JPH10228916A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH10228916A
JPH10228916A JP9029971A JP2997197A JPH10228916A JP H10228916 A JPH10228916 A JP H10228916A JP 9029971 A JP9029971 A JP 9029971A JP 2997197 A JP2997197 A JP 2997197A JP H10228916 A JPH10228916 A JP H10228916A
Authority
JP
Japan
Prior art keywords
flow path
fuel
oxygen
fuel gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9029971A
Other languages
Japanese (ja)
Inventor
Isanori Akagi
功典 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP9029971A priority Critical patent/JPH10228916A/en
Priority to EP97110080A priority patent/EP0814528A3/en
Priority to US08/879,177 priority patent/US5919584A/en
Publication of JPH10228916A publication Critical patent/JPH10228916A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To be able to increase the output more by keeping the advantage of being the simple supply and discharge structure of each oxygen containing gas and fuel gas. SOLUTION: The supply opening si and the discharge opening so of the oxygen containing gas passages s is arranged each on the one opposite pair of end surfaces of the electrolyte layer 1, the supply opening fi and the discharge opening fo of the fuel gas passages f are arranged each on the other opposite pair of surfaces of the electrolyte layer 1, and the temperature difference restriction passage part P are prepared for making flow the fuel gas or the oxygen containing gas to restrict the temperature difference of the both direction of the electrolyte layer 1, being composed so as to have smaller gas flow resistance than that of the pliable conductive material 5, at the position separated and parallel with the electrolyte layer 1 to the fuel electrode 3 or the oxygen electrode 2, between passage part 4 and the fuel electrode 3 or the passage part 4 and the oxygen electrode 2, both filled with the pliable conductive material 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一方の面に酸素極
を備え且つ他方の面に燃料極を備えた矩形板状の電解質
層の複数が、前記酸素極に臨む側に酸素含有ガス流路を
形成し、且つ、前記燃料極に臨む側に燃料ガス流路を形
成するように区画する導電性を備えた流路形成部材を、
隣接する電解質層間に位置させた状態で、互いに間隔を
隔てて厚み方向に並べて設けられ、前記酸素含有ガス流
路の供給用開口及び排出用開口が、前記電解質層におけ
る、一方の対向する一対の端縁部夫々に各別に設けら
れ、前記燃料ガス流路の供給用開口及び排出用開口が、
前記電解質層における、他方の対向する一対の端縁部夫
々に各別に設けられ、前記流路形成部材と前記燃料極と
の間、又は、前記流路形成部材と酸素極との間に、気体
の通流を許容するように形成された柔軟性導電材が充填
された燃料電池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a fuel cell system comprising: a plurality of rectangular plate-like electrolyte layers having an oxygen electrode on one surface and a fuel electrode on the other surface; A passage forming member having conductivity, which forms a passage, and defines a fuel gas passage on the side facing the fuel electrode,
In a state of being located between the adjacent electrolyte layers, they are provided side by side in the thickness direction at an interval from each other, and the supply opening and the discharge opening of the oxygen-containing gas flow path are one pair of one of the opposing electrolyte layers. A supply opening and a discharge opening of the fuel gas flow path are separately provided at each of the edge portions,
In the electrolyte layer, provided separately at each of the other pair of opposite edge portions, between the flow path forming member and the fuel electrode, or between the flow path forming member and the oxygen electrode, The present invention relates to a fuel cell filled with a flexible conductive material formed so as to allow the flow of gas.

【0002】[0002]

【従来の技術】かかる燃料電池においては、複数の矩形
板状の電解質層がその厚み方向に並んだ集合体におい
て、電解質層の並び方向視における周部に形成される4
つの面部のうちの、一方の対向する一対の面部に、酸素
含有ガス流路夫々の供給用開口及び排出用開口が各別に
位置し、並びに、他方の対向する一対の面部に、燃料ガ
ス流路夫々の供給用開口及び排出用開口が各別に位置す
ることになる。従って、酸素含有ガス流路夫々に酸素含
有ガスを供給するための構成、酸素含有ガス流路夫々か
ら酸素含有ガスを排出させるための構成、燃料ガス流路
夫々に燃料ガスを供給するための構成、及び、燃料ガス
流路夫々から燃料ガスを排出させるための構成が簡単に
なるという利点がある。そして、流路形成部材と燃料極
との間、又は、流路形成部材と酸素極との間に、気体の
通流を許容するように形成された柔軟性導電材を充填し
て、その柔軟性導電材を通して燃料ガス又は酸素含有ガ
スを通流させながら、その柔軟性導電材にて、流路形成
部材と燃料極とを、又は、流路形成部材と酸素極とを導
電状態に接続している。
2. Description of the Related Art In such a fuel cell, a plurality of rectangular plate-shaped electrolyte layers are formed in an aggregate in which the electrolyte layers are arranged in the thickness direction.
The supply opening and the discharge opening of the oxygen-containing gas flow path are respectively located on one of a pair of facing surfaces of the two surface portions, and the fuel gas flow passage is provided on the other of the pair of facing surfaces. Each supply opening and discharge opening will be located separately. Therefore, a configuration for supplying the oxygen-containing gas to each of the oxygen-containing gas channels, a configuration for discharging the oxygen-containing gas from each of the oxygen-containing gas channels, and a configuration for supplying the fuel gas to each of the fuel gas channels. Also, there is an advantage that the configuration for discharging the fuel gas from each of the fuel gas passages is simplified. Then, between the flow path forming member and the fuel electrode, or between the flow path forming member and the oxygen electrode, is filled with a flexible conductive material formed so as to allow gas to flow therethrough. While passing the fuel gas or oxygen-containing gas through the conductive conductive material, the flexible conductive material connects the flow path forming member and the fuel electrode or the flow path forming member and the oxygen electrode in a conductive state. ing.

【0003】従来は、かかる燃料電池において、燃料ガ
ス流路は、燃料ガスが、電解質層の端縁に沿った方向の
流路幅の全幅にわたって、供給用開口から排出用開口に
向かって直線状又は略直線状に通流するように形成し、
酸素含有ガス流路は、酸素含有ガスが、電解質層の端縁
に沿った方向の流路幅の全幅にわたって、供給用開口か
ら排出用開口に向かって直線状又は略直線状に通流する
ように形成していた。つまり、燃料ガス流路の直線状又
は略直線状の流路形成方向と、酸素含有ガス流路の直線
状又は略直線状の流路形成方向とが直交するようになっ
ていた。
Conventionally, in such a fuel cell, the fuel gas flow path is formed such that the fuel gas flows linearly from the supply opening to the discharge opening over the entire width of the flow path in the direction along the edge of the electrolyte layer. Or formed to flow in a substantially straight line,
The oxygen-containing gas flow path is such that the oxygen-containing gas flows linearly or substantially linearly from the supply opening toward the discharge opening over the entire width of the flow path in the direction along the edge of the electrolyte layer. Had formed. That is, the direction in which the straight or substantially straight flow path of the fuel gas flow path is formed is orthogonal to the direction in which the straight or substantially straight flow path of the oxygen-containing gas flow path is formed.

【0004】[0004]

【発明が解決しようとする課題】ところで、燃料ガスが
燃料ガス流路を通流する過程で、燃料ガス中の水素が電
極反応を起こすので、燃料ガス中の水素の含有率は、燃
料ガスの通流経路の下手側ほど小さくなり、並びに、酸
素含有ガスが酸素含有ガス流路を通流する過程で、酸素
含有ガス中の酸素が電極反応を起こすので、酸素含有ガ
ス中の酸素の含有率は、酸素含有ガスの通流経路の下手
側ほど小さくなる。
In the process of flowing the fuel gas through the fuel gas passage, hydrogen in the fuel gas undergoes an electrode reaction, so that the content of hydrogen in the fuel gas is reduced. The lower the flow path becomes, the smaller the oxygen-containing gas flows in the oxygen-containing gas flow path, and the oxygen in the oxygen-containing gas causes an electrode reaction. Is smaller on the lower side of the flow path of the oxygen-containing gas.

【0005】従って、従来の燃料電池では、燃料ガス
は、燃料ガス流路内をその流路幅の全幅にわたって、供
給用開口から排出用開口に向かって直線状又は略直線状
に通流するので、燃料ガス中の水素によって起こる電極
反応の量は、燃料ガス流路の供給用開口から排出用開口
に向かう方向に沿って、排出用開口側ほど少なくなる。
一方、酸素含有ガスは、酸素含有ガス流路内をその流路
幅の全幅にわたって、供給用開口から排出用開口に向か
って直線状又は略直線状に通流するので、酸素含有ガス
中の酸素によって起こる電極反応の量は、酸素含有ガス
流路の供給用開口から排出用開口に向かう方向に沿っ
て、排出用開口側ほど少なくなる。
Therefore, in the conventional fuel cell, the fuel gas flows in the fuel gas flow path linearly or substantially linearly from the supply opening to the discharge opening over the entire width of the flow path. The amount of the electrode reaction caused by hydrogen in the fuel gas decreases along the direction from the supply opening to the discharge opening of the fuel gas flow path toward the discharge opening.
On the other hand, the oxygen-containing gas flows in the oxygen-containing gas flow path linearly or substantially linearly from the supply opening to the discharge opening over the entire width of the flow path. The amount of electrode reaction caused by the discharge decreases along the direction from the supply opening to the discharge opening of the oxygen-containing gas flow path toward the discharge opening.

【0006】ところで、水素と酸素とにより起こる電極
反応は、発熱反応であり、電極反応の量が多くなるほど
発熱量が多くなるので、電極反応の量が多い部分に対応
する箇所ほど、電解質層、燃料極及び酸素極にて形成さ
れる矩形の三層状板の温度が高くなる。従って、従来で
は、燃料ガス又は酸素含有ガスの流量により変化するも
のの、基本的には、燃料ガス流路を通流する燃料ガスに
起因して、燃料ガス流路の供給用開口から排出用開口に
向かう方向に沿って、排出用開口側ほど低くなる温度分
布が生じ、並びに、酸素含有ガス流路を通流する酸素含
有ガスに起因して、酸素含有ガス流路の供給用開口から
排出用開口に向かう方向に沿って、排出用開口側ほど低
くなる温度分布が生じる。従って、前記三層状板の面方
向において、燃料ガスに起因して温度が変化する方向と
酸素含有ガスに起因して温度が変化する方向とは直交す
る状態となるので、図10に示すように、前記三層状板
Ceの面方向における温度分布は、概ね、燃料ガス流路
の供給用開口fiが位置する端縁と酸素含有ガス流路の
供給用開口siが位置する端縁とにより形成される角部
の側ほど高くなり、燃料ガス流路の排出用開口foが位
置する端縁と酸素含有ガス流路sの排出用開口soが位
置する端縁とにより形成される角部の側ほど低くなるよ
うな複雑な温度分布となって、前記三層状板Ceの面方
向における温度差が大きくなる。図10中において、T
1 ,T2 ,T3 ・・・T9 は等温線を示し、添字の数字
が大きくなるほどに低い温度を示す。
The electrode reaction caused by hydrogen and oxygen is an exothermic reaction. As the amount of the electrode reaction increases, the amount of heat generated increases. The temperature of the rectangular three-layer plate formed by the fuel electrode and the oxygen electrode increases. Therefore, conventionally, although changing depending on the flow rate of the fuel gas or the oxygen-containing gas, basically, due to the fuel gas flowing through the fuel gas flow path, the discharge opening from the supply opening of the fuel gas flow path. Along the direction toward, a temperature distribution that becomes lower toward the discharge opening side occurs, and, due to the oxygen-containing gas flowing through the oxygen-containing gas flow path, the temperature distribution decreases from the supply opening of the oxygen-containing gas flow path. Along the direction toward the opening, there occurs a temperature distribution that becomes lower toward the discharge opening. Therefore, in the surface direction of the three-layer plate, the direction in which the temperature changes due to the fuel gas and the direction in which the temperature changes due to the oxygen-containing gas are orthogonal to each other, as shown in FIG. The temperature distribution in the plane direction of the three-layer plate Ce is generally formed by the edge where the supply opening fi of the fuel gas flow path is located and the edge where the supply opening si of the oxygen-containing gas flow path is located. The corners formed by the edge where the discharge opening fo of the fuel gas flow path is located and the edge where the discharge opening so of the oxygen-containing gas flow path s is located become closer to the corner of the fuel gas flow path s. The temperature distribution becomes complicated such that the temperature decreases, and the temperature difference in the surface direction of the three-layer plate Ce increases. In FIG. 10, T
1 , T 2 , T 3, ..., T 9 indicate isotherms, and the larger the subscript number, the lower the temperature.

【0007】尚、燃料ガス又は酸素含有ガスの流量が多
くなると、電極反応によって生じた熱が下流側に運ばれ
て、排出用開口側ほど高くなる温度分布が生じる場合も
あるが、いずれにしても、前記三層状板の面方向におい
て、燃料ガスに起因して温度が変化する方向と酸素含有
ガスに起因して温度が変化する方向とは直交する状態と
なるので、前記三層状板の面方向における温度分布は、
複雑な温度分布となって、前記三層状板の面方向におけ
る温度差が大きくなる。
[0007] When the flow rate of the fuel gas or the oxygen-containing gas increases, heat generated by the electrode reaction is transferred to the downstream side, and a temperature distribution may become higher toward the discharge opening side. Also, in the surface direction of the three-layer plate, the direction in which the temperature changes due to the fuel gas and the direction in which the temperature changes due to the oxygen-containing gas are orthogonal to each other. The temperature distribution in the direction is
The temperature distribution becomes complicated, and the temperature difference in the plane direction of the three-layer plate increases.

【0008】前記三層状板の面方向における温度差が大
きくなると、前記三層状板において内部応力が発生しや
すくなり、一方、燃料電池の出力を増大させるほど、電
極反応の量は多くなることから、従来の燃料電池では、
燃料電池の出力を増大させるほど、前記三層状板の内部
応力が大きくなるので、耐久性の低下を招く虞がある。
従って、従来では、燃料電池の出力を増大させるにして
も耐久性の面で限度があり、出力を増大させるという面
において、改善の余地があった。
[0008] When the temperature difference in the plane direction of the three-layer plate becomes large, internal stress is easily generated in the three-layer plate. On the other hand, as the output of the fuel cell increases, the amount of electrode reaction increases. In conventional fuel cells,
As the output of the fuel cell increases, the internal stress of the three-layer plate increases, which may lead to a decrease in durability.
Therefore, conventionally, even if the output of the fuel cell is increased, there is a limit in terms of durability, and there is room for improvement in increasing the output.

【0009】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、酸素含有ガス流路夫々に対する
酸素含有ガスの供給構成及び排出構成、並びに、燃料ガ
ス流路夫々に対する燃料ガスの供給構成及び排出構成が
簡単であるという利点はその儘に維持しながら、出力を
更に増大させることができるようにすることにある。
The present invention has been made in view of the above circumstances, and has as its object to supply and discharge an oxygen-containing gas to each of the oxygen-containing gas flow paths, and to provide a fuel gas to each of the fuel gas flow paths. The advantage of the simplicity of the supply and discharge arrangement lies in the fact that the output can be further increased while maintaining it.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の特徴構
成によれば、温度差抑制用通流部における気体の通流抵
抗は柔軟性導電材よりも小さくて、気体は、温度差抑制
用通流部内を柔軟性導電体中よりも容易に通流する。従
って、例えば、流路形成部材と燃料極との間に柔軟性導
電材が充填されている場合は、供給用開口に供給された
燃料ガスは、柔軟性導電材中を排出用開口に向かって直
線状に通流するよりも容易に、温度差抑制用通流部内
を、その案内作用によって、電解質層における面方向の
温度差を抑制するように通流する。温度差抑制用通流部
内を通流する燃料ガスは、柔軟性導電材中に浸透して拡
散し、燃料極の全面にわたって接触する。又は、流路形
成部材と酸素極との間に柔軟性導電材が充填されている
場合は、供給用開口に供給された酸素含有ガスは、柔軟
性導電材中を排出用開口に向かって直線状に通流するよ
りも容易に、温度差抑制用通流部内を、その案内作用に
よって、電解質層における面方向の温度差を抑制するよ
うに通流する。温度差抑制用通流部内を通流する酸素含
有ガスは、柔軟性導電材中に浸透して拡散し、酸素極の
全面にわたって接触する。
According to the first aspect of the present invention, the flow resistance of the gas in the temperature difference suppressing flow portion is smaller than that of the flexible conductive material, and the gas flows through the temperature difference suppressing portion. Flow through the flow passage portion more easily than in the flexible conductor. Therefore, for example, when the flexible conductive material is filled between the flow path forming member and the fuel electrode, the fuel gas supplied to the supply opening flows through the flexible conductive material toward the discharge opening. It flows through the inside of the temperature difference suppressing flow portion more easily than in a straight line so as to suppress the temperature difference in the surface direction of the electrolyte layer by the guiding action. The fuel gas flowing through the temperature difference suppression flow passage penetrates and diffuses into the flexible conductive material, and contacts the entire surface of the fuel electrode. Alternatively, in the case where the flexible conductive material is filled between the flow path forming member and the oxygen electrode, the oxygen-containing gas supplied to the supply opening flows straight through the flexible conductive material toward the discharge opening. It flows through the temperature difference suppressing flow portion so as to suppress the temperature difference in the surface direction in the electrolyte layer by the guiding action thereof more easily than flowing in the shape. The oxygen-containing gas flowing through the temperature difference suppressing flow passage penetrates and diffuses into the flexible conductive material, and contacts the entire surface of the oxygen electrode.

【0011】従って、酸素含有ガス又は燃料ガスを、前
記三層状板における面方向の温度差を抑制するように通
流させて、前記三層状板における面方向の温度差を抑制
することができるようになったので、酸素含有ガス流路
夫々に対する酸素含有ガスの供給構成及び排出構成、並
びに、燃料ガス流路夫々に対する燃料ガスの供給構成及
び排出構成が簡単であるという利点はその儘に維持しな
がら、出力を更に増大させることができるようになっ
た。
Therefore, the oxygen-containing gas or the fuel gas is caused to flow so as to suppress the temperature difference in the surface direction in the three-layer plate, so that the temperature difference in the surface direction in the three-layer plate can be suppressed. Therefore, the advantage that the supply configuration and the discharge configuration of the oxygen-containing gas to each of the oxygen-containing gas passages and the supply configuration and the discharge configuration of the fuel gas to each of the fuel gas passages are simple is maintained as it is. However, the output can be further increased.

【0012】請求項2に記載の特徴構成によれば、温度
差抑制用通流部が、柔軟性導電材中に設けられた空隙部
にて構成されているので、気体は、柔軟性導電材中を排
出用開口に向かって直線状に通流するよりも、一層容易
に、温度差抑制用通流部を通流する。従って、前記三層
状板における面方向の温度差を一層抑制することができ
るので、出力を一層増大させることができるようになっ
た。
According to the second aspect of the present invention, since the temperature difference suppressing flow-through portion is formed by the gap provided in the flexible conductive material, the gas is supplied to the flexible conductive material. It flows through the temperature difference suppressing flow portion more easily than when it flows straight through the inside toward the discharge opening. Therefore, the temperature difference in the plane direction in the three-layer plate can be further suppressed, and the output can be further increased.

【0013】請求項3に記載の特徴構成によれば、柔軟
性導電材は、各部分が空隙部を構成する空隙部構成部分
を備えるように、電解質層の並び方向に分割され、且
つ、分割された各部分を重ねることにより空隙部が形成
されるように構成されている。つまり、電解質層の並び
方向に分割された各部分は、空隙部構成部分としての凹
部や、その凹部を閉塞する平面部を備えたような、単純
な形状になる。ちなみに、柔軟性導電材を一体物で構成
することができるが、この場合は、トンネル状の空隙部
を形成する必要があり、製造方法が複雑になる。従っ
て、空隙部を備えた柔軟性導電材の製造コストを低減す
ることができるので、本発明を実施するためのコストを
低減することができる。
According to the third aspect of the present invention, the flexible conductive material is divided in the direction in which the electrolyte layers are arranged so that each portion has a void portion constituting a void portion. It is configured such that a void portion is formed by overlapping the formed portions. That is, each of the portions divided in the direction in which the electrolyte layers are arranged has a simple shape such as having a concave portion as a void portion and a flat portion closing the concave portion. Incidentally, the flexible conductive material can be formed as an integral body, but in this case, it is necessary to form a tunnel-shaped void, and the manufacturing method becomes complicated. Therefore, the manufacturing cost of the flexible conductive material having the void can be reduced, and the cost for implementing the present invention can be reduced.

【0014】請求項4に記載の特徴構成によれば、温度
差抑制用通流部は、燃料ガス又は酸素含有ガスを、排出
用開口の手前及び供給用開口の手前夫々においてUター
ンさせて、供給用開口と排出用開口との間を、少なくと
も1.5往復させる状態で通流させるように構成されて
いるので、温度差抑制用通流部は、少なくとも、2個の
往路部分と1個の復路部分から構成されている。
According to the fourth aspect of the present invention, the temperature difference suppressing flow portion makes the fuel gas or the oxygen-containing gas make a U-turn before the discharge opening and before the supply opening, respectively. Since it is configured to flow between the supply opening and the discharge opening in a state of at least 1.5 reciprocations, the temperature difference suppressing flow portion has at least two outgoing portions and one flow portion. Of the return route.

【0015】例えば、柔軟性導電材が流路形成部材と燃
料極との間に充填されている場合は、供給用開口から供
給された燃料ガスは、温度差抑制用通流部の案内によっ
て、供給用開口と排出用開口との間を所定の回数往復す
る状態で通流してから、排出用開口から排出される。燃
料ガスが温度差抑制用通流部を通流する過程で、燃料ガ
ス中の水素が電極反応を起こすので、温度差抑制用通流
部を構成する往路部分、復路部分のうち、流路下手側に
位置するものを通流する燃料ガスほど、その水素含有率
が小さくなる。従って、燃料極において、供給用開口と
排出用開口とを結ぶ方向と直交する方向に対しては、燃
料ガスは、温度差抑制用通流部を構成する往路部分及び
復路部分の夫々から供給され、往路部分及び復路部分夫
々を通流する燃料ガス中の水素含有率が異なるので、燃
料極の面方向における電極反応の量のバラツキを小さく
することができる。
For example, when the flexible conductive material is filled between the flow path forming member and the fuel electrode, the fuel gas supplied from the supply opening is guided by the temperature difference suppressing flow passage. After flowing back and forth between the supply opening and the discharge opening a predetermined number of times, the liquid is discharged from the discharge opening. In the process of flowing the fuel gas through the temperature difference suppression flow passage, hydrogen in the fuel gas causes an electrode reaction, so that the lower part of the flow path is included in the forward path and the return path constituting the temperature difference suppression flow passage. The fuel gas flowing through the one located on the side has a lower hydrogen content. Therefore, at the fuel electrode, in the direction orthogonal to the direction connecting the supply opening and the discharge opening, the fuel gas is supplied from each of the outward path and the return path constituting the temperature difference suppressing flow passage. Since the hydrogen content in the fuel gas flowing through each of the forward path portion and the return path portion is different, the variation in the amount of electrode reaction in the surface direction of the fuel electrode can be reduced.

【0016】柔軟性導電材が流路形成部材と酸素極との
間に充填されている場合も、同様であり、酸素極の面方
向における電極反応の量のバラツキを小さくすることが
できる。従って、前記三層状板における面方向の温度差
を抑制することができるのである。
The same applies to the case where the flexible conductive material is filled between the flow path forming member and the oxygen electrode, and the variation in the amount of electrode reaction in the plane direction of the oxygen electrode can be reduced. Therefore, the temperature difference in the plane direction in the three-layer plate can be suppressed.

【0017】ところで、供給用開口から燃料ガス流路に
供給された燃料ガス中の炭化水素系ガスを、燃料ガス流
路内において、水素ガスを含んだガスに改質されるよう
に構成した場合、その改質反応は、燃料ガスが燃料ガス
流路に流入したときに著しく進む傾向にある。ちなみ
に、前記改質反応は吸熱反応であり、炭化水素系ガス
が、例えばメタンの場合は、前記改質反応は下記のよう
になる。 CH4 +2H2 O→4H2 +CO2
By the way, in the case where the hydrocarbon-based gas in the fuel gas supplied from the supply opening to the fuel gas passage is reformed into a gas containing hydrogen gas in the fuel gas passage. The reforming reaction tends to proceed remarkably when the fuel gas flows into the fuel gas passage. Incidentally, the reforming reaction is an endothermic reaction. When the hydrocarbon-based gas is, for example, methane, the reforming reaction is as follows. CH 4 + 2H 2 O → 4H 2 + CO 2

【0018】請求項5に記載の特徴構成によれば、燃料
ガスは、温度差抑制用通流部の案内によって、燃料ガス
流路において、電解質層の並び方向視における一部分に
集中的に流入し、その一部分を通流してから、他の部分
を通流する。そして、改質反応は、燃料ガス流路におけ
る前記一部分において集中的に進み、その部分が、改質
反応による吸熱作用によって、冷却されて温度が下が
る。そこで、前記一部分を、上記の従来の燃料電池にお
いて前記三層状板の温度が最も高くなる最高温部分と、
電解質層の並び方向視で重なる部分に位置させるように
構成すると、前記最高温部分の温度を下げることができ
る。従って、前記三層状板における面方向の温度差を抑
制することができる。
According to the fifth aspect of the present invention, the fuel gas flows intensively into a part of the fuel gas flow path as viewed in the direction in which the electrolyte layers are arranged in the fuel gas flow path by the guide of the temperature difference suppressing flow portion. , Through one part and then through the other part. Then, the reforming reaction intensively proceeds in the part of the fuel gas flow path, and the part is cooled by the endothermic effect of the reforming reaction to lower the temperature. Therefore, the part is the highest temperature part where the temperature of the three-layer plate is highest in the conventional fuel cell,
If it is configured to be located at a portion where the electrolyte layers are overlapped in the arrangement direction, the temperature of the highest temperature portion can be reduced. Therefore, the temperature difference in the plane direction of the three-layer plate can be suppressed.

【0019】例えば、従来の燃料電池において、図10
に示すような温度分布が生じている場合、前記最高温部
分は、前記三層状板の面方向において、燃料ガス流路の
供給用開口が位置する端縁と酸素含有ガス流路の供給用
開口が位置する端縁とで形成される角部側の部分に形成
されるので、その角部側の部分に前記一部分を位置させ
るように構成する。又、酸素含有ガス流路を通流する酸
素含有ガスの流量が多くなると、酸素含有ガス流路の供
給用開口から排出用開口に向かう方向に沿って、排出用
開口側ほど高くなる温度分布が生じて、前記最高温部分
は、前記三層状板の面方向において、燃料ガス流路の供
給用開口が位置する端縁と酸素含有ガス流路の排出用開
口が位置する端縁とで形成される角部側の部分に形成さ
れるので、その角部側の部分に前記一部分を位置させる
ように構成する。
For example, in a conventional fuel cell, FIG.
When the temperature distribution as shown in the above occurs, the highest temperature portion is, in the surface direction of the three-layer plate, the edge where the supply opening of the fuel gas passage is located and the supply opening of the oxygen-containing gas passage. Is formed at a corner-side portion formed by the end edge at which is located, so that the portion is located at the corner-side portion. Further, as the flow rate of the oxygen-containing gas flowing through the oxygen-containing gas flow path increases, the temperature distribution increases along the direction from the supply opening to the discharge opening of the oxygen-containing gas flow path toward the discharge opening. The highest temperature portion is formed by an edge where the supply opening of the fuel gas flow path is located and an edge where the discharge opening of the oxygen-containing gas flow path is located in the plane direction of the three-layer plate. Since it is formed on the corner side portion, the portion is located on the corner side portion.

【0020】請求項6に記載の特徴構成によれば、流路
形成部材を、電解質層における酸素極に臨む側に酸素含
有ガス流路を区画形成すべく付設して、燃料電池のセル
を形成する。そして、そのようなセルの複数を、互いに
間隔を隔てた状態で、厚み方向に並べて設けると、並び
方向に隣接するセル間に、酸素含有ガス流路とは区画さ
れた燃料ガス流路を形成することができる。つまり、流
路形成部材を1個の電解質層に対して1個付設してセル
を形成し、そのようなセルの複数を、互いに間隔を隔て
た状態で、厚み方向に並べて設けるだけで、電解質層夫
々に対して、酸素含有ガス流路及び燃料ガス流路を備え
させることができるのである。従って、複数の電解質層
を、電解質層夫々に対して酸素含有ガス流路及び燃料ガ
ス流路を備えさせた状態で、厚み方向に並べて設けるた
めの構造を極めて簡略化することができる。
According to the characteristic configuration of the sixth aspect, the flow path forming member is provided so as to define the oxygen-containing gas flow path on the side of the electrolyte layer facing the oxygen electrode to form a cell of the fuel cell. I do. When a plurality of such cells are arranged side by side in the thickness direction in a state where they are spaced apart from each other, a fuel gas flow path separated from the oxygen-containing gas flow path is formed between the cells adjacent in the arrangement direction. can do. That is, a cell is formed by attaching one flow path forming member to one electrolyte layer, and a plurality of such cells are arranged side by side in the thickness direction at a distance from each other, and the An oxygen-containing gas flow path and a fuel gas flow path can be provided for each layer. Therefore, the structure for providing a plurality of electrolyte layers in the thickness direction with the oxygen-containing gas flow path and the fuel gas flow path provided for each of the electrolyte layers can be extremely simplified.

【0021】更に、セルの並び方向に隣接するセル間
に、両側のセルを導電状態に接続すべく、気体の通流を
許容するように形成された柔軟性導電材が充填されてい
る。従って、燃料電池の運転に伴って、温度が上昇し
て、燃料電池を構成する各構成部材が膨張したり反った
りしても、柔軟性導電材の柔軟性によって、セルと柔軟
性導電材との間の接触状態を良好に維持して、隣接する
セル同士の電気的接続状態を常に良好に保つことがで
き、電力のロスを抑制することができるようになった。
Further, between adjacent cells in the cell arrangement direction, a flexible conductive material formed so as to allow gas flow is filled so as to connect the cells on both sides in a conductive state. Therefore, even if the temperature rises with the operation of the fuel cell and each component constituting the fuel cell expands or warps, the flexibility of the flexible conductive material allows the cell and the flexible conductive material to be separated from each other. , The electrical connection between adjacent cells can always be maintained in a favorable state, and power loss can be suppressed.

【0022】上述のように構成することにより、構造を
簡略化するとともに電力のロスを抑制した燃料電池にお
いて、本発明を実施すると、出力の増大の面においても
向上が図れるので、極めて実用性の高い燃料電池を提供
することができるようになった。
With the above-described configuration, in a fuel cell in which the structure is simplified and the power loss is suppressed, when the present invention is implemented, an improvement in output can be achieved. It has become possible to provide a high fuel cell.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔第1実施形態〕以下、図1ないし図7に基づいて、本
発明の第1の実施の形態を説明する。一方の面に酸素極
2を備え且つ他方の面に燃料極3を備えた矩形板状の固
体電解質層1の複数を、酸素極1に臨む側に酸素含有ガ
ス流路sを形成し、且つ、燃料極3に臨む側に燃料ガス
流路fを形成するように区画する導電性を備えた流路形
成部材としての導電性セパレータ4を、隣接する電解質
層1間に位置させた状態で、互いに間隔を隔てて厚み方
向に並べて設けて、セル集合体NCを形成してある。酸
素含有ガス流路sの供給用開口si及び排出用開口so
を、固体電解質層1における、一方の対向する一対の端
縁部夫々に各別に設け、燃料ガス流路fの供給用開口f
i及び排出用開口foを、固体電解質層1における、他
方の対向する一対の端縁部夫々に各別に設け、導電性セ
パレータ4と燃料極3との間に、気体の通流を許容する
ように形成された柔軟性導電材5を充填してある。
[First Embodiment] Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. A plurality of rectangular plate-shaped solid electrolyte layers 1 provided with an oxygen electrode 2 on one surface and a fuel electrode 3 on the other surface, and an oxygen-containing gas flow path s formed on the side facing the oxygen electrode 1; In a state where a conductive separator 4 as a flow path forming member having conductivity that partitions the fuel gas flow path f on the side facing the fuel electrode 3 is positioned between the adjacent electrolyte layers 1, The cell assembly NC is formed so as to be arranged in the thickness direction at an interval from each other. Supply opening si and discharge opening so of the oxygen-containing gas flow path s
Are provided separately at each of a pair of opposed edge portions of the solid electrolyte layer 1, and the supply opening f of the fuel gas flow path f is provided.
i and a discharge opening fo are separately provided at each of a pair of opposite edges of the solid electrolyte layer 1 so as to allow gas flow between the conductive separator 4 and the fuel electrode 3. Is filled with the flexible conductive material 5 formed in the above.

【0024】本発明においては、柔軟性導電材5を充填
した、導電性セパレータ4と燃料極3との間において、
燃料極3に対して固体電解質層1の並び方向に間隔を隔
てた位置に、気体の通流抵抗が柔軟性導電材5よりも小
になるように構成して、固体電解質層1における面方向
の温度差を抑制すべく燃料ガス又は酸素含有ガスを通流
させる温度差抑制用通流部Pを設けてある。
In the present invention, between the conductive separator 4 filled with the flexible conductive material 5 and the fuel electrode 3,
At a position spaced apart from the fuel electrode 3 in the direction in which the solid electrolyte layers 1 are arranged, the gas flow resistance is configured to be smaller than that of the flexible conductive material 5 so that the surface direction in the solid electrolyte layer 1 Is provided with a temperature difference suppressing passage P through which the fuel gas or the oxygen-containing gas flows to suppress the temperature difference.

【0025】先ず、図1に基づいて、燃料電池のセルC
について説明を加える。矩形板状の固体電解質層1の一
方の面に、固体電解質層1における向かい合う一対の側
縁夫々に側縁全長にわたる電解質層露出部1aを形成す
る状態で、膜状又は板状の酸素極2を一体的に付設し、
且つ、他方の面に膜状又は板状の燃料極3を、全面又は
ほぼ全面にわたって一体的に付設して、酸素極2と燃料
極3とから起電力を得るための矩形の三層状板Ceを形
成してある。
First, referring to FIG. 1, the cell C of the fuel cell
Is added. A film-shaped or plate-shaped oxygen electrode 2 is formed on one surface of a rectangular plate-shaped solid electrolyte layer 1 in such a manner that a pair of opposed side edges of the solid electrolyte layer 1 each have an electrolyte layer exposed portion 1a extending over the entire side edge. Is attached integrally,
Further, a film-shaped or plate-shaped fuel electrode 3 is integrally attached to the other surface over the entire surface or almost the entire surface, and a rectangular three-layer plate Ce for obtaining an electromotive force from the oxygen electrode 2 and the fuel electrode 3 is provided. Is formed.

【0026】そして、三層状板Ceにおける酸素極2に
臨む側に、酸素含有ガス流路sとして機能するセル内流
路xを区画形成すべく、導電性セパレータ4を付設し
て、矩形板状の燃料電池のセルCを形成してある。更に
説明を加えると、導電性セパレータ4は、板状部4a
と、その板状部4aの両端夫々に位置する一対の帯状突
起部4bと、それら一対の帯状突起部4bの間に位置す
る複数の凸条部4cを備える状態で導電性材料にて一体
形成してある。その導電性セパレータ4を、複数の凸条
部4c夫々が酸素極2と接触する状態で、一対の帯状突
起部4b夫々を両電解質層露出部1a夫々に貼り付ける
ことにより、セルCを形成してある。そして、酸素極2
と導電性セパレータ4とを導電状態に接続するととも
に、酸素極2と導電性セパレータ4との間に、セルCに
おける一方の向かい合う一対の端面において開き、他方
の向かい合う一対の端面において閉じた酸素含有ガス流
路sを形成してある。尚、酸素含有ガス流路sの一対の
端部開口のうちの一方を酸素含有ガスの供給用開口si
として、他方を酸素含有ガスの排出用開口soとして夫
々使用する。
On the side of the three-layer plate Ce facing the oxygen electrode 2, a conductive separator 4 is provided so as to define an in-cell passage x functioning as an oxygen-containing gas passage s. The cell C of the fuel cell is formed. To further explain, the conductive separator 4 is formed of a plate-like portion 4a.
And a pair of band-shaped protrusions 4b located at both ends of the plate-shaped portion 4a and a plurality of ridges 4c positioned between the pair of band-shaped protrusions 4b. I have. A cell C is formed by attaching the pair of band-shaped protrusions 4b to each of the electrolyte layer exposed portions 1a in a state where the conductive separator 4 is in contact with the oxygen electrode 2 with each of the plurality of ridges 4c. It is. And oxygen electrode 2
And the conductive separator 4 are connected in a conductive state, and between the oxygen electrode 2 and the conductive separator 4, an oxygen-containing material is opened at one pair of opposite end surfaces of the cell C and closed at the other pair of opposite end surfaces. A gas flow path s is formed. Note that one of the pair of end openings of the oxygen-containing gas flow path s is connected to the oxygen-containing gas supply opening si.
The other is used as an opening for discharging the oxygen-containing gas so.

【0027】従って、酸素含有ガス流路sにおいては、
酸素含有ガスは、セルCにおける前記開口端縁に沿った
方向の流路幅の全幅にわたって、供給用開口siから排
出用開口soに向かって直線状に通流する。尚、以下の
説明においては、セルCにおいて、酸素含有ガス流路s
の端部開口が位置する端縁を開口端縁、酸素含有ガス流
路sが閉じた端面を閉塞端面と夫々略記する。
Therefore, in the oxygen-containing gas flow path s,
The oxygen-containing gas flows linearly from the supply opening si to the discharge opening so over the entire width of the flow path in the cell C in the direction along the opening edge. In the following description, in the cell C, the oxygen-containing gas flow path s
The edge where the end opening is located is referred to as an opening edge, and the end face where the oxygen-containing gas flow path s is closed is referred to as a closed end face.

【0028】固体電解質層1は、3〜10モル%程度の
Ytを固溶させた正方晶又は立方晶のZrO2 から成
り、酸素極2はLaMnO3 から成り、燃料極3はNi
とZrO2 のサーメットから成る。又、導電性セパレー
タ4は、耐酸化性及び耐還元性に優れたLaCrO3
ら成る。
The solid electrolyte layer 1 is made of tetragonal or cubic ZrO 2 in which about 3 to 10 mol% of Yt is dissolved, the oxygen electrode 2 is made of LaMnO 3 , and the fuel electrode 3 is made of Ni.
And a cermet of ZrO 2 . The conductive separator 4 is made of LaCrO 3 having excellent oxidation resistance and reduction resistance.

【0029】次に、図2ないし図5に基づいて、セルC
の複数を、隣接するもの同士の間に燃料ガス流路fとし
て機能するセル間流路yを形成すべく互いに間隔を隔て
た状態で、厚み方向に並べて設けて、セル集合NCを形
成するための構造について説明する。セルCの複数を、
前記一対の開口端縁夫々に各別に配置される一対の間隔
保持部材9によって互いに間隔を隔てて保持する状態
で、厚み方向に並べて設け、そのセル並び方向(電解質
層1の並び方向に相当する)に隣接するセルC間夫々に
は、気体の通流を許容する状態に形成された柔軟性導電
材5を充填してある。そして、柔軟性導電材5により、
セル並び方向に隣接するセルC同士を導電状態に接続し
ている。
Next, based on FIG. 2 to FIG.
Are arranged in the thickness direction at intervals so as to form an inter-cell flow path y functioning as a fuel gas flow path f between adjacent ones to form a cell set NC. Will be described. A plurality of cells C,
The cells are arranged in the thickness direction in a state where they are held at a distance from each other by a pair of space holding members 9 separately arranged at the pair of opening edges, respectively, and are arranged in the cell thickness direction (corresponding to the direction in which the electrolyte layers 1 are arranged). Each of the cells C adjacent to (1) is filled with a flexible conductive material 5 formed to allow gas flow. And by the flexible conductive material 5,
The cells C adjacent to each other in the cell arrangement direction are connected in a conductive state.

【0030】セル並び方向に隣接するセルC間の両側
を、一対の間隔保持部材9により仕切ることにより、セ
ル並び方向に隣接するセルC間に、燃料ガス流路fを形
成してある。燃料ガス流路fは、セルCの両方の開口端
縁側において、一対の間隔保持部材9によって閉じ、セ
ルCの両方の閉塞端面夫々の側において開けてある。
尚、燃料ガス流路fの一対の端部開口のうちの一方を、
燃料ガスの供給用開口fiとして、他方を、燃料ガスの
排出用開口foとして夫々使用する。
A fuel gas flow path f is formed between the cells C adjacent in the cell arrangement direction by partitioning both sides between the cells C adjacent in the cell arrangement direction with a pair of spacing members 9. The fuel gas flow path f is closed by a pair of spacing members 9 on both sides of the opening of the cell C, and is opened on both sides of both closed end faces of the cell C.
Note that one of the pair of end openings of the fuel gas flow path f is
The other is used as the fuel gas supply opening fi and the other is used as the fuel gas discharge opening fo.

【0031】従って、酸素含有ガス流路sの供給用開口
si及び排出用開口soを、固体電解質層1における、
一方の対向する一対の端縁部夫々に各別に設け、燃料ガ
ス流路fの供給用開口fi及び排出用開口foを、固体
電解質層1における、他方の対向する一対の端縁部夫々
に各別に設けてある。
Accordingly, the supply opening si and the discharge opening so of the oxygen-containing gas flow path s are formed in the solid electrolyte layer 1
The supply opening fi and the discharge opening fo of the fuel gas flow path f are separately provided at each of a pair of opposed edges, and each of the pair of opposed edges of the solid electrolyte layer 1 is provided at the other opposed pair of edges. It is provided separately.

【0032】柔軟性導電材5について、説明を加える。
図6及び図7にも示すように、柔軟性導電材5に備えさ
せる温度差抑制用通流部Pは、供給用開口fiから供給
された燃料ガスを、排出用開口foの手前及び供給用開
口fiの手前夫々においてUターンさせて、供給用開口
fiと排出用開口foとの間を1.5往復させる状態で
通流させてから、排出用開口foから排出させるように
構成してある。
The flexible conductive material 5 will be described.
As shown also in FIGS. 6 and 7, the temperature difference suppressing flow portion P provided in the flexible conductive material 5 transfers the fuel gas supplied from the supply opening fi to a position before the discharge opening fo and to the supply opening fi. A U-turn is made in front of each of the openings fi to allow a flow of 1.5 times back and forth between the supply opening fi and the discharge opening fo, and then discharge from the discharge opening fo. .

【0033】温度差抑制用通流部Pは、柔軟性導電材5
における、セル並び方向の中間部に対応する部分に、空
隙部Vを備えさせることにより、設けるようにしてあ
る。柔軟性導電材5は、空隙部Vを構成する凹部vを一
方の面に備える第1導電性構成部材5Aと、その第1導
電性構成部材5Aに重ねられてその凹部vを閉じるよう
に構成した第2導電性構成部材5Bとにセル並び方向に
2分割してある。そして、それら第1導電性構成部材5
Aと第2導電性構成部材5Bとを重ねて、第1導電性構
成部材5Aの凹部vを第2導電性構成部材5Bにて閉じ
ることにより空隙部Vを形成するように構成してある。
つまり、第1導電性構成部材5Aの凹部v、第2導電性
構成部材5Bにおける第1導電性構成部材5A側の面が
夫々空隙部構成部分として機能する。
The temperature difference suppressing passage P is made of a flexible conductive material 5
Is provided with a gap portion V at a portion corresponding to an intermediate portion in the cell arrangement direction. The flexible conductive material 5 has a first conductive component 5A provided on one surface with a concave portion v forming a void portion V, and is configured so as to overlap the first conductive component 5A and close the concave portion v. The second conductive component 5B is divided into two in the cell arrangement direction. Then, the first conductive constituent members 5
A and the second conductive component 5B are overlapped with each other, and the concave portion v of the first conductive component 5A is closed by the second conductive component 5B to form the gap V.
That is, the concave portion v of the first conductive component 5A and the surface of the second conductive component 5B on the first conductive component 5A side function as a gap component.

【0034】第1導電性構成部材5Aは、セルCの面積
と略同面積の矩形板状で、その一方の面に凹部vを備え
るように、Niのフェルト状材をプレス成形することに
より形成してある。凹部vは、一端部が燃料ガス流路f
の供給用開口fiに位置する端面で開き、燃料ガス流路
fの排出用開口foに向かって直線状に延びて、排出用
開口foの手前でUターンし、更に、供給用開口fiに
向かって向かって直線状に延びて、供給用開口fiの手
前でUターンし、更に、排出用開口foに向かって直線
状に延びて、他端部が排出用開口foに位置する端面に
開く蛇行状に形成してある。そして、その蛇行状の凹部
vの5個を、セルCの閉塞端縁に沿う方向に並べて形成
してある。第2導電性構成部材5Bは、第1導電性構成
部材5Aと同面積の矩形板状に、Niのフェルト状材を
プレス成形することにより形成してある。
The first conductive constituent member 5A is formed in a rectangular plate shape having substantially the same area as the cell C, and is formed by press-forming a Ni felt material so as to have a concave portion v on one surface thereof. I have. One end of the recess v has a fuel gas flow path f.
Open at the end face located at the supply opening fi, and extend linearly toward the discharge opening fo of the fuel gas flow path f, make a U-turn before the discharge opening fo, and further toward the supply opening fi. Meandering in front of the supply opening fi, and further linearly extending toward the discharge opening fo, and having the other end opening at the end face located at the discharge opening fo. It is formed in a shape. The five meandering concave portions v are arranged side by side in the direction along the closed edge of the cell C. The second conductive component 5B is formed by press-forming a Ni felt material into a rectangular plate having the same area as the first conductive component 5A.

【0035】間隔保持部材9について、説明を加える。
間隔保持部材9は、セルCにおける開口端縁の長さより
も長い長さを有する板状に形成してある。そして、一対
の間隔保持部材9夫々を、セルC同士の間において、セ
ルCの開口端縁に沿わして、両端部がセルCの閉塞端面
から突出する状態で配置することにより、セルC同士の
間の間隔を保持するように構成してある。
The spacing member 9 will be described.
The spacing member 9 is formed in a plate shape having a length longer than the length of the opening edge of the cell C. By arranging each of the pair of spacing members 9 between the cells C along the opening edge of the cell C with both ends protruding from the closed end face of the cell C, It is configured so as to maintain the interval between.

【0036】更に、間隔保持部材9夫々に、枠形成部材
Wを連結することにより、セル並び方向に一連に連なる
とともに、酸素含有ガス流路s夫々と夫々の端部開口に
よって連通する通路を二つ形成する。そして、供給用開
口siとして使用する端部開口が臨む方の通路を、酸素
含有ガス流路s夫々に酸素含有ガスを供給するための供
給用酸素側ガス通路Siとして、排出用開口soとして
使用する端部開口が臨む方の通路を、酸素含有ガス流路
s夫々から酸素含有ガスを排出させるための排出用酸素
側ガス通路Seとして使用するようにしてある。
Further, by connecting the frame forming member W to each of the spacing members 9, two passages connected in series in the cell arranging direction and communicating with the oxygen-containing gas flow paths s by respective end openings are formed. Form one. The passage facing the end opening used as the supply opening si is used as the supply oxygen side gas passage Si for supplying the oxygen-containing gas to each of the oxygen-containing gas flow paths s, and is used as the discharge opening so. The passage facing the end opening is used as a discharge oxygen side gas passage Se for discharging the oxygen-containing gas from each of the oxygen-containing gas passages s.

【0037】枠形成部材Wについて説明を加える。枠形
成部材Wは、間隔保持部材9におけるセルCの閉塞端面
から突出した突出端部9aに夫々連結する一対の第1角
棒状体10と、それら一対の第1角棒状体10夫々の端
部同士を連結する第2角棒状体11とから構成してあ
る。第1角棒状体10及び第2角棒状体11夫々におけ
る、セル並び方向の厚さは、セルCの厚さと間隔保持部
材9の厚さを加えた厚さと同一にしてある。そして、第
1角棒状体10夫々の一端部には、間隔保持部材9の突
出端部9aを嵌め込むために、間隔保持部材9の厚さと
同一深さの凹部10aを形成してある。従って、第1角
棒状体10において、凹部10aを形成することにより
残された薄肉部分の厚さは、セルCの厚さと同一にな
る。第1角棒状体10夫々の他端部には、凹部10bを
形成し、第2角棒状体11の両端部夫々には、第1角棒
状体10の凹部10bを嵌め込むための凹部11aを形
成してある。
The frame forming member W will be further described. The frame forming member W includes a pair of first square rods 10 connected to projecting ends 9 a of the spacing member 9 projecting from the closed end surface of the cell C, and an end of each of the pair of first square rods 10. And a second rectangular rod-shaped body 11 connecting the two. The thickness of each of the first square rod 10 and the second square rod 11 in the cell arrangement direction is the same as the sum of the thickness of the cell C and the thickness of the spacing member 9. A recess 10a having the same depth as the thickness of the spacing member 9 is formed at one end of each of the first square rod-shaped members 10 to fit the protruding end 9a of the spacing member 9. Therefore, in the first square rod-shaped body 10, the thickness of the thin portion left by forming the concave portion 10a becomes the same as the thickness of the cell C. A concave portion 10b is formed at the other end of each of the first rectangular rod-shaped members 10, and a concave portion 11a for fitting the concave portion 10b of the first rectangular rod-shaped member 10 is formed at each of both ends of the second rectangular rod-shaped member 11. It is formed.

【0038】第1角棒状体10を間隔保持部材9の突出
端部9aに連結する際には、第1角棒状体10の側面を
セルCの閉塞端面に密着させるようにしてあり、そのこ
とによって、酸素含有ガス流路sの端部開口と、燃料ガ
ス流路fの端部開口とを気密状態に仕切るようにしてあ
る。
When connecting the first square rod 10 to the protruding end 9a of the spacing member 9, the side surface of the first square rod 10 is brought into close contact with the closed end face of the cell C. Thereby, the end opening of the oxygen-containing gas passage s and the end opening of the fuel gas passage f are partitioned in an airtight state.

【0039】更に、間隔保持部材9夫々の一端部には、
凹溝9mを形成し、第1角棒状体10夫々の側部には、
セル並び方向視において、間隔保持部材9の凹溝9mに
重なる状態で、凹溝10mを形成してあり、それら凹溝
9m及び凹溝10mをセル並び方向に一連に連ならせ
て、後述するガス通路形成部材12の側端縁を嵌め込む
ための溝Mを一対形成してある。
Further, at one end of each of the spacing members 9,
A concave groove 9m is formed, and on each side of the first square rod-shaped body 10,
A groove 10m is formed so as to overlap with the groove 9m of the spacing member 9 when viewed in the cell arrangement direction, and the groove 9m and the groove 10m are connected in series in the cell arrangement direction, and will be described later. A pair of grooves M for fitting the side edges of the gas passage forming member 12 is formed.

【0040】間隔保持部材9、第1角棒状体10及び第
2角棒状体11夫々は、電気絶縁性を備え、耐熱性、耐
酸化性及び耐還元性に優れたセラミックから成る。
Each of the spacing member 9, the first rectangular bar 10 and the second rectangular bar 11 is made of ceramic having electrical insulation and excellent heat resistance, oxidation resistance and reduction resistance.

【0041】次に、図2ないし図5に基づいて、セル集
合体NCから電力を取り出すための構成について説明す
る。セル集合体NCにおけるセル並び方向の両端部夫々
のセルCに対して、柔軟性導電材5を接触させる状態で
設け、更に、集電部支持部材14に支持させた集電部1
5を柔軟性導電材5に接触させる状態で設けて、集電部
15によって、電力を取り出すように構成してある。説
明を加えると、集電部15を支持させた集電部支持部材
14を、セルCと同様に、間隔保持部材9と枠形成部材
Wによって、セル集合体NCに対して保持してある。
Next, a configuration for extracting power from the cell assembly NC will be described with reference to FIGS. The current collector 1 provided with the flexible conductive material 5 in contact with each of the cells C at both ends in the cell array direction of the cell assembly NC, and further supported by the current collector support member 14.
5 is provided so as to be in contact with the flexible conductive material 5, and power is taken out by the current collector 15. In addition, similarly to the cell C, the current collecting unit supporting member 14 supporting the current collecting unit 15 is held on the cell assembly NC by the spacing member 9 and the frame forming member W.

【0042】次に、図2ないし図5に基づいて、燃料電
池の全体構成について説明する。基台16上に、間隔保
持部材9と枠形成部材Wによって形成される枠と同一枠
形状の枠部材17の一対を載置する。そして、セル集合
体NCを、間隔保持部材9と枠形成部材Wによって形成
される枠の開口部を枠部材17の開口部に合わせる状態
で、一対の枠部材17上に載置する。枠部材17にも、
溝Mを形成するための凹溝17mを形成してある。
Next, the overall structure of the fuel cell will be described with reference to FIGS. A pair of frame members 17 having the same frame shape as the frame formed by the spacing member 9 and the frame forming member W is placed on the base 16. Then, the cell assembly NC is placed on the pair of frame members 17 in a state where the opening of the frame formed by the spacing member 9 and the frame forming member W is aligned with the opening of the frame member 17. The frame member 17 also has
A concave groove 17m for forming the groove M is formed.

【0043】そして、三方の側面部及び上面部を備えた
形状のガス通路形成部材12を、その両側の側端縁夫々
を両側の溝M夫々に嵌め込んだ状態で設けて、その内部
に、供給用開口fiとして機能させる端部開口によって
燃料ガス流路f夫々と連通する空間を区画形成し、その
空間を、燃料ガス流路f夫々に燃料ガスを供給するため
の供給用燃料側ガス通路Fiとして使用するようにして
ある。セル集合体NCの上端部において間隔保持部材9
及び枠形成部材Wにより形成される開口部を閉塞するよ
うに、蓋部材18を設けて、供給用酸素側ガス通路Si
及び排出用酸素側ガス通路Seを閉塞するようにしてあ
る。
Then, a gas passage forming member 12 having a shape having three side surfaces and a top surface is provided in a state where the side edges on both sides thereof are fitted into the grooves M on both sides, respectively. A space communicating with each of the fuel gas flow paths f is defined by an end opening functioning as a supply opening fi, and the space is formed as a supply fuel side gas passage for supplying fuel gas to each of the fuel gas flow paths f. It is used as Fi. A spacing member 9 at the upper end of the cell assembly NC
A cover member 18 is provided so as to close the opening formed by the frame forming member W, and the supply oxygen-side gas passage Si
Further, the discharge oxygen side gas passage Se is closed.

【0044】更に、セル集合体NCを内装する状態で、
有底角筒状体19を基台16上に載置してある。つま
り、基台16及び有底角筒状体19により、箱状体Bを
形成しあり、セル集合体NCを箱状体Bの内部に設けて
ある。セルC夫々の燃料ガス流路fの一対の開口端部の
うち、燃料ガスの排出用開口foとして機能させる方の
開口端部は、箱状体Bの内部に臨む状態となっている。
そして、箱状体Bの内部空間を、燃料ガス流路f夫々か
ら燃料ガスを排出させるための排出用燃料側ガス通路F
eとして使用するように構成してある。
Further, in a state where the cell assembly NC is installed,
The bottomed rectangular cylindrical body 19 is placed on the base 16. That is, the base 16 and the bottomed rectangular cylindrical body 19 form a box-shaped body B, and the cell assembly NC is provided inside the box-shaped body B. Of the pair of open ends of the fuel gas flow path f of each cell C, the open end that functions as the fuel gas discharge opening fo faces the inside of the box-shaped body B.
Then, a discharge fuel side gas passage F for discharging fuel gas from each of the fuel gas flow paths f through the internal space of the box-shaped body B is provided.
It is configured to be used as e.

【0045】供給用酸素側ガス通路Siには酸素含有ガ
ス供給管20を、排出用酸素側ガス通路Seには酸素含
有ガス排出管21を、基台16を介して夫々連通接続し
てある。又、供給用燃料側ガス通路Fiには燃料ガス供
給管22を、排出用燃料側ガス通路Feには燃料ガス排
出管23を、基台16を介して夫々連通接続してある。
酸素含有ガス供給管20から供給用酸素側ガス通路Si
に供給された酸素含有ガスは、供給用開口siから各酸
素含有ガス流路sに流入し、各酸素含有ガス流路sを通
流して、各排出用開口soから排出用酸素側ガス通路S
eに流出し、酸素含有ガス排出管21にて排出される。
一方、燃料ガス供給管22から供給用燃料側ガス通路F
iに供給された燃料ガスは、供給用開口fiから各燃料
流路fに流入し、各燃料流路fを通流して、各排出用開
口foから排出用燃料側ガス通路Feに流出し、燃料ガ
ス排出管23にて排出される。
An oxygen-containing gas supply pipe 20 is connected to the supply oxygen-side gas passage Si, and an oxygen-containing gas discharge pipe 21 is connected to the discharge oxygen-side gas passage Se via the base 16. A fuel gas supply pipe 22 is connected to the supply fuel gas passage Fi, and a fuel gas discharge pipe 23 is connected to the discharge fuel gas passage Fe via the base 16.
Oxygen-containing gas passage Si for supply from oxygen-containing gas supply pipe 20
Is supplied to each oxygen-containing gas flow path s from the supply opening si, flows through each oxygen-containing gas flow path s, and is discharged from each discharge opening so to the discharge oxygen-side gas passage S.
e and is discharged through the oxygen-containing gas discharge pipe 21.
On the other hand, from the fuel gas supply pipe 22 to the supply fuel side gas passage F
The fuel gas supplied to i flows into each fuel passage f from the supply opening fi, flows through each fuel passage f, flows out from each discharge opening fo to the discharge fuel side gas passage Fe, The fuel gas is discharged from the fuel gas discharge pipe 23.

【0046】以下、図7に基づいて、酸素含有ガス流路
sにおける酸素含有ガスの流動形態、及び、燃料ガス流
路fにおける燃料ガスの流動形態について説明する。
尚、図7の(イ)は、セルCにおいて、導電性セパレー
タ4におけるセル並び方向の中間部で、面方向に部分的
に切り欠いた状態を示し、図7の(ロ)は、柔軟性導電
材5において、第1導電性構成部材5Aにおけるセル並
び方向の中間部で、面方向に部分的に切り欠いた状態を
示す。図7中において、酸素含有ガスの流れを実線の矢
印で、燃料ガスの流れを破線の矢印で示す。
The flow form of the oxygen-containing gas in the oxygen-containing gas flow path s and the flow form of the fuel gas in the fuel gas flow path f will be described below with reference to FIG.
FIG. 7A shows a state in which the cell C is partially cut out in the plane direction at an intermediate portion of the conductive separator 4 in the cell arrangement direction, and FIG. This shows a state in which the conductive material 5 is partially cut away in the plane direction at an intermediate portion of the first conductive constituent member 5A in the cell arrangement direction. In FIG. 7, the flow of the oxygen-containing gas is indicated by solid arrows, and the flow of the fuel gas is indicated by broken arrows.

【0047】図7の(イ)に示すように、酸素含有ガス
は、酸素含有ガス流路sを、その流路幅の全幅にわたっ
て、供給用開口siから排出用開口soに向かって直線
状に通流する。一方、供給用開口fiから供給された燃
料ガスは、柔軟性導電材5中の各蛇行状の空隙部Vの案
内によって、供給用開口fiと排出用開口foとの間を
1.5往復する状態で通流してから、排出用開口foか
ら排出される。空隙部V内を通流する燃料ガスは、柔軟
性導電材5に浸透して拡散し、燃料極2の全面にわたっ
て接触する。
As shown in FIG. 7A, the oxygen-containing gas flows through the oxygen-containing gas flow path s linearly from the supply opening si to the discharge opening so over the entire width of the flow path. Flow through. On the other hand, the fuel gas supplied from the supply opening fi reciprocates 1.5 times between the supply opening fi and the discharge opening fo by the guide of each meandering gap V in the flexible conductive material 5. After flowing in this state, it is discharged from the discharge opening fo. The fuel gas flowing through the gap V penetrates and diffuses into the flexible conductive material 5 and contacts the entire surface of the fuel electrode 2.

【0048】燃料ガスが空隙部Vを通流する過程で、燃
料ガス中の水素が電極反応を起こすので、空隙部Vを通
流する燃料ガス中の水素の含有率は、空隙部Vにおけ
る、最初の往路部分、復路部分、最後の往路部分の順に
小さくなる。従って、燃料極2において、供給用開口f
iと排出用開口foとを結ぶ方向と直交する方向に対し
ては、空隙部Vにおける、最初の往路部分、復路部分、
最後の往路部分の協働にて燃料ガスが供給されることに
なるので、電極反応は、燃料極2の全面にわたって均等
に起こることになる。
Since hydrogen in the fuel gas causes an electrode reaction during the flow of the fuel gas through the gap V, the content of hydrogen in the fuel gas flowing through the gap V is It becomes smaller in the order of the first outward section, the return section, and the last outward section. Therefore, in the fuel electrode 2, the supply opening f
In the direction perpendicular to the direction connecting i to the discharge opening fo, the first forward portion, the backward portion,
Since the fuel gas is supplied in cooperation with the final outward path, the electrode reaction occurs uniformly over the entire surface of the fuel electrode 2.

【0049】〔第2実施形態〕以下、図8に基づいて、
本発明の第2の実施の形態を説明する。本第2実施形態
においては、柔軟性導電材5以外は、上述の第1実施形
態と同様に構成してあるので、以下では、柔軟性導電材
5のみについて説明をして、その他の説明は省略する。
柔軟性導電材5に備えさせた温度差抑制用通流部Pは、
図8の(ロ)に示すように、燃料ガスを、燃料ガス流路
fにおいて、セル並び方向視における一部分に集中的に
流入させて、その一部分を通流させてから、他の部分を
通流させるように構成してある。
[Second Embodiment] Hereinafter, based on FIG.
A second embodiment of the present invention will be described. In the second embodiment, since the configuration other than the flexible conductive material 5 is the same as that of the above-described first embodiment, only the flexible conductive material 5 will be described below, and the other description will be omitted. Omitted.
The temperature difference suppressing flow portion P provided in the flexible conductive material 5 is:
As shown in FIG. 8 (b), the fuel gas is intensively introduced into a part of the fuel gas flow path f as viewed in the cell arrangement direction, passed through the part, and then passed through the other part. It is configured to flow.

【0050】つまり、従来の燃料電池において、図10
に示すような温度分布が生じている場合、前記最高温部
分は、セルCの面方向において、燃料ガス流路fの供給
用開口fiが位置する端縁部と、酸素含有ガス流路sの
供給用開口siが位置する端縁部とで形成される角部側
で、全体に対しておよそ1/4の面積の部分に形成され
る。そこで、前記一部分を、前記最高温部分とセル並び
方向で重なる部分に位置させるようにして、前記一部分
において、集中的に、炭化水素系ガスの改質反応を起こ
させ、その吸熱作用によってその部分の温度を下げるよ
うに構成してある。
That is, in the conventional fuel cell, FIG.
In the case where the temperature distribution as shown in FIG. 1 is generated, the highest temperature portion is located in the surface direction of the cell C, at the edge where the supply opening fi of the fuel gas flow path f is located, and at the position of the oxygen-containing gas flow path s. On the corner side formed by the edge where the supply opening si is located, it is formed in a portion having an area of about 4 of the whole. Therefore, the part is located in a part overlapping the highest temperature part in the cell arrangement direction, and in the part, a reforming reaction of the hydrocarbon gas is caused intensively, and the endothermic action causes the part to undergo the reforming reaction. Is configured to lower the temperature.

【0051】即ち、図8の(ロ)に示すように、燃料ガ
スを、燃料ガス流路fの供給用開口fiにおける、酸素
含有ガス流路sの供給用開口si側の部分から、燃料ガ
ス流路f内に流入させてから、燃料ガス流路f内を以下
のような通流経路にて通流させて、排出用開口foから
排出させるようにしてある。先ず、セルCの面方向にお
いて、燃料ガス流路fの供給用開口fiが位置する端縁
部と、酸素含有ガス流路sの供給用開口siが位置する
端縁部とで形成される角部側で、全体に対しておよそ1
/4の面積の部分(この部分が前記一部分に相当する)
に集中的に流入させて、その部分を蛇行状に通流させ、
その部分において集中的に炭化水素系ガスの改質反応を
起こさせる。続いて、燃料ガス流路fの供給用開口fi
が位置する端縁部と、酸素含有ガス流路sの排出用開口
soが位置する端縁部とで形成される角部側で、全体に
対しておよそ1/4の面積の部分を蛇行状に通流させ、
続いて、残りの1/2の面積の部分を、酸素含有ガス流
路sの供給用開口siが位置する端縁部と排出用開口s
oが位置する端縁部との間の略全幅にわたって、排出用
開口foに向かって直線状に通流させる。
That is, as shown in FIG. 8B, the fuel gas is supplied from the supply opening fi of the fuel gas flow path f to the fuel gas flow from the supply opening si side of the oxygen-containing gas flow path s. After flowing into the flow path f, the fuel gas flows through the fuel gas flow path f through the following flow path, and is discharged from the discharge opening fo. First, in the plane direction of the cell C, an angle formed by an edge where the supply opening fi of the fuel gas flow path f is located and an edge where the supply opening si of the oxygen-containing gas flow path s is located. On the part side, about 1 for the whole
/ 4 area part (this part corresponds to the part)
Intensively, and let that part flow in a meandering shape,
In that portion, the reforming reaction of the hydrocarbon gas is caused intensively. Subsequently, the supply opening fi of the fuel gas flow path f
On the corner side formed by the edge portion where is located and the edge portion where the discharge opening so of the oxygen-containing gas flow path s is located, a portion having an area of about 4 of the whole is meandering. Through
Subsequently, the remaining half of the area is divided into an edge portion where the supply opening si of the oxygen-containing gas flow path s is located and the discharge opening s.
It is made to flow linearly toward the discharge opening fo over substantially the entire width between the edge where o is located.

【0052】尚、燃料極3を構成するサーメット中のN
iが、燃料ガス中の炭化水素系ガスを水素ガスを含んだ
ガスに改質するための改質触媒として機能する。
The N in the cermet constituting the fuel electrode 3
i functions as a reforming catalyst for reforming the hydrocarbon-based gas in the fuel gas into a gas containing hydrogen gas.

【0053】温度差抑制用通流部Pは、第1実施形態と
同様に、柔軟性導電材5における、セル並び方向の中間
部に対応する部分に、空隙部Vを備えさせることによ
り、設けるようにしてある。更に、柔軟性導電材5は、
第1実施形態と同様に、空隙部Vを構成する凹部vを一
方の面に備える第1導電性構成部材5Aと、その第1導
電性構成部材5Aに重ねられてその凹部vを閉じるよう
に構成した第2導電性構成部材5Bとに、セル並び方向
に2分割してある。そして、それら第1導電性構成部材
5Aと第2導電性構成部材5bとを重ねて、第1導電性
構成部材5Aの凹部vを第2導電性構成部材5bにて閉
じることにより、空隙部Vを形成するように構成してあ
る。
As in the first embodiment, the temperature difference suppressing flow portion P is provided by providing a void V in a portion of the flexible conductive material 5 corresponding to an intermediate portion in the cell arrangement direction. It is like that. Further, the flexible conductive material 5
As in the first embodiment, a first conductive component 5A having a concave portion v that forms a gap V on one surface, and a first conductive component 5A that is superimposed on the first conductive component 5A so as to close the concave portion v. The second conductive constituent member 5B is divided into two in the cell arrangement direction. Then, the first conductive component 5A and the second conductive component 5b are overlapped with each other, and the concave portion v of the first conductive component 5A is closed by the second conductive component 5b, so that the gap V Is formed.

【0054】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 温度差抑制用通流部Pの通流経路の形状は、上
記の各実施形態において例示した形状に限定されるもの
ではなく、電解質層1における面方向の温度差を抑制す
ることができる形状に種々変更することができる。例え
ば、酸素含有ガス流路sは、上記の各実施形態と同様
に、酸素含有ガスが、電解質層1の端縁に沿った方向の
流路幅の全幅にわたって、供給用開口siから排出用開
口soに向かって直線状又は略直線状に通流するように
形成し、導電性セパレータ4と燃料極3との間に充填し
た柔軟性導電材5に、図9に示す如き通流経路の形状の
温度差抑制用通流部Pを設けてもよい。即ち、燃料ガス
を、燃料ガス流路fの供給用開口fiにおける、酸素含
有ガス流路sの排出用開口so側の部分から、燃料ガス
流路f内に流入させて、セルCの面方向において、酸素
含有ガス流路sの排出用開口so側に対応する部分を通
流させてから、酸素含有ガス流路sの供給用開口si側
に対応する部分を通流させるように形成する。この場
合、セルCの面方向において、酸素の含有率が小さい酸
素含有ガスが通流する部分は、水素の含有率が大きい燃
料ガスが通流し、酸素の含有率が大きい酸素含有ガスが
通流する部分は、水素の含有率が小さい燃料ガスが通流
することになるので、セルCにおける面方向の温度差を
小さくすることができる。
[Another Embodiment] Next, another embodiment will be described. (A) The shape of the flow path of the temperature difference suppressing flow portion P is not limited to the shape exemplified in each of the above embodiments, and the temperature difference in the surface direction in the electrolyte layer 1 may be suppressed. The shape can be variously changed. For example, as in the above embodiments, the oxygen-containing gas flow path s extends from the supply opening si to the discharge opening si over the entire width of the flow path width in the direction along the edge of the electrolyte layer 1. As shown in FIG. 9, a flexible conductive material 5 formed so as to flow straight or substantially straight toward so and filled between the conductive separator 4 and the fuel electrode 3 has a flow path shape as shown in FIG. 9. May be provided. That is, the fuel gas is caused to flow into the fuel gas flow path f from the portion of the supply opening fi of the fuel gas flow path f on the discharge opening so side side of the oxygen-containing gas flow path s, and the fuel gas flows in the plane direction of the cell C. In this case, the oxygen-containing gas flow path s is formed to flow through a portion corresponding to the discharge opening so side, and then to flow through a portion corresponding to the supply opening si side of the oxygen-containing gas flow path s. In this case, in the plane direction of the cell C, a portion through which the oxygen-containing gas having a small oxygen content flows flows through a fuel gas having a large hydrogen content and flows through an oxygen-containing gas having a large oxygen content. Since the fuel gas having a low hydrogen content flows through the portion where the gas flows, the temperature difference in the surface direction of the cell C can be reduced.

【0055】(ロ) 上記の第1実施形態においては、
温度差抑制用通流部Pは、燃料ガスを排出用開口foと
供給用開口fiとの間を1.5往復させる状態で通流さ
せるように構成する場合について例示したが、これに代
えて、2.5往復以上させる状態で通流させるように構
成してもよい。又、温度差抑制用通流部Pを5個、セル
Cの前記閉塞端縁に沿う方向に並べて設ける場合につい
て例示したが、その場合の温度差抑制用通流部Pの個数
は変更可能であり、4個以下でも6個以上でもよい。
(B) In the first embodiment,
The temperature difference suppressing passage P has been described as an example in which the fuel gas is caused to flow in a state of reciprocating 1.5 times between the discharge opening fo and the supply opening fi. , 2.5 reciprocations or more. Also, the case where five temperature difference suppressing flow passages P are provided side by side in the direction along the closed edge of the cell C has been exemplified, but the number of temperature difference suppression flow passages P in this case can be changed. Yes, four or less or six or more.

【0056】(ハ) 上記の第1実施形態においては、
温度差抑制用通流部Pにおける、酸素含有ガス流路sの
供給用開口siと排出用開口soとを結ぶ方向に並ぶ、
複数の流路部分夫々の流路断面積を、同一にする場合に
ついて例示したが、排出用開口so側ほど大になるよう
にしてもよい。この場合、セルCの面方向において、酸
素の含有率が小さい酸素含有ガスが通流する部分に対応
する部分は、温度差抑制用通流部Pを通流する燃料ガス
の流量が大きいので、燃料ガス中の水素の含有率の低下
の度合いが小さく、一方、酸素の含有率が大きい酸素含
有ガスが通流する部分に対応する部分は、温度差抑制用
通流部Pを通流する燃料ガスの流量が小さいので、燃料
ガス中の水素の含有率の低下の度合いが大きくなる。従
って、セルCにおける面方向の温度差を更に小さくする
ことができる。
(C) In the first embodiment,
In the temperature difference suppressing passage P, the oxygen-containing gas flow path s is arranged in a direction connecting the supply opening si and the discharge opening so,
The case where the cross-sectional area of each of the plurality of flow passage portions is the same has been described as an example. In this case, in the surface direction of the cell C, a portion corresponding to a portion through which the oxygen-containing gas having a small oxygen content flows has a large flow rate of the fuel gas flowing through the temperature difference suppressing flow portion P. The portion corresponding to the portion through which the oxygen-containing gas having a high oxygen content flows, while the degree of reduction in the hydrogen content in the fuel gas is small, is the fuel flowing through the temperature difference suppressing flow portion P. Since the gas flow rate is small, the degree of reduction in the hydrogen content in the fuel gas increases. Therefore, the temperature difference in the surface direction in the cell C can be further reduced.

【0057】(ニ) 上記の各実施形態においては、温
度差抑制用通流部Pを、柔軟性導電材5におけるセル並
び方向の中間部に設ける場合について例示したが、これ
に代えて、柔軟性導電材5における導電性セパレータ4
と接触する面部に設けてもよい。
(D) In each of the above embodiments, the case where the temperature difference suppressing flow portion P is provided in the middle of the flexible conductive material 5 in the cell arrangement direction has been described. Conductive separator 4 in conductive conductive material 5
May be provided on a surface portion that comes into contact with.

【0058】(ホ) 上記の各実施形態においては、温
度差抑制用通流部Pを、柔軟性導電材5に空隙部Vを備
えさせることにより設ける場合について例示したが、こ
れに代えて、柔軟性導電材5にそれよりも気体の通流抵
抗が小さい通気性の部材を備えさせることにより設けて
もよい。この場合、通気性の部材としては、柔軟性導電
材5と同様のNiのフェルト状材でもよいが、その他の
部材でもよく、導電性の有無は問わない。あるいは、N
i等の金属製の板状体を設け、その金属製の板状体に、
温度差抑制用通流部Pとして機能させる空隙部を備えさ
せてもよい。
(E) In each of the above embodiments, the case where the temperature difference suppressing flow portion P is provided by providing the flexible conductive material 5 with the void V has been exemplified. It may be provided by providing the flexible conductive material 5 with a gas-permeable member having a smaller gas flow resistance. In this case, the air-permeable member may be a felt-like material of Ni similar to the flexible conductive material 5, but may be another member, and it does not matter whether or not the member has conductivity. Or N
A metal plate such as i is provided, and the metal plate is
A void portion functioning as the temperature difference suppressing flow passage portion P may be provided.

【0059】(ヘ) 気体の通流を許容するための柔軟
性導電材5の形態は、種々変更可能である。例えば、ス
ポンジ状でもよい。柔軟性導電材5を形成する材料も、
種々変更可能である。例えば、Ni以外の、耐熱性及び
耐還元性に優れた金属のフェルト状材でもよい。あるい
は、耐熱性及び耐還元性に優れ、導電性を備えたセラミ
ックのフェルト状材でもよい。
(F) The form of the flexible conductive material 5 for permitting gas flow can be variously changed. For example, it may be in the form of a sponge. The material forming the flexible conductive material 5 is also
Various changes are possible. For example, a felt-like material made of metal other than Ni and having excellent heat resistance and reduction resistance may be used. Alternatively, a ceramic felt-like material having excellent heat resistance and reduction resistance and having conductivity may be used.

【0060】(ト) 柔軟性導電材5を、各部分が空隙
部Vを構成する空隙部構成部分を備えるように、セル並
び方向に分割し、且つ、分割した各部分を重ねることに
より空隙部Vを形成するように構成する場合において、
柔軟性導電材5を、各部分が空隙部Vを構成する空隙部
構成部分を備えるように、セル並び方向に分割する形態
は、上記の各実施形態において例示した形態以外にも種
々の形態が可能である。例えば、第1導電性構成部材5
Aを、更に、板状部と、空隙部Vを形成するためのスリ
ットを備えたスリット形成部とに2分割した形態でもよ
い。又、両方の部分夫々に空隙部Vを形成するための凹
部を備えるように2分割し、且つ、2分割した各部分を
重ねることにより夫々の凹部の開口部が重なって、空隙
部Vが形成されるような形態でもよい。
(G) The flexible conductive material 5 is divided in the cell arranging direction so that each portion has a void portion constituting the void portion V, and the divided portions are overlapped to form the void portion. In the case of configuring to form V,
The flexible conductive material 5 may be divided in the cell arranging direction such that each portion has a gap component that forms the gap V. There are various forms other than the forms exemplified in the above embodiments. It is possible. For example, the first conductive component 5
A may be further divided into a plate-shaped portion and a slit forming portion provided with a slit for forming the gap portion V. In addition, the gap V is formed by dividing the two into two so as to provide a recess for forming the gap V in each of the two portions, and by overlapping the two divided portions, the openings of the respective recesses overlap. It may be in such a form.

【0061】(チ) 温度差抑制用通流部Pにおける流
路横断面形状(通流方向と直交する面での断面形状)
は、上記の各実施形態において例示した矩形状に限定さ
れるものではなく、例えば、円形状や長円形状でもよ
い。
(H) Cross-sectional shape of the flow path in the temperature difference suppressing flow passage portion P (cross-sectional shape in a plane perpendicular to the flow direction)
Is not limited to the rectangular shape illustrated in each of the above embodiments, and may be, for example, a circular shape or an oval shape.

【0062】(リ) 上記の各実施形態においては、流
路形成部材と燃料極3との間のみに、柔軟性導電材5を
充填する場合について例示したが、流路形成部材と酸素
極2との間にも、柔軟性導電材5を充填して、温度差抑
制用通流部Pを設けてもよい。
(I) In each of the above embodiments, the case where the flexible conductive material 5 is filled only between the flow path forming member and the fuel electrode 3 has been described. Between them, the flexible conductive material 5 may be filled to provide the temperature difference suppressing flow portion P.

【0063】(ヌ) 上記の各実施形態においては、電
解質層1における酸素極2に臨む側に、酸素含有ガス流
路sを形成すべく流路形成部材4を付設する場合につい
て例示したが、電解質層1における燃料極3に臨む側に
も、燃料ガス流路fを形成すべく燃料ガス流路形成用の
流路形成部材を付設してもよい。この場合は、燃料ガス
流路形成用の流路形成部材と燃料極3との間に、柔軟性
導電材5を充填する構成となる。
(G) In each of the above embodiments, the case where the flow path forming member 4 is provided to form the oxygen-containing gas flow path s on the side facing the oxygen electrode 2 in the electrolyte layer 1 has been described. A flow path forming member for forming a fuel gas flow path may be additionally provided on the side of the electrolyte layer 1 facing the fuel electrode 3 to form the fuel gas flow path f. In this case, the flexible conductive material 5 is filled between the fuel electrode 3 and the flow path forming member for forming the fuel gas flow path.

【0064】(ル) 上記の各実施形態においては、流
路形成部材4を、電解質層1における酸素極2に臨む側
に酸素含有ガス流路sを区画形成すべく付設して、セル
Cを形成する場合について例示したが、これに代えて、
流路形成部材4を、電解質層1における燃料極3に臨む
側に燃料ガス流路fを区画形成すべく付設して、セルC
を形成してもよい。この場合は、セルCの複数を、隣接
するもの同士の間に、酸素含有ガス流路sを形成すべ
く、互いに間隔を隔てた状態で厚み方向に並べて設け、
柔軟性導電材5を、セル並び方向に隣接するセルC間に
充填する。
(L) In each of the above embodiments, the flow path forming member 4 is provided on the side of the electrolyte layer 1 facing the oxygen electrode 2 so as to define and form an oxygen-containing gas flow path s. Although the case of forming is exemplified, instead of this,
The flow path forming member 4 is provided on the side of the electrolyte layer 1 facing the fuel electrode 3 so as to define and define a fuel gas flow path f.
May be formed. In this case, a plurality of cells C are arranged side by side in the thickness direction at intervals so as to form an oxygen-containing gas flow path s between adjacent cells,
The flexible conductive material 5 is filled between adjacent cells C in the cell arrangement direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態にかかる燃料電池のセル
の構成を示す斜視図
FIG. 1 is a perspective view showing a configuration of a cell of a fuel cell according to a first embodiment of the present invention.

【図2】本発明の第1実施形態にかかる燃料電池のセル
集合体の構成を示す分解斜視図
FIG. 2 is an exploded perspective view showing a configuration of a cell assembly of the fuel cell according to the first embodiment of the present invention.

【図3】本発明の第1実施形態にかかる燃料電池の全体
構成を示す横断平面図
FIG. 3 is a cross-sectional plan view showing the entire configuration of the fuel cell according to the first embodiment of the present invention.

【図4】図3におけるイ−イ矢視図FIG. 4 is a view taken in the direction of the arrows in FIG. 3;

【図5】図3におけるロ−ロ矢視図FIG. 5 is a view as viewed from the direction of the arrow in FIG. 3;

【図6】本発明の第1実施形態にかかる柔軟性導電材の
構成を示す分解斜視図
FIG. 6 is an exploded perspective view showing a configuration of a flexible conductive material according to the first embodiment of the present invention.

【図7】本発明の第1実施形態にかかる燃料電池におけ
る酸素含有ガス及び燃料ガスの流動形態を説明する図
FIG. 7 is a diagram illustrating a flow form of an oxygen-containing gas and a fuel gas in the fuel cell according to the first embodiment of the present invention.

【図8】本発明の第2実施形態にかかる燃料電池におけ
る酸素含有ガス及び燃料ガスの流動形態を説明する図
FIG. 8 is a view for explaining a flow form of an oxygen-containing gas and a fuel gas in a fuel cell according to a second embodiment of the present invention.

【図9】別実施形態にかかる燃料電池における柔軟性導
電材の構成を示す平面図
FIG. 9 is a plan view showing a configuration of a flexible conductive material in a fuel cell according to another embodiment.

【図10】従来の燃料電池における三層状板の面方向に
おける温度分布を示す図
FIG. 10 is a diagram showing a temperature distribution in a plane direction of a three-layer plate in a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1 電解質層 2 酸素極 3 燃料極 4 流路形成部材 5 柔軟性導電材 5A,5B 各部分 f 燃料ガス流路 fi 供給用開口 fo 排出用開口 s 酸素含有ガス流路 si 供給用開口 so 排出用開口 C セル P 温度差抑制用通流部 V 空隙部 Reference Signs List 1 electrolyte layer 2 oxygen electrode 3 fuel electrode 4 flow path forming member 5 flexible conductive material 5A, 5B each part f fuel gas flow path fi supply opening fo discharge opening s oxygen-containing gas flow path si supply opening so discharge Opening C Cell P Temperature difference suppression flow passage V Void

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一方の面に酸素極を備え且つ他方の面に
燃料極を備えた矩形板状の電解質層の複数が、前記酸素
極に臨む側に酸素含有ガス流路を形成し、且つ、前記燃
料極に臨む側に燃料ガス流路を形成するように区画する
導電性を備えた流路形成部材を、隣接する電解質層間に
位置させた状態で、互いに間隔を隔てて厚み方向に並べ
て設けられ、 前記酸素含有ガス流路の供給用開口及び排出用開口が、
前記電解質層における、一方の対向する一対の端縁部夫
々に各別に設けられ、 前記燃料ガス流路の供給用開口及び排出用開口が、前記
電解質層における、他方の対向する一対の端縁部夫々に
各別に設けられ、 前記流路形成部材と前記燃料極との間、又は、前記流路
形成部材と酸素極との間に、気体の通流を許容するよう
に形成された柔軟性導電材が充填された燃料電池であっ
て、 前記柔軟性導電材が充填された、前記流路形成部材と前
記燃料極との間、又は、前記流路形成部材と酸素極との
間において、前記燃料極又は前記酸素極に対して前記電
解質層の並び方向に間隔を隔てた位置に、気体の通流抵
抗が前記柔軟性導電材よりも小になるように構成され
て、前記電解質層における面方向の温度差を抑制すべく
燃料ガス又は酸素含有ガスを通流させる温度差抑制用通
流部が設けられている燃料電池。
1. A plurality of rectangular plate-shaped electrolyte layers having an oxygen electrode on one surface and a fuel electrode on the other surface form an oxygen-containing gas flow path on a side facing the oxygen electrode, and A flow path forming member having conductivity that defines a fuel gas flow path on the side facing the fuel electrode is arranged in the thickness direction at an interval from each other while being positioned between adjacent electrolyte layers. The supply opening and the discharge opening of the oxygen-containing gas flow path are provided,
In the electrolyte layer, one opposed pair of edge portions is provided separately from each other, and a supply opening and a discharge opening of the fuel gas flow path are provided in the electrolyte layer in the other opposed pair of edge portions. Each of the flexible conductive members is separately provided, and is formed between the flow path forming member and the fuel electrode, or between the flow path forming member and the oxygen electrode, so as to allow gas to flow therethrough. A fuel cell filled with a material, wherein the flexible conductive material is filled, between the flow path forming member and the fuel electrode, or between the flow path forming member and the oxygen electrode, At a position spaced apart from the fuel electrode or the oxygen electrode in the direction in which the electrolyte layers are arranged, the gas flow resistance is configured to be smaller than that of the flexible conductive material, and the surface of the electrolyte layer Fuel gas or oxygen-containing gas to suppress the temperature difference in Fuel cell temperature difference suppression through flow section for flow is provided.
【請求項2】 前記温度差抑制用通流部が、前記柔軟性
導電材における、前記電解質層の並び方向の中間部に対
応する部分に、空隙部を備えさせることにより、設けら
れるように構成されている請求項1記載の燃料電池。
2. A structure in which the temperature difference suppressing flow portion is provided by providing a void portion in a portion of the flexible conductive material corresponding to an intermediate portion in a direction in which the electrolyte layers are arranged. The fuel cell according to claim 1, wherein:
【請求項3】 前記柔軟性導電材が、各部分が前記空隙
部を構成する空隙部構成部分を備えるように、前記電解
質層の並び方向に分割され、且つ、分割された各部分を
重ねることにより前記空隙部が形成されるように構成さ
れている請求項2記載の燃料電池。
3. The flexible conductive material is divided in the direction in which the electrolyte layers are arranged, and the divided parts are overlapped so that each part has a cavity part constituting the void part. 3. The fuel cell according to claim 2, wherein the gap is formed by the following.
【請求項4】 前記温度差抑制用通流部が、燃料ガス又
は酸素含有ガスを、前記排出用開口の手前及び前記供給
用開口の手前夫々においてUターンさせて、前記排出用
開口と前記供給用開口との間を往復させる状態で通流さ
せるように構成されている請求項1〜3のいずれか1項
に記載の燃料電池。
4. The flow opening for suppressing a temperature difference causes a fuel gas or an oxygen-containing gas to make a U-turn in front of the discharge opening and in front of the supply opening, respectively. The fuel cell according to any one of claims 1 to 3, wherein the fuel cell is configured to flow in a state of reciprocating between the fuel cell and the opening.
【請求項5】 前記柔軟性導電材が、前記流路形成部材
と前記燃料極との間に充填され、 前記供給用開口から前記燃料ガス流路に供給された燃料
ガス中の炭化水素系ガスが、前記燃料ガス流路内におい
て、水素ガスを含んだガスに改質されるように構成さ
れ、 前記温度差抑制用通流部が、燃料ガスを、前記燃料ガス
流路において、前記電解質層の並び方向視における一部
分に集中的に流入させて、その一部分を通流させてか
ら、他の部分を通流させるように構成されている請求項
1〜3のいずれか1項に記載の燃料電池。
5. A hydrocarbon-based gas in a fuel gas which is filled between the flow path forming member and the fuel electrode with the flexible conductive material, and is supplied to the fuel gas flow path from the supply opening. Is configured to be reformed into a gas containing hydrogen gas in the fuel gas flow path, wherein the temperature difference suppressing flow passage is configured to supply a fuel gas to the electrolyte layer in the fuel gas flow path. The fuel according to any one of claims 1 to 3, wherein the fuel is configured to flow intensively into a part as viewed in the arrangement direction, flow through the part, and then flow through the other part. battery.
【請求項6】 前記流路形成部材が、前記電解質層にお
ける前記酸素極に臨む側に、前記酸素含有ガス流路を区
画形成すべく付設されて、矩形板状の燃料電池のセルが
構成され、 前記セルの複数が、隣接するもの同士の間に、前記燃料
ガス流路を形成すべく、互いに間隔を隔てた状態で、厚
み方向に並べて設けられ、 前記柔軟性導電材が、前記セルの並び方向に隣接するセ
ル間に、充填されている請求項1〜5のいずれか1項に
記載の燃料電池。
6. The fuel cell according to claim 1, wherein the flow path forming member is provided on a side of the electrolyte layer facing the oxygen electrode so as to define the oxygen-containing gas flow path. A plurality of the cells are arranged side by side in a thickness direction at intervals to form the fuel gas flow path between adjacent ones, and the flexible conductive material is The fuel cell according to any one of claims 1 to 5, wherein a space is filled between cells adjacent in the arrangement direction.
JP9029971A 1996-06-20 1997-02-14 Fuel cell Pending JPH10228916A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9029971A JPH10228916A (en) 1997-02-14 1997-02-14 Fuel cell
EP97110080A EP0814528A3 (en) 1996-06-20 1997-06-18 Solid electrolyte fuel cell stack
US08/879,177 US5919584A (en) 1996-06-20 1997-06-20 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029971A JPH10228916A (en) 1997-02-14 1997-02-14 Fuel cell

Publications (1)

Publication Number Publication Date
JPH10228916A true JPH10228916A (en) 1998-08-25

Family

ID=12290858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029971A Pending JPH10228916A (en) 1996-06-20 1997-02-14 Fuel cell

Country Status (1)

Country Link
JP (1) JPH10228916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005013405A1 (en) * 2003-07-31 2006-09-28 トヨタ自動車株式会社 FUEL CELL STACK, FUEL CELL SYSTEM, AND METHOD FOR PRODUCING FUEL CELL STACK
KR100651216B1 (en) * 2005-11-23 2006-11-30 한국타이어 주식회사 Bipolar plate used in proton exchange membrane fuel cells having cooling channels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005013405A1 (en) * 2003-07-31 2006-09-28 トヨタ自動車株式会社 FUEL CELL STACK, FUEL CELL SYSTEM, AND METHOD FOR PRODUCING FUEL CELL STACK
KR100651216B1 (en) * 2005-11-23 2006-11-30 한국타이어 주식회사 Bipolar plate used in proton exchange membrane fuel cells having cooling channels

Similar Documents

Publication Publication Date Title
US6296962B1 (en) Design for solid oxide fuel cell stacks
KR101841335B1 (en) Fuel cell
JPS5931568A (en) Film cooling type fuel battery
US7618735B2 (en) Fuel cell with triangular buffers
JPH08162141A (en) Fuel cell
US7632594B2 (en) Solid oxide fuel cell with improved gas exhaust
US5919584A (en) Fuel cell
JP4897273B2 (en) Fuel cell
JPH10228916A (en) Fuel cell
JP3046775B2 (en) Fuel cell
JPH10302818A (en) Fuel cell
JP3081557B2 (en) Fuel cell
JPH10208758A (en) Fuel cell
JP2009129701A (en) Fuel cell module
US20230155143A1 (en) Fuel cell interconnect optimized for operation in hydrogen fuel
JP2018092910A (en) Manifold and fuel cell stack
JP4390373B2 (en) Fuel cell
JPH10106601A (en) Fuel cell
JPH06176785A (en) Fuel cell
JP6512749B2 (en) Fuel cell
JPH10302815A (en) Fuel cell and cell therefor
JPH09266008A (en) Generating system
JPH06223845A (en) Fuel cell
JPH10134840A (en) Fuel cell
JPH1125996A (en) Cell for fuel cell and fuel cell