JPH10233298A - Control device for high-frequency acceleration cavity - Google Patents

Control device for high-frequency acceleration cavity

Info

Publication number
JPH10233298A
JPH10233298A JP3465497A JP3465497A JPH10233298A JP H10233298 A JPH10233298 A JP H10233298A JP 3465497 A JP3465497 A JP 3465497A JP 3465497 A JP3465497 A JP 3465497A JP H10233298 A JPH10233298 A JP H10233298A
Authority
JP
Japan
Prior art keywords
frequency
phase
oscillator
cavity
frequency voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3465497A
Other languages
Japanese (ja)
Inventor
Hideaki Nishiuchi
秀晶 西内
Kazuyoshi Saito
一義 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3465497A priority Critical patent/JPH10233298A/en
Publication of JPH10233298A publication Critical patent/JPH10233298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable acceleration/deceleration control wherein particle loss of an orbiting beam is suppressed, by controlling a phase of a high-frequency voltage with high accuracy and at a high speed by using a direct digital waveform synthesizing oscillator as an oscillator of the high-frequency voltage. SOLUTION: A high-frequency voltage to be applied to a high-frequency acceleration cavity 1 is generated by an oscillator 7 using a direct digital waveform synthesizing oscillator and amplified by a power amplifier 8. The oscillator 7 controls a frequency, an amplitude, and a phase of the high-frequency voltage in keeping with an energy increase of an orbiting beam in the course of acceleration of the orbiting beam. The frequency, the amplitude, and the phase of the high-frequency voltage are beforehand prepared in an operation pattern data base 6 and renewed synchronously with a deflection magnetic field intensity change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高周波加速空胴の制
御装置に関する。
The present invention relates to a control device for a high-frequency acceleration cavity.

【0002】[0002]

【従来の技術】イオンシンクロトロンで陽子や重イオン
のビームを加速するには、ビームが一定軌道上を周回す
るようにシンクロトロン内の偏向電磁石の磁場強度を強
め、高周波加速空胴(以下、加速空胴)に印加する高周
波電圧の周波数・振幅を制御する。高周波電圧の制御は
偏向磁場強度変化に同期して出力される磁場強度変化検
出信号(以下、磁場クロック)に基づき、発振器の出力
周波数および振幅の設定値を更新する。ビームの加速過
程で高周波電圧の周波数設定値は、エネルギの増加に伴
い加速開始から終了までに5〜10倍変化させる必要が
ある。この高周波電圧の周波数変化は、加速空胴のイン
ピーダンス特性を変化させ、ビームの周回位相と加速空
胴に発生する高周波電圧位相にずれを生じる。このずれ
を予め補正しようとした場合、発振器には安定した周波
数出力が要求される。またシンクロトロン内に複数の加
速空胴を設置する場合、高周波電圧は各空胴からの出力
電圧の和としてビームに印加されるため、各空胴の高周
波電圧の周波数と同じ周回周波数の粒子が加速間隙を通
過する際の高周波電圧の位相(以下、同期位相)を制御
する必要がある。
2. Description of the Related Art In order to accelerate a proton or heavy ion beam with an ion synchrotron, the magnetic field strength of a bending electromagnet in the synchrotron is increased so that the beam orbits on a fixed orbit, and a high-frequency accelerating cavity (hereinafter, referred to as "acceleration") is used. The frequency and amplitude of the high-frequency voltage applied to the accelerating cavity) are controlled. The control of the high-frequency voltage updates a set value of the output frequency and amplitude of the oscillator based on a magnetic field strength change detection signal (hereinafter, a magnetic field clock) output in synchronization with the deflection magnetic field strength change. In the process of accelerating the beam, the frequency set value of the high-frequency voltage must be changed by a factor of 5 to 10 from the start to the end of the acceleration as the energy increases. This change in the frequency of the high-frequency voltage changes the impedance characteristics of the acceleration cavity, causing a shift between the circulating phase of the beam and the high-frequency voltage phase generated in the acceleration cavity. If the deviation is to be corrected in advance, a stable frequency output is required for the oscillator. When a plurality of accelerating cavities are installed in the synchrotron, the high-frequency voltage is applied to the beam as the sum of the output voltages from the cavities. It is necessary to control the phase of the high-frequency voltage when passing through the acceleration gap (hereinafter, synchronous phase).

【0003】従来は図6に示すように、シンクロトロン
一台に対し、アナログの入力電圧に対応した周波数を出
力するVCO(Voltage Controled Oscillator)を用い
た発振器を一台用意し、周波数を設定・出力した後、位
相シフタで、高周波加速空胴で変化する位相のずれおよ
び、シンクロトロン内に用意してある各空胴の高周波電
圧の初期位相を予め補正している。
Conventionally, as shown in FIG. 6, one oscillator using a VCO (Voltage Controlled Oscillator) for outputting a frequency corresponding to an analog input voltage is prepared for one synchrotron, and the frequency is set and set. After the output, a phase shifter that changes in the high-frequency accelerating cavity and an initial phase of the high-frequency voltage of each cavity prepared in the synchrotron are corrected in advance by the phase shifter.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術におい
て、高周波電圧の発振器にVCOを用いた場合、周囲温
度の変化により発振周波数の出力が不安定となる。この
周波数変化に伴い、ビームの周回位相に対する高周波電
圧の位相も変化し、ビームの粒子損失の増加を招くこと
が分かっている。これを抑制するには、加速運転中に高
周波電圧の位相を精密かつ高速に制御する必要がある。
しかし従来用いられている位相シフタでは、設定した位
相変化量は変化する発振周波数のある一点でしか得られ
ない上、周波数変化に対した応答速度もビームの粒子損
失の増加を抑制するには不十分である。
In the above prior art, when a VCO is used as a high frequency voltage oscillator, the output of the oscillation frequency becomes unstable due to a change in ambient temperature. It has been found that with this frequency change, the phase of the high-frequency voltage with respect to the circulating phase of the beam also changes, resulting in an increase in particle loss of the beam. In order to suppress this, it is necessary to precisely and quickly control the phase of the high-frequency voltage during the acceleration operation.
However, with the phase shifter conventionally used, the set phase change amount can be obtained only at a certain point of the changing oscillation frequency, and the response speed to the frequency change is not enough to suppress the increase of the particle loss of the beam. It is enough.

【0005】本発明の目的は、高周波加速空胴に印加す
る高周波電圧の位相を高速かつ精度良く調整可能な制御
手段を提供することにある。
An object of the present invention is to provide control means capable of adjusting the phase of a high-frequency voltage applied to a high-frequency accelerating cavity at high speed and with high accuracy.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は高周波加速空胴に印加する高周波電圧の基
準信号を発振する発振器に、発振周波数,振幅,位相の
ディジタルデータを与えて発振する、直接ディジタル波
形発振器(Direct Digital Synthesizer,DDS)を採用
し、この発振器とともに高周波電圧制御装置,運転パタ
ーン・データベースを加速空胴と同数用意し、印加する
高周波電圧の周波数・振幅・位相を高速に出力制御す
る。
To achieve the above object, the present invention provides an oscillator for oscillating a reference signal of a high-frequency voltage applied to a high-frequency accelerating cavity by providing digital data of an oscillating frequency, amplitude and phase by oscillating. It uses a direct digital waveform oscillator (Direct Digital Synthesizer, DDS) to provide the same number of high-frequency voltage controllers and operation patterns and databases as the number of accelerating cavities together with this oscillator. Output control.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例を図面を
参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0008】図1は本発明の第一実施例の高周波加速空
胴とその制御装置の構成を示す。高周波加速空胴1へ供
給する加速電圧を発生する発振器7に直接ディジタル波
形発振器(DDS)を用い、高周波電圧の周波数・振幅
・位相の各設定データは予め、加速空胴の運転パターン
に合わせた時系列データとして運転パターン・データベ
ース6に用意しておく。
FIG. 1 shows the configuration of a high-frequency accelerating cavity and its control device according to a first embodiment of the present invention. A digital waveform oscillator (DDS) is used directly as an oscillator 7 for generating an acceleration voltage to be supplied to the high-frequency accelerating cavity 1, and the setting data of the frequency, amplitude, and phase of the high-frequency voltage is adjusted in advance to the operation pattern of the accelerating cavity. It is prepared in the operation pattern database 6 as time series data.

【0009】ここで発振器に用いるDDSを図5に示
す。DDSは、周波数設定レジスタ11,位相設定レジ
スタ12,振幅設定レジスタ13,ルックアップ・テー
ブル14,D/A変換器15および低域通過フィルタ1
6から構成される。ルックアップ・テーブル14にはsi
n 波またはcos 波の振幅−位相情報がディジタル・デー
タで用意されており、位相レジスタで振幅−位相情報の
読み込み開始位相を決定し、周波数レジスタで振幅−位
相情報の読み込み間隔を決定する。読み込んだデータを
振幅レジスタの設定値で振幅変調した後、D/A変換,
フィルタリングすることで所望の波形を出力する。DD
Sの発振周波数安定度は十万分の一程度、出力応答速度
は数μs、位相設定分解能は約0.1 度であり、高周波
電圧の精密な位相制御を可能とする。
FIG. 5 shows a DDS used for the oscillator. The DDS includes a frequency setting register 11, a phase setting register 12, an amplitude setting register 13, a look-up table 14, a D / A converter 15, and a low-pass filter 1
6 is comprised. Lookup table 14 contains si
The amplitude-phase information of the n-wave or the cos-wave is prepared as digital data. The phase register determines the reading start phase of the amplitude-phase information, and the frequency register determines the reading interval of the amplitude-phase information. After the read data is amplitude-modulated by the set value of the amplitude register, D / A conversion,
A desired waveform is output by filtering. DD
The oscillation frequency stability of S is about 1 / 100,000, the output response speed is several μs, and the phase setting resolution is about 0.1 degree, which enables precise phase control of the high frequency voltage.

【0010】ビームの加速過程において、高周波電圧設
定データは、偏向電磁石2の磁場強度変化を磁場検出素
子3で検出し、これに同期して磁場同期クロック発生装
置4より出力される磁場クロックを高周波電圧制御装置
5に入力する。この磁場クロックに同期して運転パター
ン・データベース6より読み込み、発振器7へ設定値を
出力する。このとき、高周波加速空胴に印加する高周波
電圧の周波数変化に伴い空胴の特性インピーダンスが変
化し、高周波加速空胴に印加した高周波電圧の位相と、
実際にビームに印加される高周波電圧の位相にずれを生
じる。そこで、予め高周波加速空胴の周波数―位相特性
を測定しておき、この結果を位相設定データに加えて設
定することで、位相を運転周波数範囲で精度良くかつ高
速に制御できる。発振器7は設定されたデータに基づい
た波形を出力し、電力増幅器8にて増幅した後、高周波
加速空胴1に印加する。周回ビームは、高周波加速空胴
の加速間隙に生じた電場により加速する。
In the process of accelerating the beam, the high-frequency voltage setting data detects a change in the magnetic field strength of the bending electromagnet 2 by the magnetic field detecting element 3 and synchronizes the magnetic field clock output from the magnetic field synchronous clock generator 4 with the high frequency voltage. Input to the voltage control device 5. The data is read from the operation pattern database 6 in synchronization with the magnetic field clock, and the set value is output to the oscillator 7. At this time, the characteristic impedance of the cavity changes with the frequency change of the high-frequency voltage applied to the high-frequency acceleration cavity, and the phase of the high-frequency voltage applied to the high-frequency acceleration cavity,
The phase of the high-frequency voltage actually applied to the beam is shifted. Therefore, the frequency-phase characteristics of the high-frequency accelerating cavity are measured in advance, and the result is set in addition to the phase setting data, whereby the phase can be controlled accurately and at high speed in the operating frequency range. The oscillator 7 outputs a waveform based on the set data, amplifies the waveform with the power amplifier 8, and applies the amplified waveform to the high-frequency acceleration cavity 1. The orbiting beam is accelerated by an electric field generated in the acceleration gap of the high-frequency acceleration cavity.

【0011】図2は本発明の第二実施例の高周波加速空
胴とその制御装置の構成を示す。本実施例では図1に示
した実施例の構成に加え、高周波加速空胴1に空胴電圧
モニタ9,空胴近傍にビームモニタ10を用意する。高
周波電圧制御装置5は、これらのモニタからの検出信号
を基に、予め設定した加速電圧に対する実際の周回ビー
ムの位相を演算し、フィードバック補正量を決定する。
この結果を位相設定データとして発振器7に設定し、フ
ィードバック制御を行う。このフィードバック制御を行
うことで、周回ビームの軌道変位を低減し、加速時のビ
ーム損失を低減することが可能となる。
FIG. 2 shows the configuration of a high-frequency accelerating cavity and its control device according to a second embodiment of the present invention. In this embodiment, in addition to the configuration of the embodiment shown in FIG. 1, a cavity voltage monitor 9 is provided in the high-frequency accelerating cavity 1, and a beam monitor 10 is provided near the cavity. The high-frequency voltage controller 5 calculates the actual phase of the orbiting beam with respect to a preset acceleration voltage based on the detection signals from these monitors, and determines the feedback correction amount.
The result is set in the oscillator 7 as phase setting data, and feedback control is performed. By performing this feedback control, it is possible to reduce the orbital displacement of the orbiting beam and reduce the beam loss during acceleration.

【0012】図3は本発明の第三実施例の高周波加速空
胴とその制御装置の構成を示す。シンクロトロンで周回
ビームを安定に加速するには、中心軌道上を周回する必
要がある。このとき、周回ビームは、
FIG. 3 shows the configuration of a high-frequency accelerating cavity and its control device according to a third embodiment of the present invention. To stably accelerate the orbiting beam with a synchrotron, it is necessary to orbit around the central orbit. At this time, the orbiting beam is

【0013】[0013]

【数1】 P=eBρ …(数1) という条件が成り立たなければならない。ここで、Pは
周回ビームの運動量、eは周回ビームの電荷量、Bは中
心軌道上の偏向磁場強度、ρは偏向電磁石の中心軌道の
曲率半径である。ビームの加速で運動量が増加しても周
回ビームの中心軌道が一定に保たれるには、磁場強度を
強めなければいけないため、
The condition P = eBρ (Equation 1) must be satisfied. Here, P is the momentum of the orbiting beam, e is the charge amount of the orbiting beam, B is the intensity of the bending magnetic field on the central orbit, and ρ is the radius of curvature of the central orbit of the bending electromagnet. Even if the momentum increases due to the acceleration of the beam, the magnetic field strength must be increased to maintain the center orbit of the orbiting beam constant,

【0014】[0014]

【数2】 ΔP=eΔBρ …(数2) の関係が成り立つ。ここで、ΔBを周回ビーム1周あた
りの磁場強度の増加と考えると、ΔPは一周辺りの運動
量の増加となる。ここでΔPを一周辺りのエネルギ変化
ΔEに変換すると、
The following relationship holds: ΔP = eΔBρ (Expression 2) Here, when ΔB is considered as an increase in the magnetic field strength per one revolution of the orbiting beam, ΔP is an increase in the momentum around one circumference. Here, when ΔP is converted into energy change ΔE around one side,

【0015】[0015]

【数3】 eVp sinφs=ΔE …(数3) で表わされる。ここで、Vp は高周波電圧の振幅、φs
は同期位相である。数3より、同期位相φs の設定によ
り、ビームは加速・減速のエネルギ変化を制御すること
が可能となる。本実施例ではシンクロトロン内に2台の
高周波加速空胴1を設置しているため、数3のVp sin
φsの項を制御することで、任意の高周波電圧を発生す
ることができる。ここで各加速空胴で変化するビームエ
ネルギΔE1,ΔE2 を数1に倣って表わすと、
(3) eVp sinφs = ΔE (Expression 3) Here, Vp is the amplitude of the high-frequency voltage, φs
Is the synchronization phase. From Equation 3, it is possible to control the energy change of acceleration / deceleration of the beam by setting the synchronization phase φs. In this embodiment, two high-frequency accelerating cavities 1 are installed in the synchrotron.
By controlling the term φs, an arbitrary high-frequency voltage can be generated. Here, the beam energy ΔE1, ΔE2 that changes in each accelerating cavity is expressed according to Equation 1.

【0016】[0016]

【数4】 eVp1 sin(φs1+δφ)=ΔE1 …(数4)(Equation 4) eVp1 sin (φs1 + δφ) = ΔE1 (Equation 4)

【0017】[0017]

【数5】 eVp2 sin(φs2−δφ)=ΔE2 …(数5) となる。ここでVp1,Vp2は各高周波加速空胴に印加す
る高周波電圧の振幅、φs1,φs2は各高周波加速空胴の
同期位相、δφは各空胴毎に設定する位相補正量であ
る。ここで同期位相φs1,φs2は、加速中に周回ビーム
が軌道変位による粒子損失を起こさないよう、高周波電
圧周波数の変化とともに制御する。またδφで設定位相
量を補正することで、高周波電圧振幅の設定を一定のま
ま周回ビームに加わる高周波電圧の実効電圧振幅を制御
することが可能となる。これらのφs1,φs2、およびδ
φは、運転パターン・データベース6に予め用意してお
く。なお、他の装置の構成および高周波電圧設定データ
の発振器への出力方法は、第一実施例と同様である。
EVp2 sin (φs2−δφ) = ΔE2 (Equation 5) Here, Vp1 and Vp2 are the amplitudes of the high-frequency voltage applied to each high-frequency acceleration cavity, φs1 and φs2 are the synchronization phases of the high-frequency acceleration cavities, and δφ is the phase correction amount set for each cavity. Here, the synchronous phases φs1 and φs2 are controlled together with the change in the high-frequency voltage frequency so that the orbiting beam does not cause particle loss due to orbital displacement during acceleration. In addition, by correcting the set phase amount with δφ, it is possible to control the effective voltage amplitude of the high-frequency voltage applied to the circulating beam while keeping the high-frequency voltage amplitude constant. These φs1, φs2, and δ
φ is prepared in the operation pattern database 6 in advance. The configuration of the other devices and the method of outputting the high-frequency voltage setting data to the oscillator are the same as in the first embodiment.

【0018】図4は本発明の第四実施例の高周波加速空
胴とその制御装置の構成を示す。本実施例では図3に示
した実施例の構成に加え、高周波加速空胴1に空胴電圧
モニタ9,空胴近傍にビームモニタ10を用意する。各
高周波加速空胴1の高周波電圧制御装置5は、これらの
モニタからの検出信号を基に、予め設定データに印加し
た加速電圧に対する実際の周回ビームの位相を演算し、
フィードバック補正量をそれぞれ決定する。この結果を
位相設定データとして発振器7に設定し、フィードバッ
ク制御を行う。このフィードバック制御を行うことで、
周回ビームの位相変位を低減し、ビームの粒子損失を低
減することが可能となる。なお、他の装置の構成および
高周波電圧設定データの発振器への出力方法は第一実施
例と同様である。
FIG. 4 shows the configuration of a high-frequency accelerating cavity and its control device according to a fourth embodiment of the present invention. In this embodiment, in addition to the configuration of the embodiment shown in FIG. 3, a cavity voltage monitor 9 is provided in the high-frequency accelerating cavity 1, and a beam monitor 10 is provided near the cavity. The high-frequency voltage control device 5 of each high-frequency acceleration cavity 1 calculates the actual phase of the orbiting beam with respect to the acceleration voltage applied to the preset data based on the detection signals from these monitors,
Each feedback correction amount is determined. The result is set in the oscillator 7 as phase setting data, and feedback control is performed. By performing this feedback control,
It is possible to reduce the phase displacement of the orbiting beam and reduce the particle loss of the beam. The configuration of the other devices and the method of outputting the high-frequency voltage setting data to the oscillator are the same as in the first embodiment.

【0019】[0019]

【発明の効果】本発明によれば、高周波加速空胴に印加
する高周波電圧の位相を精度良くかつ高速に制御が可能
となる。また本発明によれば、高周波加速空胴に印加す
る高周波電圧の位相を調整することで、周回ビームの粒
子損失を抑えた加速・減速制御が可能となる。
According to the present invention, the phase of the high-frequency voltage applied to the high-frequency accelerating cavity can be controlled accurately and at high speed. Further, according to the present invention, by adjusting the phase of the high-frequency voltage applied to the high-frequency accelerating cavity, it is possible to perform acceleration / deceleration control while suppressing the particle loss of the orbiting beam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例の高周波加速空胴とその制
御装置のブロック図。
FIG. 1 is a block diagram of a high-frequency acceleration cavity and a control device thereof according to a first embodiment of the present invention.

【図2】本発明の第二実施例の高周波加速空胴とその制
御装置のブロック図。
FIG. 2 is a block diagram of a high-frequency acceleration cavity and a control device thereof according to a second embodiment of the present invention.

【図3】本発明の第三実施例の高周波加速空胴とその制
御装置のブロック図。
FIG. 3 is a block diagram of a high-frequency acceleration cavity and a control device thereof according to a third embodiment of the present invention.

【図4】本発明の第四実施例の高周波加速空胴とその制
御装置のブロック図。
FIG. 4 is a block diagram of a high-frequency acceleration cavity and a control device thereof according to a fourth embodiment of the present invention.

【図5】本発明で使用する直接ディジタル波形発振器の
ブロック図。
FIG. 5 is a block diagram of a direct digital waveform oscillator used in the present invention.

【図6】従来の高周波加速空胴制御装置のブロック図。FIG. 6 is a block diagram of a conventional high-frequency acceleration cavity control device.

【符号の説明】[Explanation of symbols]

1…高周波加速空胴、2…偏向電磁石、3…磁場検出素
子、4…磁場クロック発生装置、5…高周波電圧制御装
置、6…運転パターン・データベース、7…発振器、8
…電力増幅器。
DESCRIPTION OF SYMBOLS 1 ... High frequency acceleration cavity, 2 ... Bending electromagnet, 3 ... Magnetic field detection element, 4 ... Magnetic field clock generator, 5 ... High frequency voltage controller, 6 ... Operation pattern database, 7 ... Oscillator, 8
... power amplifier.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】イオンシンクロトロンでビームを加速する
高周波加速空胴の制御装置において、上記高周波加速空
胴に印加する高周波電圧の位相を発振器で制御すること
を特徴とする高周波加速空胴の制御装置。
An apparatus for controlling a high-frequency acceleration cavity for accelerating a beam with an ion synchrotron, wherein the phase of a high-frequency voltage applied to the high-frequency acceleration cavity is controlled by an oscillator. apparatus.
【請求項2】イオンシンクロトロンでビームを加速する
高周波加速空胴の制御装置において、シンクロトロン内
に少なくとも一台の高周波加速空胴と、それと同数の発
振器を用意し、上記高周波加速空胴に印加する高周波電
圧の位相を発振器で制御することを特徴とする高周波加
速空胴の制御装置。
2. A high frequency accelerating cavity control device for accelerating a beam with an ion synchrotron, wherein at least one high frequency accelerating cavity and the same number of oscillators are provided in the synchrotron, and the high frequency accelerating cavity is provided in the high frequency accelerating cavity. A control device for a high-frequency accelerating cavity, wherein a phase of a high-frequency voltage to be applied is controlled by an oscillator.
【請求項3】請求項1または請求項2において、上記高
周波加速空胴に印加する高周波電圧の発振器に直接ディ
ジタル波形合成発振器を用いる高周波加速空胴の制御装
置。
3. The control apparatus for a high-frequency acceleration cavity according to claim 1, wherein a digital waveform synthesis oscillator is used directly as an oscillator for a high-frequency voltage applied to said high-frequency acceleration cavity.
JP3465497A 1997-02-19 1997-02-19 Control device for high-frequency acceleration cavity Pending JPH10233298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3465497A JPH10233298A (en) 1997-02-19 1997-02-19 Control device for high-frequency acceleration cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3465497A JPH10233298A (en) 1997-02-19 1997-02-19 Control device for high-frequency acceleration cavity

Publications (1)

Publication Number Publication Date
JPH10233298A true JPH10233298A (en) 1998-09-02

Family

ID=12420437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3465497A Pending JPH10233298A (en) 1997-02-19 1997-02-19 Control device for high-frequency acceleration cavity

Country Status (1)

Country Link
JP (1) JPH10233298A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019785A3 (en) * 1998-09-29 2000-06-08 Gems Pet Systems Ab Device for rf control
JP2007157626A (en) * 2005-12-08 2007-06-21 High Energy Accelerator Research Organization High-frequency control device
JP2010003538A (en) * 2008-06-20 2010-01-07 Natl Inst Of Radiological Sciences High-frequency acceleration control device
JP2010257631A (en) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp Circular accelerator
JP2011054524A (en) * 2009-09-04 2011-03-17 Mitsubishi Electric Corp Particle accelerator
JP2011146400A (en) * 2011-03-22 2011-07-28 High Energy Accelerator Research Organization High frequency control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019785A3 (en) * 1998-09-29 2000-06-08 Gems Pet Systems Ab Device for rf control
JP2007157626A (en) * 2005-12-08 2007-06-21 High Energy Accelerator Research Organization High-frequency control device
JP2010003538A (en) * 2008-06-20 2010-01-07 Natl Inst Of Radiological Sciences High-frequency acceleration control device
JP2010257631A (en) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp Circular accelerator
JP2011054524A (en) * 2009-09-04 2011-03-17 Mitsubishi Electric Corp Particle accelerator
JP2011146400A (en) * 2011-03-22 2011-07-28 High Energy Accelerator Research Organization High frequency control device

Similar Documents

Publication Publication Date Title
EP3294045B1 (en) A programmable radio frequency waveform generator for a synchrocyclotron
JP4518596B2 (en) High frequency acceleration method and apparatus
KR100372229B1 (en) Plasma processing apparatus
EP1696521A2 (en) Tuning a laser
JPH10233298A (en) Control device for high-frequency acceleration cavity
JPH0229126A (en) Cesium atom oscillator
US5020062A (en) Apparatus and method for frequency modulating a waveguide laser
Cutler et al. Architecture and algorithms for new cesium beam frequency standard electronics
JP2002367800A (en) High frequency accelerator and circular accelerator
US4056760A (en) Method of driving a two coordinate oscillator and circuit arrangement therefor
JPH0914969A (en) Vibrator driving device
JP2704749B2 (en) Switched frequency synthesizer for cavity resonator frequency controller.
JP2001006899A (en) Control device of high-frequency acceleration cavity and operation method of synchrotron
JP2000348899A (en) High-frequency acceleration cavity excitation apparatus
JP2003100500A (en) Frequency changing cavity control device
JPH07193498A (en) Atomic clock and method of controlling microwave source of atomic clock
SU732955A1 (en) Two-reading shaft angular position-to-code converter
JP3351253B2 (en) Optical frequency comb generator
JPS63312724A (en) Frequency synthesizer
JPH02267899A (en) Excitation control of synchrotron accelerator for particle acceleration system
JPS63250185A (en) High precision frequency stabilization laser device
JPH04117708A (en) Oscillator
JPH01114108A (en) Rubidium atom oscillator
JPS631117A (en) Atomic oscillator
JPS59841A (en) Extracting device of operative wave signal