JPH10229653A - Ventilation cooling structure of dynamo-electric machine - Google Patents

Ventilation cooling structure of dynamo-electric machine

Info

Publication number
JPH10229653A
JPH10229653A JP3154297A JP3154297A JPH10229653A JP H10229653 A JPH10229653 A JP H10229653A JP 3154297 A JP3154297 A JP 3154297A JP 3154297 A JP3154297 A JP 3154297A JP H10229653 A JPH10229653 A JP H10229653A
Authority
JP
Japan
Prior art keywords
rotor
ventilation
stator
electric machine
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3154297A
Other languages
Japanese (ja)
Inventor
Atsunobu Omi
篤信 尾見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3154297A priority Critical patent/JPH10229653A/en
Publication of JPH10229653A publication Critical patent/JPH10229653A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve cooling within a gap between the inside periphery face of the stator of a dynamo-electric machine and the outside peripheral face of the rotor. SOLUTION: A plurality of ventilation grooves 20 extending axially are made at the inside peripheral face of a stator 5. This ventilation groove 20 is skew along the rotational direction of the rotor when viewed from the inflow direction of air, and further a flank 20b of the groove is inclined in the rotational direction of the rotor 4, to a direction of going to wards the outside peripheral side from the center of the rotor 4. Therefore, it becomes easy for the turning air current in the circumferential direction accompanying the rotation of the rotor 4 to enter the ventilation grove 20, and it is discharged after circulating along this ventilation groove 20, and the cooling of the gap 8 becomes proper.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転電機の通風冷
却構造に関し、回転子の外周面と固定子の内周面との間
のギャップ中の空気を良好に排出し、且つ、軸方向に沿
い流れる冷却風に対する通風抵抗を低減して、良好な冷
却ができるように工夫したものである。かかる本発明
は、特に超高速回転電機に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ventilation cooling structure for a rotating electric machine, and more particularly to a structure for discharging air in a gap between an outer peripheral surface of a rotor and an inner peripheral surface of a stator in an axial direction. It is designed to reduce the ventilation resistance against the cooling air flowing along and to achieve good cooling. The present invention is particularly suitable for being applied to an ultrahigh-speed rotating electric machine.

【0002】[0002]

【従来の技術】従来の回転電機の一例を、図5を参照し
て説明する。同図に示すように、回転軸1は、軸受2を
介してブラケット3に回転自在に支持されており、この
回転軸1には回転子4が備えられている。固定子鉄心5
a及び固定子コイル5bでなる固定子5は、フレーム6
に固定されている。
2. Description of the Related Art An example of a conventional rotating electric machine will be described with reference to FIG. As shown in FIG. 1, the rotating shaft 1 is rotatably supported by a bracket 3 via a bearing 2, and the rotating shaft 1 is provided with a rotor 4. Stator core 5
a and a stator coil 5b
It is fixed to.

【0003】固定子鉄心5aの外周部には、軸方向に伸
びる通風路7が、フレーム6との接触部に沿い形成され
ている。また、回転子4の外周面と固定子5の内周面と
の間には、円筒状のギャップ8が形成されている。更
に、一方(図では左側)のブラケット3には流入口9a
が形成され、他方(図では右側)のブラケット3には流
出口9bが形成されている。
[0003] An air passage 7 extending in the axial direction is formed on the outer periphery of the stator core 5 a along a contact portion with the frame 6. A cylindrical gap 8 is formed between the outer peripheral surface of the rotor 4 and the inner peripheral surface of the stator 5. Further, one of the brackets 3 (the left side in the figure) has an inlet 9a.
Is formed, and an outlet 9b is formed in the other bracket 3 (right side in the figure).

【0004】また、図示は省略しているが、回転軸に固
定されて、この回転軸と共に回転する冷却ファンが備え
られている。
Although not shown, a cooling fan fixed to a rotating shaft and rotating with the rotating shaft is provided.

【0005】上記構成の回転電機では、運転により回転
軸1が回転して冷却ファンが回転することにより、外部
空気が流入口9aから内部に取り込まれる。取り込まれ
た空気の一部は、一端側(左側)の固定子コイル5bの
端部に沿って流れ、通風路7を経由してから、他端側
(右側)の固定子コイル5bの端部に沿って流れ、最終
的には流出口9bから排出される。また、取り込まれた
空気の残り部は、ギャップ8中を軸方向に流れ、排出口
9bから排出される。このように、内部に空気を軸方向
に流通させて空気冷却することにより、回転電機の運転
中の損失に起因する温度上昇を抑えて、各部分の温度を
適当な温度レベル以下に抑えることができる。
[0005] In the rotating electric machine having the above-described structure, the rotating shaft 1 is rotated by operation to rotate the cooling fan, so that external air is taken into the inside from the inlet 9a. Part of the air taken in flows along the end of the stator coil 5b on one end (left side), passes through the ventilation path 7, and then ends on the end of the stator coil 5b on the other end (right side). And finally discharged from the outlet 9b. The remaining portion of the air taken in flows in the gap 8 in the axial direction, and is discharged from the outlet 9b. In this way, by cooling air by flowing air in the axial direction inside, it is possible to suppress a temperature rise due to a loss during operation of the rotating electric machine, and to suppress the temperature of each part to an appropriate temperature level or less. it can.

【0006】なお、冷却効果を向上させるために、図6
に示すように、固定子鉄心5aの内周面に、軸方向に伸
びる通風溝10を、軸と平行に形成し、しかも、溝断面
形状を矩形状にした従来技術もある。なお、かかる従来
の通風溝10は、後述する本発明のものとは異なり、回
転方向にスキューされておらず、また、溝断面形状を傾
斜させてはいない。
Incidentally, in order to improve the cooling effect, FIG.
As shown in FIG. 1, there is a conventional technique in which a ventilation groove 10 extending in the axial direction is formed in the inner peripheral surface of the stator core 5a in parallel with the axis, and the groove has a rectangular cross-sectional shape. The conventional ventilation groove 10 is not skewed in the rotation direction and does not have a slanted groove cross-section unlike the later-described present invention.

【0007】[0007]

【発明が解決しようとする課題】ところで上記従来技術
では、ギャップ8中の空気温度が非常に高くなってしま
い、冷却効率が低下するという問題があった。このよう
にギャップ8中の空気温度が非常に高くなってしまう理
由は次の通りである。
However, in the above-mentioned prior art, there is a problem that the air temperature in the gap 8 becomes extremely high and the cooling efficiency is reduced. The reason why the air temperature in the gap 8 becomes very high is as follows.

【0008】(1)ギャップ8の通風断面は、他の通風
部分の通風断面に比べて狭い。 (2)ギャップ8の内径側に高速で回転する回転子4が
あるため、この回転子4の回転に伴う円周方向の強い旋
回空気流により、ギャップ8中の軸方向の空気の流れが
阻害されてしまう。この現象は、特に、超高速回転電機
の場合に顕著になる。 (3)超高速で回転する回転子4の表面(外周面)と空
気間で生ずる摩擦による大きな発熱(損失)が発生す
る。
(1) The ventilation section of the gap 8 is narrower than the ventilation sections of the other ventilation sections. (2) Since the rotor 4 rotating at a high speed is provided on the inner diameter side of the gap 8, the circumferentially strong swirling airflow accompanying the rotation of the rotor 4 impedes the axial air flow in the gap 8. Will be done. This phenomenon becomes remarkable especially in the case of an ultrahigh-speed rotating electric machine. (3) Large heat generation (loss) occurs due to friction generated between the surface (outer peripheral surface) of the rotor 4 rotating at an extremely high speed and air.

【0009】なお、図6に示す従来技術では、通風溝1
0中を軸方向に流れる空気は、回転子4の回転に伴う円
周方向の旋回空気流の影響を受けやすく、ギャップ8程
度ではないが、かなりの通風抵抗の増大を招く。そこ
で、これを防止するため、図7に示すように溝ギャップ
面にクサビ11等を配置して通風溝10を全閉し通風溝
10を完全独立通風溝(トンネル形の通風孔)とするこ
ともあるが、この場合には、固定子5の冷却には役立っ
ても、ギャップ8中の空気の排出には役立たないという
欠点がある。
In the prior art shown in FIG.
The air flowing in the axial direction through 0 is easily affected by the swirling airflow in the circumferential direction accompanying the rotation of the rotor 4, and the airflow resistance is not about the gap 8 but considerably increases the ventilation resistance. Therefore, in order to prevent this, as shown in FIG. 7, a wedge 11 or the like is arranged on the groove gap surface to completely close the ventilation groove 10 and make the ventilation groove 10 a completely independent ventilation groove (tunnel-shaped ventilation hole). However, in this case, there is a drawback in that although it is useful for cooling the stator 5, it is not useful for discharging air in the gap 8.

【0010】本発明は、上記従来技術に鑑み、円筒状の
ギャップ中の高温空気を、この円筒ギャップに開口した
通風溝に流れ易くするとともに、通風溝の通風抵抗を増
大させない(即ち、理想的には運転時の通風溝内通風抵
抗を、回転数が零のときの通風溝内抵抗と同じにする)
ようにした回転電機の通風冷却構造を提供することを目
的とする。
The present invention has been made in view of the above-mentioned prior art, and makes it easier for high-temperature air in a cylindrical gap to flow into a ventilation groove opened in the cylindrical gap and does not increase the ventilation resistance of the ventilation groove (ie, ideally. , The ventilation resistance in the ventilation groove during operation is the same as the resistance in the ventilation groove when the rotation speed is zero.)
It is an object of the present invention to provide a ventilation cooling structure for a rotating electric machine as described above.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の構成は、回転子の外周面と固定子の内周面との間の
円筒状のギャップ中に、軸方向に沿い空気を流通させて
冷却を行う回転電機において、固定子の内周面に、軸方
向に伸びる複数本の通風溝を形成すると共に、各通風溝
を、空気の流入側から見て回転子の回転方向にスキュー
させていることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the construction of the present invention is to distribute air along the axial direction in a cylindrical gap between the outer peripheral surface of the rotor and the inner peripheral surface of the stator. In a rotating electric machine that performs cooling by cooling, a plurality of ventilation grooves extending in the axial direction are formed on the inner peripheral surface of the stator, and each ventilation groove is skewed in the rotation direction of the rotor when viewed from the air inflow side. It is characterized by making it.

【0012】また本発明の構成は、回転子の外周面と固
定子の内周面との間の円筒状のギャップ中に、軸方向に
沿い空気を流通させて冷却を行う回転電機において、固
定子の内周面に、軸方向に伸びる複数本の通風溝を形成
すると共に、各通風溝を、空気の流入側から見て回転子
の回転方向にスキューさせ、更に、前記通風溝の面のう
ち径方向に伸びる側面を、回転子中心から外周側に向か
う方向に対して、回転子の回転方向に傾斜していること
を特徴とする。
Further, the present invention provides a rotating electric machine which cools by flowing air along an axial direction in a cylindrical gap between an outer peripheral surface of a rotor and an inner peripheral surface of a stator. A plurality of ventilation grooves extending in the axial direction are formed on the inner peripheral surface of the child, and each ventilation groove is skewed in the rotation direction of the rotor when viewed from the air inflow side. The radially extending side surface is inclined in the direction of rotation of the rotor with respect to the direction from the center of the rotor toward the outer periphery.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づき詳細に説明する。なお、従来技術と同一部分に
は同一符号を付し、重複する説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. The same parts as those in the related art are denoted by the same reference numerals, and overlapping description will be omitted.

【0014】本発明の実施の形態にかかる回転電機のう
ち、その固定子5の部分を、図1〜図4に示す。図1に
示すように、本実施の形態では固定子鉄心5aの内周面
には、軸方向に伸びる通風溝20が複数本(図1では1
本のみ示している)形成されている。しかも通風溝20
は、空気の流入側から見て、回転子4の回転方向に沿い
角度θだけスキューしている。
FIGS. 1 to 4 show a stator 5 of the rotating electric machine according to the embodiment of the present invention. As shown in FIG. 1, in the present embodiment, a plurality of ventilation grooves 20 extending in the axial direction (in FIG.
(Only the book is shown). Moreover, the ventilation groove 20
Are skewed by an angle θ along the rotation direction of the rotor 4 when viewed from the air inflow side.

【0015】ギャップ8に臨む前記通風溝20は、具体
的には図2に示すように、隣接する固定子鉄心5aの間
に配置されている。また、本実施の形態では、固定子鉄
心5aを挿入するコイル溝も、通風溝20と同様に、空
気の流入側から見て、回転子4の回転方向に沿い角度θ
だけスキューしている。
The ventilation groove 20 facing the gap 8 is arranged between the adjacent stator cores 5a, as shown in FIG. In the present embodiment, the coil groove into which the stator core 5a is inserted also has an angle θ along the rotation direction of the rotor 4 when viewed from the air inflow side, similarly to the ventilation groove 20.
Only skewed.

【0016】更に図3に示すように、通風溝20はその
エッジ20aが、ギャップ8に対向するように、溝断面
形状が回転子4の回転方向に沿い傾斜している。即ち、
図4に示すように、通風溝20の面のうち、径方向に伸
びる側面20bが、回転子4の中心から外周側に向かう
方向の直線Lに対して、角度αだけ回転子4の回転方向
に沿い傾斜している。傾斜各度αとしては、25°〜4
5°の角度を設定する。
As shown in FIG. 3, the cross-sectional shape of the ventilation groove 20 is inclined along the rotation direction of the rotor 4 so that the edge 20a faces the gap 8. That is,
As shown in FIG. 4, among the surfaces of the ventilation groove 20, the side surface 20 b extending in the radial direction is rotated by an angle α with respect to a straight line L extending from the center of the rotor 4 toward the outer periphery. It is inclined along. As each inclination α, 25 ° to 4 °
Set an angle of 5 °.

【0017】かかる構成の実施の形態では、通風溝20
の溝断面形状が角度α傾斜し、かつ、スキューがかかっ
ているので、回転子4の回転に伴いギャップ8中に生ず
る円周方向の旋回空気流は、通風溝20内に入り易くな
り(傾斜角度αによる効果)、また、通風溝20内に入
った空気はこの通風溝20内を軸方向に流通し(スキュ
ーによる効果)、結局、高温となったギャップ8中の空
気が外部に効率良く排出されることになる。よってギャ
ップ8の部分の冷却を良好に行うことができる。
In the embodiment having such a configuration, the ventilation groove 20
Is inclined at the angle α and skew is applied, so that the circumferential swirling airflow generated in the gap 8 due to the rotation of the rotor 4 easily enters the ventilation groove 20 (inclination). The effect of the angle α), and the air that has entered the ventilation groove 20 flows in the ventilation groove 20 in the axial direction (effect of skew). Will be discharged. Therefore, the portion of the gap 8 can be cooled well.

【0018】また、通風溝20は、回転子4の回転に伴
う円周方向の旋回空気流の流れの影響を殆ど受けず、運
転中であっても静止時と略同じ程度の通風抵抗で、通風
溝20中に空気を流通することができ、この点からも冷
却効率が向上する。
Further, the ventilation groove 20 is hardly affected by the flow of the swirling airflow in the circumferential direction due to the rotation of the rotor 4, and has a ventilation resistance of substantially the same level as at rest even during operation. Air can be circulated through the ventilation groove 20, and the cooling efficiency is improved from this point as well.

【0019】[0019]

【発明の効果】以上実施の形態と共に具体的に説明した
ように、本発明によれば、回転子の外周面と固定子の内
周面との間の円筒状のギャップ中に、軸方向に沿い空気
を流通させて冷却を行う回転電機において、固定子の内
周面に、軸方向に伸びる複数本の通風溝を形成すると共
に、各通風溝を、空気の流入側から見て回転子の回転方
向にスキューさせているため、運転中であっても静止時
と略同じ程度の通風抵抗で、通風溝中に空気を流通する
ことができ冷却効率が向上する。
According to the present invention, as described in detail with the above embodiments, the cylindrical gap between the outer peripheral surface of the rotor and the inner peripheral surface of the stator is provided in the axial direction. In a rotating electrical machine that cools by flowing air along the rotor, a plurality of ventilation grooves extending in the axial direction are formed on the inner peripheral surface of the stator, and each ventilation groove is viewed from the air inflow side of the rotor. Since the air is skewed in the rotation direction, the air can be circulated in the air flow groove with substantially the same air flow resistance as in the stationary state even during operation, thereby improving the cooling efficiency.

【0020】また、本発明によれば、回転子の外周面と
固定子の内周面との間の円筒状のギャップ中に、軸方向
に沿い空気を流通させて冷却を行う回転電機において、
固定子の内周面に、軸方向に伸びる複数本の通風溝を形
成すると共に、各通風溝を、空気の流入側から見て回転
子の回転方向にスキューさせ、更に、前記通風溝の面の
うち径方向に伸びる側面を、回転子中心から外周側に向
かう方向に対して、回転子の回転方向に傾斜しているた
め、回転子の回転に伴いギャップ中に生ずる円周方向の
旋回空気流は、通風溝内に入り易くなり、通風溝内に入
った空気はこの通風溝を軸方向に流通し、結局、高温と
なったギャップ中の空気が外部に効率良く排出されるこ
とになる。よってギャップの部分の冷却を良好に行うこ
とができる。この結果、特に超高速回転電機において問
題となっていた、ギャップ部の冷却を良好に行うことが
できる。
According to the present invention, there is provided a rotating electric machine for cooling by flowing air along an axial direction in a cylindrical gap between an outer peripheral surface of a rotor and an inner peripheral surface of a stator.
On the inner peripheral surface of the stator, a plurality of ventilation grooves extending in the axial direction are formed, and each ventilation groove is skewed in the rotation direction of the rotor when viewed from the air inflow side. Of the radially extending side surface is inclined in the direction of rotation of the rotor with respect to the direction from the center of the rotor toward the outer peripheral side, so that the circumferential swirling air generated in the gap with the rotation of the rotor. The flow easily enters the ventilation groove, and the air that has entered the ventilation groove flows in the ventilation groove in the axial direction. As a result, the air in the hot gap is efficiently discharged to the outside. . Therefore, it is possible to cool the gap portion satisfactorily. As a result, it is possible to favorably cool the gap, which has been a problem particularly in the case of an ultrahigh-speed rotating electric machine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる回転電機の固定子
を示す斜視図。
FIG. 1 is a perspective view showing a stator of a rotating electric machine according to an embodiment of the present invention.

【図2】本発明の実施の形態にかかる回転電機の固定子
の一部を示す正面図。
FIG. 2 is an exemplary front view showing a part of the stator of the rotary electric machine according to the embodiment of the present invention;

【図3】本発明の実施の形態にかかる回転電機の固定子
の一部を示す斜視図。
FIG. 3 is an exemplary perspective view showing a part of the stator of the rotary electric machine according to the embodiment of the present invention;

【図4】本発明の実施の形態にかかる回転電機の固定子
の一部を示す正面図。
FIG. 4 is an exemplary front view showing a part of the stator of the rotary electric machine according to the embodiment of the present invention;

【図5】回転電機を示す構成図。FIG. 5 is a configuration diagram showing a rotating electric machine.

【図6】従来の回転電機の通風溝部分を示す正面図。FIG. 6 is a front view showing a ventilation groove portion of a conventional rotating electric machine.

【図7】従来の回転電機の通風溝部分を示す正面図。FIG. 7 is a front view showing a ventilation groove portion of a conventional rotating electric machine.

【符号の説明】[Explanation of symbols]

1 回転軸 2 軸受 3 ブラケット 4 回転子 5 固定子 5a 固定子鉄心 5b 固定子コイル 6 フレーム 7 通風路 8 ギャップ 9a 流入口 9b 流出口 10 通風溝 11 クサビ 20 通風溝 20a エッジ 20b 側面 DESCRIPTION OF SYMBOLS 1 Rotation shaft 2 Bearing 3 Bracket 4 Rotor 5 Stator 5a Stator iron core 5b Stator coil 6 Frame 7 Ventilation path 8 Gap 9a Inlet 9b Outlet 10 Ventilation groove 11 Wedge 20 Ventilation groove 20a Edge 20b Side surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転子の外周面と固定子の内周面との間
の円筒状のギャップ中に、軸方向に沿い空気を流通させ
て冷却を行う回転電機において、 固定子の内周面に、軸方向に伸びる複数本の通風溝を形
成すると共に、各通風溝を、空気の流入側から見て回転
子の回転方向にスキューさせていることを特徴とする回
転電機の通風冷却構造。
1. A rotating electric machine for cooling by flowing air along an axial direction in a cylindrical gap between an outer peripheral surface of a rotor and an inner peripheral surface of a stator, wherein the inner peripheral surface of the stator is provided. A plurality of ventilation grooves extending in the axial direction, and the ventilation grooves are skewed in the rotation direction of the rotor when viewed from the air inflow side.
【請求項2】 回転子の外周面と固定子の内周面との間
の円筒状のギャップ中に、軸方向に沿い空気を流通させ
て冷却を行う回転電機において、 固定子の内周面に、軸方向に伸びる複数本の通風溝を形
成すると共に、各通風溝を、空気の流入側から見て回転
子の回転方向にスキューさせ、更に、前記通風溝の面の
うち径方向に伸びる側面を、回転子中心から外周側に向
かう方向に対して、回転子の回転方向に傾斜しているこ
とを特徴とする回転電機の通風冷却構造。
2. A rotating electric machine which performs cooling by flowing air along an axial direction in a cylindrical gap between an outer peripheral surface of a rotor and an inner peripheral surface of a stator, wherein the inner peripheral surface of the stator is provided. A plurality of ventilation grooves extending in the axial direction are formed, and each ventilation groove is skewed in the rotation direction of the rotor as viewed from the air inflow side, and further extends radially on the surface of the ventilation groove. A ventilation cooling structure for a rotating electric machine, characterized in that a side surface is inclined in a rotation direction of the rotor with respect to a direction from a center of the rotor toward an outer periphery.
JP3154297A 1997-02-17 1997-02-17 Ventilation cooling structure of dynamo-electric machine Withdrawn JPH10229653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3154297A JPH10229653A (en) 1997-02-17 1997-02-17 Ventilation cooling structure of dynamo-electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3154297A JPH10229653A (en) 1997-02-17 1997-02-17 Ventilation cooling structure of dynamo-electric machine

Publications (1)

Publication Number Publication Date
JPH10229653A true JPH10229653A (en) 1998-08-25

Family

ID=12334089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3154297A Withdrawn JPH10229653A (en) 1997-02-17 1997-02-17 Ventilation cooling structure of dynamo-electric machine

Country Status (1)

Country Link
JP (1) JPH10229653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477310A1 (en) * 2011-01-14 2012-07-18 Siemens Aktiengesellschaft Electrical machine with improved cooling
JP2014217166A (en) * 2013-04-25 2014-11-17 アイシン精機株式会社 Superconducting rotary machine and cooling method thereof
WO2016208351A1 (en) * 2015-06-26 2016-12-29 日立工機株式会社 Electric tool
JP2018102040A (en) * 2016-12-19 2018-06-28 アイシン精機株式会社 Rotary electric machine
WO2020030444A1 (en) * 2018-08-10 2020-02-13 Bayerische Motoren Werke Aktiengesellschaft Electric machine for a motor vehicle and stator for an electric machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477310A1 (en) * 2011-01-14 2012-07-18 Siemens Aktiengesellschaft Electrical machine with improved cooling
JP2014217166A (en) * 2013-04-25 2014-11-17 アイシン精機株式会社 Superconducting rotary machine and cooling method thereof
WO2016208351A1 (en) * 2015-06-26 2016-12-29 日立工機株式会社 Electric tool
JPWO2016208351A1 (en) * 2015-06-26 2018-04-05 日立工機株式会社 Electric tool
JP2018102040A (en) * 2016-12-19 2018-06-28 アイシン精機株式会社 Rotary electric machine
WO2020030444A1 (en) * 2018-08-10 2020-02-13 Bayerische Motoren Werke Aktiengesellschaft Electric machine for a motor vehicle and stator for an electric machine
CN112042076A (en) * 2018-08-10 2020-12-04 宝马股份公司 Electric machine for a motor vehicle and stator for an electric machine
CN112042076B (en) * 2018-08-10 2023-04-07 宝马股份公司 Motor for a motor vehicle, stator for a motor vehicle, and motor vehicle

Similar Documents

Publication Publication Date Title
JP5460926B2 (en) Synchronous reluctance machine using rotor flux barrier as cooling channel
US4418295A (en) Multi-path cooling in AC generator for vehicle
JP4715028B2 (en) Rotating electric machine
JP4682893B2 (en) Rotating electric machine rotor
JPH09149599A (en) Totally enclosed rotating electric machine
JP6165340B2 (en) Rotating electric machine
JP3574221B2 (en) Rotating electric machine rotor
JP2001078390A (en) Dynamo-electric machine
JPH10229653A (en) Ventilation cooling structure of dynamo-electric machine
JPH08275421A (en) Rotor structure of dynamo electric machine
CN110535290A (en) The super high speed motor air-cooled circulatory system in parallel
JPH0382356A (en) Cooling structure of motor
JPH11299141A (en) Rotating electric machine
JPH0993868A (en) Main motor for vehicle
JP2000116086A (en) Inductor ac generator
JPH07170693A (en) Rotor of rotating electric machine
JP2000050572A (en) Induction motor
EP4152567B1 (en) Rotary electric machine
US20230387757A1 (en) Thermal bridge for an electric machine
WO2021140645A1 (en) Rotor and rotating electric machine
US10797565B2 (en) Motor with inner fan
JPH08214500A (en) Main motor for electric train
JP2000050576A (en) Apparatus for cooling rotor of rotating electric machine
JP2009124771A (en) Rotary electric machine
JP2020188577A (en) Rotary electric machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511