due to adiabatic expansion while the pressure in the transfer chamber is being reduced. The cooled gas cools the sample and lowers the sample temperature below the processing temperature.
This temperature drop, depending on the conditions, was 2-3 ° C. for the transfer chamber we measured, with a volume of tens of liters. This drop in temperature causes the sample dimensions to shrink.

【0008】8 インチのSiウエハの場合、1 ℃の温度
変化は0.5μm の寸法変化を招くので、2〜3℃の温
度低下は試料寸法の1μm 以上の収縮を招く。これは例
えば、大規模集積回路を対象とした露光装置や検査、測
定装置に対して問題となる寸法変化であり、要求精度を
充たすことができない。この寸法が収縮した試料は、試
料を処理温度に保つよう調整された処理室に搬入される
と、今度はあたためられ、試料が熱膨張を始める。
In the case of an 8-inch Si wafer, a temperature change of 1 ° C. causes a dimensional change of 0.5 μm, so a temperature decrease of 2-3 ° C. causes a shrinkage of the sample size of 1 μm or more. This is, for example, a dimensional change that poses a problem for an exposure apparatus, inspection, and measurement apparatus for a large-scale integrated circuit, and the required accuracy cannot be satisfied. When the sample whose size has contracted is carried into a processing chamber adjusted to keep the sample at the processing temperature, the sample is now warmed up and the sample starts to thermally expand.

【0009】処理室での真空処理は、試料の熱膨張が止
まって、試料温度と試料寸法が試料全面に渡って安定す
るのを待ってから行われる。この待ち時間は、高精度の
処理を要する場合、特に長くなり、例えば荷電ビーム露
光装置で8インチのSiウエハを用いる場合、寸法変化
を10nm以下に抑えるため、設定値に対し0.02℃
以下の温度管理が必要である。0.02℃以下を充たす
ため、従来の装置では、数十分もの待ち時間が必要であ
り、ロードロック式真空処理装置のスループットの低下
を招くという問題があった。一般にロードロック式真空
処理装置は極めて高価なので、スループットの低下はこ
れで加工する半導体のコストアップを招くという問題が
あった。
The vacuum processing in the processing chamber is performed after the thermal expansion of the sample is stopped and the sample temperature and the sample size are stabilized over the entire surface of the sample. This waiting time is particularly long when high-precision processing is required. For example, when an 8-inch Si wafer is used in a charged beam exposure apparatus, the dimensional change is suppressed to 10 nm or less.
The following temperature control is required. In order to satisfy the condition of 0.02 ° C. or less, the conventional apparatus requires several tens of minutes of waiting time, which causes a problem that the throughput of the load lock type vacuum processing apparatus is reduced. In general, a load lock type vacuum processing apparatus is extremely expensive, so that there is a problem that a decrease in throughput leads to an increase in cost of a semiconductor to be processed.

【0010】[0010]

【課題を解決するための手段】ロードロック式真空処理
装置のスループットを向上させるため、本発明では第一
に、「搬送室と処理室とを有し、前記処理室内で試料に
対し所定の処理を行うロードロック式真空処理装置に於
いて、前記搬送室が、試料の加熱のために、試料保持用
のホルダー部に所定の温度に温度制御された液体または
気体を循環させることによって試料ホルダーを加熱する
第1の加熱機構、もしくは前記ホルダー部を加熱ランプ
からの輻射熱により加熱する第2の加熱機構の何れか一
方、或いは両方を備えたことを特徴とするロードロック
式真空処理装置(請求項1)」を提供する。
SUMMARY OF THE INVENTION In order to improve the throughput of a load lock type vacuum processing apparatus, the present invention firstly provides a "transfer chamber and a processing chamber, wherein a predetermined processing is performed on a sample in the processing chamber. In the load-lock type vacuum processing apparatus, the transfer chamber circulates a liquid or a gas whose temperature is controlled to a predetermined temperature through a holder for holding the sample, in order to heat the sample. A load-lock type vacuum processing apparatus comprising one or both of a first heating mechanism for heating and / or a second heating mechanism for heating the holder section by radiant heat from a heating lamp. 1) ”.

【0011】また本発明では第二に、「前記第1加熱機
構と前記第2加熱機構の設定温度が搬送室での排気によ
る温度低下を見込んで、処理温度よりも高めに設定され
ていることを特徴とする請求項1記載のロードロック式
真空処理装置(請求項2)」を提供する。また本発明で
は第三に、「前記第1加熱機構が、上面が平面状に研磨
されたセラミックから成るホルダーテーブルを有し、前
記ホルダーテーブルは、下面が平面状の試料が前記搬送
室から搬送され、前記ホルダーテーブルに搭載されたと
きに、前記ホルダーテーブルと前記試料間の良好な熱伝
導を確保するための静電チャック機能を付与されている
ことを特徴とする請求項1或いは請求項2記載のロード
ロック式真空処理装置(請求項3)」を提供する。
In the present invention, secondly, "the set temperatures of the first heating mechanism and the second heating mechanism are set to be higher than the processing temperature in anticipation of a temperature decrease due to exhaust in the transfer chamber. A load lock type vacuum processing apparatus according to claim 1 (claim 2) "is provided. Thirdly, in the present invention, "the first heating mechanism has a holder table made of ceramic whose upper surface is polished flat, and the holder table has a lower surface where a sample having a flat surface is transferred from the transfer chamber. 3. The apparatus according to claim 1, further comprising an electrostatic chuck function for securing good heat conduction between the holder table and the sample when mounted on the holder table. The present invention provides a load-lock type vacuum processing apparatus according to claim 3.

【0012】[0012]

【発明の実施の形態】本発明にかかる、ロードロック式
真空処理装置の実施の形態を以下に説明するが、本発明
はこの例に限定されるものでない。図1は本発明による
ロードロック式真空処理装置の構造を示す。本ロードロ
ック式真空処理装置は処理室1、搬送室3、大気室8を
具備している。試料搬送のシーケンスは基本的に図4と
同じである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a load lock type vacuum processing apparatus according to the present invention will be described below, but the present invention is not limited to this example. FIG. 1 shows the structure of a load lock type vacuum processing apparatus according to the present invention. This load lock type vacuum processing apparatus includes a processing chamber 1, a transfer chamber 3, and an atmosphere chamber 8. The sample transport sequence is basically the same as in FIG.

【0013】一般に装置全体はクリーンルームの室温2
3℃に温度制御された冷却水が装置外周12を循環する
ことにより恒温に保たれている。試料6は、大気室8に
複数個セットされており、そのうち一個が搬送用アーム
などの公知の搬送機構を用いて搬送室へ搬入される。試
料は搬送室3のホルダーテーブル4に搭載され、アーム
は大気室側へ戻る。
In general, the whole apparatus is used in a clean room at room temperature.
Cooling water whose temperature is controlled at 3 ° C. is kept at a constant temperature by circulating around the outer periphery 12 of the apparatus. A plurality of samples 6 are set in the atmosphere chamber 8, and one of them is carried into the transfer chamber by using a known transfer mechanism such as a transfer arm. The sample is mounted on the holder table 4 in the transfer chamber 3, and the arm returns to the atmosphere chamber.

【0014】アームが戻った後、仕切り弁5は閉じ、真
空ポンプ( 図示しない) により真空排気が開始される。
搬送室3の構造は図2に示されるが、第1の加熱機構又
は第2の加熱機構、或いは第1と第2の両方の加熱機構
を具備している。第1の加熱機構は液体又は気体加熱装
置及び循環装置( 図示しない) 、高温循環パイプ10、
ホルダ11、ホルダテーブル4を有している。ホルダ1
1は金属から成るが、熱伝導の良い銅のような金属が特
に好ましい例である。この他、アルミニウム、ステンレ
ス、等も好ましい例である。前記ホルダーに隣接して前
記ホルダーテーブルが組み込まれ、熱伝導により、相互
に熱を伝える。前記ホルダテーブルは試料が直接搭載さ
れるので、試料への良好な熱伝導を確保する工夫が必要
である。二つの物体間の熱伝導の大きさは接触面積と接
触圧と物体材料の熱伝導率とに比例する。我々はこの目
的のため、下面が平面状の試料が搭載される前記ホルダ
ーテーブルをセラミックから作り、その上面全体を平面
状に仕上げ、研磨した。その結果、前記試料と前記ホル
ダーテーブルとの接触面は平面状で、且つ大きくなる。
さらに、前記ホルダーテーブルに静電チャック機能を付
与した。この結果、前記ホルダーテーブルと前記試料を
強い力で密着させることが可能であり、良好な熱伝導が
可能となる。セラミック材料としては、熱伝導率が比較
的高く、電気伝導率が低い材料が好まし選択されるが、
SiCやBeOが特に好ましい例だった。
After the arm returns, the gate valve 5 is closed, and evacuation is started by a vacuum pump (not shown).
The structure of the transfer chamber 3 is shown in FIG. 2 and includes a first heating mechanism, a second heating mechanism, or both first and second heating mechanisms. The first heating mechanism includes a liquid or gas heating device and a circulation device (not shown), a high-temperature circulation pipe 10,
It has a holder 11 and a holder table 4. Holder 1
1 is made of a metal, and a metal such as copper having good heat conductivity is a particularly preferable example. In addition, aluminum, stainless steel, and the like are also preferable examples. The holder table is incorporated adjacent to the holder and transfers heat to each other by heat conduction. Since the sample is directly mounted on the holder table, it is necessary to take measures to ensure good heat conduction to the sample. The magnitude of heat conduction between two objects is proportional to the contact area, contact pressure, and thermal conductivity of the material of the object. For this purpose, we made the holder table from which the sample with the flat lower surface was mounted from ceramic, finished the upper surface flat and polished. As a result, the contact surface between the sample and the holder table is planar and large.
Further, an electrostatic chuck function was provided to the holder table. As a result, the holder table and the sample can be brought into close contact with a strong force, and good heat conduction can be achieved. As the ceramic material, a material having a relatively high thermal conductivity and a low electric conductivity is preferably selected,
SiC and BeO were particularly preferred examples.

【0015】ホルダ11の内部には銅の加熱用循環パイ
プ10が組み込まれており、液体又は気体加熱装置( 図示
しない) により所定の温度に制御された液体又は気体が
循環している。高温循環パイプ10を循環している液体
または気体の温度は、処理室1へ試料が搬送されたとき
に処理室1の試料ステージ9の温度と試料の温度とが等
しくなるよう、真空排気時の断熱膨張による温度の低下
を見込んで設定されている。
A circulation pipe 10 for heating copper is incorporated in the holder 11, and a liquid or gas controlled at a predetermined temperature by a liquid or gas heating device (not shown) is circulated. The temperature of the liquid or gas circulating in the high-temperature circulation pipe 10 is adjusted during evacuation so that the temperature of the sample stage 9 in the processing chamber 1 becomes equal to the temperature of the sample when the sample is transferred to the processing chamber 1. The temperature is set in consideration of a decrease in temperature due to adiabatic expansion.

【0016】第2の加熱機構はランプヒータ又はニクロ
ムヒータを具備する。ランプヒータとしては赤外線ラン
プ、ストロボフラッシュなどが好ましい例である。ニク
ロムヒータとしてはシーズヒータ、露出ヒータ、金属板
への埋め込み型ヒータが好ましい例である。所定の圧力
に達すると、仕切り弁2が開かれ、試料は処理室1の試
料ステージ9に搭載され、試料の温度は極めて短時間で
試料ステージ9の温度に安定する。
The second heating mechanism includes a lamp heater or a nichrome heater. Preferred examples of the lamp heater include an infrared lamp and a strobe flash. Preferred examples of the Nichrome heater include a sheathed heater, an exposure heater, and a heater embedded in a metal plate. When a predetermined pressure is reached, the gate valve 2 is opened, the sample is mounted on the sample stage 9 of the processing chamber 1, and the temperature of the sample is stabilized to the temperature of the sample stage 9 in a very short time.

【0017】図3に本発明のロードロック式真空処理装
置で、試料が搬送室3へ搬送されてから処理室1に搬送
されるまでの試料の温度変化を示した。試料の温度安定
時間が極めて短いことが分かる。試料温度が、試料が処
理室に搬送されたその時点で設定温度23℃に極めて近
く、直ちに真空処理が可能である。以上のように本発明
のロードロック式真空処理装置は、温度安定化時間を数
十秒に短縮できるため、スループットとして、試料60
個/時間の処理も可能である。
FIG. 3 shows the temperature change of the sample from the time when the sample is transferred to the transfer chamber 3 to the time when the sample is transferred to the processing chamber 1 in the load lock type vacuum processing apparatus of the present invention. It can be seen that the temperature stabilization time of the sample is extremely short. The sample temperature is very close to the set temperature of 23 ° C. at the time when the sample is transferred to the processing chamber, so that vacuum processing can be performed immediately. As described above, the load lock type vacuum processing apparatus of the present invention can reduce the temperature stabilization time to several tens of seconds.
Individual / time processing is also possible.

【0018】以上の発明の実施の形態ではロードロック
式真空処理装置が、大気室を出た未処理試料が処理済試
料として大気室に戻り、再び収納される往復式であると
して説明した。この他に処理済試料を取り出す第2 の搬
送室、処理済試料を収納する第2 の大気室を別に備えた
片道式のインライン式も本発明の範囲に含まれることは
言うまでもない。
In the above embodiment of the present invention, the load lock type vacuum processing apparatus is described as a reciprocating type in which an unprocessed sample that has exited the atmosphere chamber returns to the atmosphere chamber as a processed sample and is stored again. In addition, it goes without saying that a one-way in-line type having a second transfer chamber for taking out the processed sample and a second atmosphere chamber for storing the processed sample is also included in the scope of the present invention.

【0019】[0019]

【発明の効果】以上の通り、本発明に従えば、ロードロ
ック式真空処理装置に於いて、試料が搬送され、処理室
の試料ステージに搭載されてから、試料温度が安定し均
一になるまでの時間を大幅に短縮できるので、ロードロ
ック式真空処理装置のスループットを低下させることな
く、従ってコストアップを招くことなく、高精度に半導
体プロセス、露光、検査、等を行うことが可能となる。
As described above, according to the present invention, in the load lock type vacuum processing apparatus, after the sample is conveyed and mounted on the sample stage in the processing chamber, until the sample temperature becomes stable and uniform. , The semiconductor process, exposure, inspection, and the like can be performed with high precision without lowering the throughput of the load-lock type vacuum processing apparatus and without increasing the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明によるロードロック式真空処理装置
の構造を示す。
FIG. 1 shows the structure of a load lock type vacuum processing apparatus according to the present invention.

【図2】は、本発明によるロードロック式真空処理装置
の搬送室の構造を示す。
FIG. 2 shows the structure of a transfer chamber of a load lock type vacuum processing apparatus according to the present invention.

【図3】は、本発明によるロードロック式真空処理装置
に於いて、試料が搬送室3 へ搬送されてから処理室1 に
搬送されるまでの試料の温度変化を示す。
FIG. 3 shows a change in the temperature of the sample from the time when the sample is transferred to the transfer chamber 3 to the time when the sample is transferred to the processing chamber 1 in the load lock type vacuum processing apparatus according to the present invention.

【図4】は、ロードロック式真空処理装置に於いて、試
料の搬送のシーケンスの例を説明する図である。
FIG. 4 is a diagram illustrating an example of a sequence of transporting a sample in a load lock type vacuum processing apparatus.

【符号の説明】[Explanation of symbols]

1 処理室 2、5 仕切り弁 3 搬送室 6 試料 7 試料キャリア 8 大気室 9 試料ステージ 4 ホルダテーブル 10 高温用循環パイプ (第一の加熱機構) 11 ホルダ 12 恒温循環パイプ 13 ランプヒータ又はニクロムヒータ(第二の加熱
機構)
Reference Signs List 1 processing chamber 2, 5 gate valve 3 transfer chamber 6 sample 7 sample carrier 8 atmosphere chamber 9 sample stage 4 holder table 10 high temperature circulation pipe (first heating mechanism) 11 holder 12 constant temperature circulation pipe 13 lamp heater or nichrome heater ( Second heating mechanism)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 搬送室と処理室とを具備し、前記処理室
内で試料に対し所定の処理を行うロードロック式真空処
理装置に於いて、前記搬送室が、試料の加熱のために、
試料保持用のホルダー部に、所定の温度に温度制御され
た液体または気体を循環させることによって試料ホルダ
ーを加熱する第1の加熱機構、もしくは前記ホルダー部
を加熱ランプからの輻射熱により加熱する第2の加熱機
構の何れか一方、或いは両方を具備したことを特徴とす
るロードロック式真空処理装置。
In a load-lock type vacuum processing apparatus comprising a transfer chamber and a processing chamber, and performing a predetermined process on a sample in the processing chamber, the transfer chamber is provided for heating the sample.
A first heating mechanism for heating a sample holder by circulating a liquid or a gas whose temperature is controlled to a predetermined temperature in a holder for holding a sample, or a second heating mechanism for heating the holder by radiant heat from a heating lamp. A load-lock type vacuum processing apparatus, comprising one or both of the heating mechanisms described above.
【請求項2】 前記第1加熱機構と前記第2加熱機構の
設定温度が搬送室での排気による温度低下を見込んで、
処理温度よりも高めに設定されていることを特徴とする
請求項1記載のロードロック式真空処理装置。
2. The temperature setting of the first heating mechanism and the second heating mechanism is performed in consideration of a decrease in temperature due to exhaust in a transfer chamber.
The load-lock type vacuum processing apparatus according to claim 1, wherein the processing temperature is set higher than the processing temperature.
【請求項3】 前記第1加熱機構が、上面が平面状に研
磨されたセラミックから成るホルダーテーブルを有し、
前記ホルダーテーブルは、下面が平面状の試料が前記搬
送室から搬送され、前記ホルダーテーブルに搭載された
ときに、前記ホルダーテーブルと前記試料間の良好な熱
伝導を確保するための静電チャック機能を付与されてい
ることを特徴とする請求項1或いは請求項2記載のロー
ドロック式真空処理装置。 【発明の属する技術分野】本発明は、真空中で、半導体
プロセス、露光、検査、等を行うのに用いるロードロッ
ク式真空処理装置に関する。
3. The first heating mechanism has a holder table made of ceramic whose upper surface is polished flat.
The holder table has an electrostatic chuck function for ensuring good heat conduction between the holder table and the sample when a sample having a flat lower surface is transferred from the transfer chamber and mounted on the holder table. The load-lock type vacuum processing apparatus according to claim 1 or 2, wherein BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load lock type vacuum processing apparatus used for performing semiconductor processing, exposure, inspection, and the like in a vacuum.
JP9037263A 1997-02-21 1997-02-21 Load locked vacuum processor Pending JPH10233423A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9037263A JPH10233423A (en) 1997-02-21 1997-02-21 Load locked vacuum processor
US09/028,171 US5914493A (en) 1997-02-21 1998-02-23 Charged-particle-beam exposure apparatus and methods with substrate-temperature control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9037263A JPH10233423A (en) 1997-02-21 1997-02-21 Load locked vacuum processor

Publications (1)

Publication Number Publication Date
JPH10233423A true JPH10233423A (en) 1998-09-02

Family

ID=12492787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9037263A Pending JPH10233423A (en) 1997-02-21 1997-02-21 Load locked vacuum processor

Country Status (1)

Country Link
JP (1) JPH10233423A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045947A (en) * 2001-07-27 2003-02-14 Canon Inc Substrate processing apparatus and aligner
JP2006273563A (en) * 2005-03-30 2006-10-12 Tokyo Electron Ltd Load lock device, processing system, and processing method
JP2008034740A (en) * 2006-07-31 2008-02-14 Dainippon Screen Mfg Co Ltd Load lock device, substrate processing apparatus and substrate processing system equipped therewith
JP2009540613A (en) * 2006-06-15 2009-11-19 アプライド マテリアルズ インコーポレイテッド Multi-level load lock chamber, transfer chamber, and robot suitable for interfacing with it
US7670754B2 (en) 2003-12-03 2010-03-02 Canon Kabushiki Kaisha Exposure apparatus having a processing chamber, a vacuum chamber and first and second load lock chambers
CN102810498A (en) * 2011-06-02 2012-12-05 东京应化工业株式会社 Heating apparatus, coating apparatus and heating method
WO2014112628A1 (en) * 2013-01-21 2014-07-24 株式会社日立ハイテクノロジーズ Apparatus and method for processing sample, and charged particle radiation apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045947A (en) * 2001-07-27 2003-02-14 Canon Inc Substrate processing apparatus and aligner
US7670754B2 (en) 2003-12-03 2010-03-02 Canon Kabushiki Kaisha Exposure apparatus having a processing chamber, a vacuum chamber and first and second load lock chambers
JP2006273563A (en) * 2005-03-30 2006-10-12 Tokyo Electron Ltd Load lock device, processing system, and processing method
JP2009540613A (en) * 2006-06-15 2009-11-19 アプライド マテリアルズ インコーポレイテッド Multi-level load lock chamber, transfer chamber, and robot suitable for interfacing with it
JP2013141015A (en) * 2006-06-15 2013-07-18 Applied Materials Inc Multi-level load lock chamber, transfer chamber, and robot suitable for interfacing with the same
JP2008034740A (en) * 2006-07-31 2008-02-14 Dainippon Screen Mfg Co Ltd Load lock device, substrate processing apparatus and substrate processing system equipped therewith
CN102810498A (en) * 2011-06-02 2012-12-05 东京应化工业株式会社 Heating apparatus, coating apparatus and heating method
WO2014112628A1 (en) * 2013-01-21 2014-07-24 株式会社日立ハイテクノロジーズ Apparatus and method for processing sample, and charged particle radiation apparatus
US9666408B2 (en) 2013-01-21 2017-05-30 Hitachi High-Technologies Corporation Apparatus and method for processing sample, and charged particle radiation apparatus

Similar Documents

Publication Publication Date Title
US6209220B1 (en) Apparatus for cooling substrates
US5914493A (en) Charged-particle-beam exposure apparatus and methods with substrate-temperature control
JP2766774B2 (en) Method for cooling and heating large area glass substrate and apparatus therefor
KR101002553B1 (en) Substrate processing apparatus, substrate processing method and recording medium
US7960297B1 (en) Load lock design for rapid wafer heating
US6488778B1 (en) Apparatus and method for controlling wafer environment between thermal clean and thermal processing
TWI824271B (en) Particle beam inspection apparatus
TWI597765B (en) Inert atmospheric pressure pre-chill and post-heat
JP2003068819A (en) Dual wafer load lock
TW200901297A (en) Substrate processing apparatus, substrate processing method and recording medium
JP2008235309A (en) Substrate treating device, substrate treatment method, and recording medium
JPH10233423A (en) Load locked vacuum processor
JPH11168056A (en) Wafer-holding device
El-Awady et al. Integrated bake/chill for photoresist processing
JPH07216550A (en) Device for cooling substrate
US6957690B1 (en) Apparatus for thermal treatment of substrates
JP3207402B2 (en) Semiconductor heat treatment apparatus and semiconductor substrate heat treatment method
JPH11135416A (en) Processed object placement table, and processing device provided with the table
JP2001230201A (en) Device and method for heating and cooling and substrate treating apparatus
JP2002252155A (en) System and method for charged particle beam
JPH1126370A (en) Pretreating apparatus for exposure
JP2003031470A (en) Projection aligner
TWI633570B (en) Ion implantation system and method for implanting ions into a workpiece
JP2002289669A (en) Substrate treating apparatus
JPH10223743A (en) Charged particle beam writing system and electrostatic chuck using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320