JPH10227883A - Core support structure - Google Patents

Core support structure

Info

Publication number
JPH10227883A
JPH10227883A JP9033585A JP3358597A JPH10227883A JP H10227883 A JPH10227883 A JP H10227883A JP 9033585 A JP9033585 A JP 9033585A JP 3358597 A JP3358597 A JP 3358597A JP H10227883 A JPH10227883 A JP H10227883A
Authority
JP
Japan
Prior art keywords
control rod
rod guide
tube
fluid inertia
guide tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9033585A
Other languages
Japanese (ja)
Inventor
Shinichi Kashiwai
進一 柏井
Akihito Orii
明仁 折井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9033585A priority Critical patent/JPH10227883A/en
Publication of JPH10227883A publication Critical patent/JPH10227883A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve economy in producing and wasting, mechanical strength and operability of a boiling water reactor employing large fuel assemblies by arranging fluid inertia pipes in the upper part of control rod guide tubes. SOLUTION: In the upper part of cross shape control rod guide tubes 17 combined with fuel support metals 16, fluid inertia pipes 18 are arranged, whose upper part is supported with a fluid inertia pipe support grid 26 consisting of a ring 24 and a plate 25 so that horizontal vibration is prevented. Coolant elevates outside the cross shape control rod guide tubes 17 from the bottom of a pressure vessel, goes in the fluid inertia pipes 18 limited by the fuel support metals 16 and is guided by fuel assemblies. The fluid inertia pipes 18 give inertia to the coolant and improves flow stability in the channels. Especially, the improvement of the flow stability in the channels during natural circulation is remarkable. By this, a core support structure superior in economy in producing and wasting, mechanical strength and operability, etc., is obtained for a boiling water reactor employing large fuel assemblies.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炉心支持構造に関す
る。
The present invention relates to a core support structure.

【0002】[0002]

【従来の技術】図3に現行の沸騰水型原子炉の断面を示
した。沸騰水型原子炉は、原子炉を収納する圧力容器
1,多数の燃料集合体2を設置した炉心3,炉心3を囲
んで冷却材の流路を形成するシュラウド4,圧力容器1
とシュラウド4とで形成される環状流路の底部に設けた
複数のインターナルポンプ5(冷却材貿環ポンプ)、圧
力容器1の底部を貫通した制御棒駆動機構6により下部
プレナム7と炉心3の間を上下動される制御棒8,下部
プレナム7の制御棒8を収納してガイドする制御棒案内
管9,炉心3で発生した蒸気と水を分離する気水分離器
10及び蒸気乾燥器11等から成る。
2. Description of the Related Art FIG. 3 shows a cross section of a current boiling water reactor. The boiling water reactor includes a pressure vessel for accommodating a nuclear reactor, a core in which a large number of fuel assemblies 2 are installed, a shroud surrounding the reactor core 3 to form a coolant flow path, and a pressure vessel 1.
A plurality of internal pumps 5 (coolant coolant circulation pumps) provided at the bottom of an annular flow path formed by the lower plenum 7 and the core 3 by a control rod driving mechanism 6 penetrating the bottom of the pressure vessel 1. A control rod 8, which moves the control rod 8 up and down, a control rod guide tube 9 for storing and guiding the control rod 8 of the lower plenum 7, a steam-water separator 10 for separating steam and water generated in the reactor core 3, and a steam dryer. 11 and so on.

【0003】本発明に係わる炉心3の支持構造(図3の
A部)を図4に示した。圧力容器1の底部を貫通した制
御棒駆動機構6の最外周のハウジング6′が圧力容器1
に溶接されている。制御棒案内管9は円筒形で、上部は
全面開口しているが、下部には底板があり、底板に制御
棒駆動機構6の駆動軸12が貫通するノズル9′が設け
てある。
FIG. 4 shows a support structure (part A in FIG. 3) of the core 3 according to the present invention. The outermost housing 6 ′ of the control rod drive mechanism 6 penetrating the bottom of the pressure vessel 1
Welded to. The control rod guide tube 9 is cylindrical and has an upper surface that is entirely open, but has a bottom plate at the lower portion, and a nozzle 9 ′ through which the drive shaft 12 of the control rod drive mechanism 6 passes is provided on the bottom plate.

【0004】制御棒案内管9はコアプレート13に設け
た孔に差し込み、ノズル9′がハウジング6′に差し込
まれる。制御棒案内管9上部の開口部には燃料支持金具
14が差し込まれ、さらに、その上に燃料集合体2が載
せられる。したがって、燃料集合体2(炉心3)の重量
は燃料支持金具14,制御棒案内管9及びハウジング
6′を介して圧力容器1が支える。
The control rod guide tube 9 is inserted into a hole provided in the core plate 13, and a nozzle 9 'is inserted into the housing 6'. The fuel support 14 is inserted into the opening above the control rod guide tube 9, and the fuel assembly 2 is mounted thereon. Therefore, the weight of the fuel assembly 2 (core 3) is supported by the pressure vessel 1 via the fuel support fitting 14, the control rod guide tube 9 and the housing 6 '.

【0005】インターナルポンプ5から吐き出された冷
却材は制御棒案内管9の間を上昇して制御棒案内管9に
設けた孔と燃料支持金具14に設けた孔が一致した冷却
材流路15から燃料支持金具14に入り、燃料集合体2
に導かれる。
[0005] The coolant discharged from the internal pump 5 rises between the control rod guide pipes 9, and a coolant passage in which a hole provided in the control rod guide pipe 9 and a hole provided in the fuel support fitting 14 coincide. 15 enters the fuel support fitting 14, and the fuel assembly 2
It is led to.

【0006】このような現行の沸騰水型原子炉に対し
て、燃料効率向上を目的にして、大型の燃料集合体を採
用する沸騰水型原子炉が提案されている。図5に現行の
沸騰水型原子炉の炉心の一部の断面を示したが、燃料集
合体2の2辺にだけ制御棒8の十字翼8′が接してい
る。これに対して、大型の燃料集合体を採用した炉心の
断面は図6に示したように、燃料集合体2の4辺に制御
棒8の十字翼8′が接している。したがって、現行の沸
騰水型原子炉と同様に、円筒形の制御棒案内管9を採用
すると隣接の制御棒案内管9同士が干渉して構造として
成立しない。
With respect to such existing boiling water reactors, a boiling water reactor employing a large fuel assembly has been proposed for the purpose of improving fuel efficiency. FIG. 5 shows a cross section of a part of the core of the existing boiling water reactor. The cross wing 8 ′ of the control rod 8 is in contact with only two sides of the fuel assembly 2. On the other hand, as shown in FIG. 6, the cross section of the core employing the large fuel assembly has the cross wings 8 ′ of the control rod 8 in contact with four sides of the fuel assembly 2. Therefore, similarly to the existing boiling water reactor, when the cylindrical control rod guide tubes 9 are employed, the adjacent control rod guide tubes 9 interfere with each other, and the structure is not established.

【0007】そこで、制御棒案内管9同士の干渉を避け
るために特開昭63−83691 号公報では図7に示したよう
な燃料支持金具16と一体の十字型の制御棒案内管17
を提案している。この十字型制御棒案内管17の向きを
90度変えて組み合わせると、燃料支持金具16が炉心
3下部を覆い、コアプレート13のように冷却材流路の
制限と十字型制御棒案内管17上端の振動の拘束とを行
う。したがって、コアプレート13は不必要になる。図
7のB−B矢視図を図8に示したが、燃料支持金具16
の上に燃料集合体2が載るので、現行の沸騰水型原子炉
と同様に燃料集合体2(炉心3)の重量は燃料支持金具
16,制御棒案内管17及びハウジング6′を介して圧
力容器1が支える。
In order to avoid interference between the control rod guide tubes 9, Japanese Patent Application Laid-Open No. 63-83691 discloses a cross-shaped control rod guide tube 17 integral with the fuel support bracket 16 as shown in FIG.
Has been proposed. When the direction of the cross control rod guide tube 17 is changed by 90 degrees, the fuel support bracket 16 covers the lower part of the core 3, restricts the coolant flow path like the core plate 13, and sets the upper end of the cross control rod guide tube 17. Of vibration. Therefore, the core plate 13 becomes unnecessary. FIG. 8 is a view taken in the direction of arrows BB in FIG.
, The weight of the fuel assembly 2 (core 3) is controlled by the pressure through the fuel support bracket 16, the control rod guide tube 17 and the housing 6 ′, as in the current boiling water reactor. Container 1 supports.

【0008】円筒形制御棒案内管9に比べて十字型制御
棒案内管17は機械的強度が劣るので、相応の肉厚が必
要になり、材料と加工度の増加で製造コストが増大し、
寿命後の廃棄コストも増大することが見込まれる。ま
た、炉心配置上許される肉厚の十字型制御棒案内管17
は座屈強度は十分であるが、ねじれ強度が不足して冷却
材の流れによるねじれ振動が心配される。
The cruciform control rod guide tube 17 has a lower mechanical strength than the cylindrical control rod guide tube 9 and therefore requires a correspondingly thicker wall.
Expenditure on disposal after the service life is expected to increase. In addition, the cross-shaped control rod guide tube 17 having a large thickness allowed in the core arrangement.
Although the buckling strength is sufficient, the torsional strength is insufficient and there is a concern about torsional vibration due to the flow of the coolant.

【0009】他の制御棒案内管9同士の干渉を避ける方
法として、特開平5−249275 号がある。この発明は、図
9に一例を示したが、制御棒案内管を使用しないで、流
体慣性管(冷却材案内管)18を採用する。駆動軸12
が貫通する孔19及び流体慣性管18に連通する孔20
を持つ仕切板21をハウジング6′の上に載せる。
As another method for avoiding interference between the control rod guide tubes 9, there is Japanese Patent Application Laid-Open No. 5-249275. In the present invention, although an example is shown in FIG. 9, a fluid inertia tube (coolant guide tube) 18 is employed without using a control rod guide tube. Drive shaft 12
And a hole 20 communicating with the fluid inertial tube 18
Is placed on the housing 6 '.

【0010】仕切板21の孔20に合わせて流体慣性管
18を直立させ、その上に燃料集合体2を載せる。流体
慣性管18の上部は支持格子22で支えるが、支持格子
22は流体慣性管18の振れを防止するが、流体慣性管
18の上下方向の動きを拘束しない。
The fluid inertia tube 18 is set upright in accordance with the hole 20 of the partition plate 21, and the fuel assembly 2 is mounted thereon. The upper portion of the fluid inertial tube 18 is supported by a support grid 22. The support grid 22 prevents the fluid inertial tube 18 from swinging, but does not restrict the vertical movement of the fluid inertial tube 18.

【0011】したがって、燃料集合体2(炉心3)の重
量は流体慣性管18,仕切板21及びハウジング6′を
介して圧力容器1が支える。
Accordingly, the weight of the fuel assembly 2 (core 3) is supported by the pressure vessel 1 via the fluid inertia tube 18, the partition plate 21, and the housing 6 '.

【0012】インターナルポンプ5から吐き出された冷
却材は圧力容器1の底と仕切板21の間を流れ、各流体
慣性管18からそれぞれ燃料集合体2に入る。現行の沸
騰水型原子炉と同様に(制御棒案内管17を使用した場
合も同様)制御棒8が冷却材主流と接することはない。
この発明では、圧力容器1の底と仕切板21の間が狭い
ので圧力損失が大きくなり、冷却材が燃料集合体2にバ
ランス良く配分されないと心配する向きもある。
The coolant discharged from the internal pump 5 flows between the bottom of the pressure vessel 1 and the partition plate 21 and enters the fuel assemblies 2 from the respective fluid inertia tubes 18. The control rods 8 do not come into contact with the main coolant flow as in the current boiling water reactor (even when the control rod guide tube 17 is used).
In the present invention, since the space between the bottom of the pressure vessel 1 and the partition plate 21 is narrow, the pressure loss increases, and there is a direction that the coolant may not be distributed to the fuel assembly 2 in a well-balanced manner.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、大型
の燃料集合体を採用した沸騰水型原子炉において、製造
・廃棄時の経済性,機械的強度及び運転性能などを総合
的に勘案した上で、優れた炉心の支持構造を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a boiling water reactor employing a large fuel assembly, in which the economics, mechanical strength, and operating performance during production and disposal are comprehensively considered. It is another object of the present invention to provide an excellent core support structure.

【0014】[0014]

【課題を解決するための手段】特開平5−249275 号公報
で、冷却材の配分の心配を払拭するためには圧力容器1
の底と仕切板21の間を広くする必要がある。圧力容器
1を大きくしないで圧力容器1と仕切板21の間を広く
するには仕切板21を上に移動すればよい。制御棒8よ
り下にあった仕切板21を上に移動すると、図10に示
したように十字型の制御棒8が仕切板21を貫通するよ
うになる。仕切板21の制御棒8貫通孔は当然十字型
で、中心部に制御棒8と駆動軸12のカップリング23
が通過するための丸孔がある。制御棒8の下端が仕切板
21から抜け出すと、仕切板21を貫通するのは駆動軸
12だけになり、燃料集合体2内をバイパスする冷却材
流量が増大する。つまり、制御棒8の位置によって仕切
板21と制御棒8(駆動軸12)の隙間の大きさが変わ
り、冷却材のバイパス流量が変わることは都合の悪いこ
とである。さらに、仕切板21の下にある制御棒8は冷
却材主流に接するので制御棒8の流動振動の発生が心配
される。
SUMMARY OF THE INVENTION In Japanese Unexamined Patent Publication No. 5-249275, a pressure vessel 1 is used to eliminate the concern of coolant distribution.
It is necessary to make the space between the bottom of the partition and the partition plate 21 wider. To widen the space between the pressure vessel 1 and the partition plate 21 without increasing the size of the pressure vessel 1, the partition plate 21 may be moved upward. When the partition 21 below the control rod 8 is moved upward, the cross-shaped control rod 8 penetrates the partition 21 as shown in FIG. The through hole of the control rod 8 of the partition plate 21 is of course cross-shaped, and the control rod 8 and the coupling 23 of the drive shaft 12 are provided at the center.
There is a round hole for passing through. When the lower end of the control rod 8 gets out of the partition 21, only the drive shaft 12 penetrates the partition 21, and the flow rate of the coolant bypassing the fuel assembly 2 increases. That is, it is inconvenient that the size of the gap between the partition plate 21 and the control rod 8 (drive shaft 12) changes depending on the position of the control rod 8, and that the bypass flow rate of the coolant changes. Further, since the control rods 8 below the partition plate 21 are in contact with the main flow of the coolant, there is a concern that the control rods 8 generate flow vibration.

【0015】制御棒8の位置によって冷却材のバイパス
流量が変わることと制御棒8の流動振動の発生は仕切板
21以下の制御棒8を十字型の制御棒案内管17のよう
なもので覆えば解決できる。また、十字型の制御棒案内
管17が短いためにねじれ強度が増大し、流動振動によ
るねじれも防止できる。
The change in the bypass flow rate of the coolant depending on the position of the control rod 8 and the generation of the flow vibration of the control rod 8 cover the control rod 8 below the partition plate 21 with a cross-shaped control rod guide tube 17 or the like. Can be solved. Further, since the cross-shaped control rod guide tube 17 is short, the torsional strength is increased, and the torsion due to the flow vibration can be prevented.

【0016】以上のように、特開平5−249275号と特開
昭63−83691号公報に示された構造を組み合わせること
によって個々の欠点を解消した優れた炉心支持構造が提
供できる。
As described above, by combining the structures disclosed in JP-A-5-249275 and JP-A-63-83691, an excellent core supporting structure which solves individual disadvantages can be provided.

【0017】[0017]

【発明の実施の形態】本発明の一実施例を図1及び図2
に示した。図1は燃料支持金具16と一体の十字型制御
棒案内管17と流体慣性管18の組立状態を示す斜視図
である。従来の半分の長さは十字型制御棒案内管17と
流体慣性管18を組み合わせて従来と同じ長さにする。
流体慣性管18の上部はリング24と板25から成る流
体慣性管支持格子26によって横振れを防止する。
1 and 2 show an embodiment of the present invention.
It was shown to. FIG. 1 is a perspective view showing an assembled state of a cruciform control rod guide tube 17 and a fluid inertia tube 18 integrated with a fuel support bracket 16. The half of the conventional length is made the same as the conventional length by combining the cross-shaped control rod guide tube 17 and the fluid inertia tube 18.
The top of the fluid inertial tube 18 is prevented from swaying by a fluid inertial tube support grid 26 consisting of a ring 24 and a plate 25.

【0018】図2は炉心支持状態を示す断面図である
が、短尺の十字型制御棒案内管17は従来と同様に下端
のノズルをハウジング6′に差し込み、ハウジング6′
上に自立する。制御棒案内管17と一体の燃料支持金具
16に流体慣性管18を差し込み、流体慣性管支持格子
26と上部を支えた流体慣性管18に燃料集合体2を載
せる。燃料集合体2(炉心3)の重量は流体慣性管1
8,燃料支持金具16,十字型制御棒案内管17及びハ
ウジング6′を介して圧力容器1によって支えられる。
冷却材は圧力容器1の底部から十字型制御棒案内管17
の外側に上昇し、燃料支持金具16によって制限されて
流体慣性管18に入り、燃料集合体2に導かれる。
FIG. 2 is a cross-sectional view showing a state in which the core is supported. In the short cross-shaped control rod guide tube 17, the nozzle at the lower end is inserted into the housing 6 'and the housing 6'
Be independent on top. The fluid inertia tube 18 is inserted into the fuel support bracket 16 integrated with the control rod guide tube 17, and the fuel assembly 2 is mounted on the fluid inertia tube support lattice 26 and the fluid inertia tube 18 supporting the upper part. The weight of the fuel assembly 2 (core 3) is
8, the fuel container 16 is supported by the pressure vessel 1 via the cross-shaped control rod guide tube 17 and the housing 6 '.
The coolant is supplied from the bottom of the pressure vessel 1 to the cross-shaped control rod guide tube 17.
, And is restricted by the fuel support fitting 16, enters the fluid inertia tube 18, and is guided to the fuel assembly 2.

【0019】燃料支持金具16の部分の詳細を図11に
示したが、特開昭63−83691 号に示された燃料支持金具
16の下には鎖線で示したようなノズルがある。このノ
ズルは入口部の圧力損失を大きくするので、本発明では
図示したように入口部に曲線の面取りを施す。燃料支持
金具16の孔の上部には座繰りを施し、流体慣性管18
の下部を差し込むが、差し込み深さの不足分を補うため
にリング状の保持具27を燃料支持金具16に溶接する
か、または、燃料支持金具16と一体に形成するかして
流体慣性管18の自立を助ける。
FIG. 11 shows the details of the fuel support bracket 16, and there is a nozzle below the fuel support bracket 16 shown in Japanese Patent Application Laid-Open No. 63-83691 as shown by a chain line. Since this nozzle increases the pressure loss at the inlet, the present invention provides a curved chamfer at the inlet as shown. The upper part of the hole of the fuel support bracket 16 is counterbored, and the fluid inertia tube 18 is provided.
The lower part of the fluid inertia tube 18 is inserted by welding a ring-shaped holding member 27 to the fuel support member 16 or by integrally forming the same with the fuel support member 16 in order to compensate for a shortage of the insertion depth. Helps you become independent.

【0020】図12に現時点で計画されている流体慣性
管18と十字型制御棒案内管17の断面寸法を示した
が、流体慣性管18の断面積は約1,500mm2で、十字
型制御棒案内管17の断面積は約10,000mm2にな
る。図9に示したように流体慣性管18は1本で1体の
燃料集合体2を支えるのに対して、十字型制御棒案内管
17は1体で2体の燃料集合体2を支える。したがっ
て、2本の流体慣性管18と1体の十字型制御棒案内管
17の断面積を比較すると、十字型制御棒案内管17の
方が3.3 倍大きい。つまり、十字型制御棒案内管17
だけを使用した場合に比べ、流体慣性管18と十字型制
御棒案内管17を各半分長さ使用した方が原材料が1.
6 分の1で済み、加工時及び廃棄時のコストも安くな
る。また、十字型制御棒案内管17が半分の長さになる
と、ねじれ強度が大きくなるのでねじれ振動を心配する
必要がなくなる。
FIG. 12 shows the cross-sectional dimensions of the fluid inertia tube 18 and the cruciform control rod guide tube 17 which are currently planned. The cross-sectional area of the fluid inertia tube 18 is approximately 1,500 mm 2 and The cross-sectional area of the rod guide tube 17 becomes about 10,000 mm 2 . As shown in FIG. 9, one fluid inertia tube 18 supports one fuel assembly 2 while one cross-shaped control rod guide tube 17 supports two fuel assemblies 2. Therefore, comparing the cross-sectional areas of the two fluid inertia tubes 18 and the one cross-shaped control rod guide tube 17, the cross-shaped control rod guide tube 17 is 3.3 times larger. That is, the cross-shaped control rod guide tube 17
When the fluid inertia tube 18 and the cross-shaped control rod guide tube 17 are each used for half the length, the raw material is 1.
Only one sixth is required, and costs for processing and disposal are lower. Further, when the cross-shaped control rod guide tube 17 has a half length, the torsional strength increases, so that there is no need to worry about torsional vibration.

【0021】圧力容器1底部から流体慣性管18入口ま
での距離がどれくらいあれば、流体慣性管18への流量
配分が均一になるのか確認されていない。しかし、イン
ターナルポンプ5は圧力容器1底部に向けて冷却材を吐
き出すので、本発明のように下部プレナム7高さの中間
位置に流体慣性管18入口があれば、流量配分は均一に
なると考えられる。
It has not been ascertained how long the distance from the bottom of the pressure vessel 1 to the inlet of the fluid inertial tube 18 will make the flow distribution to the fluid inertial tube 18 uniform. However, since the internal pump 5 discharges the coolant toward the bottom of the pressure vessel 1, if the inlet of the fluid inertia pipe 18 is located at an intermediate position of the lower plenum 7 as in the present invention, the flow distribution is considered to be uniform. Can be

【0022】流体慣性管18は冷却材に慣性を与え、チ
ャンネル内の流動安定性を向上させる作用をする。特
に、自然循環時のチャンネル内流動安定性の向上が顕著
である。図13の相対長さ(流体慣性管18と燃料集合
体2の長さの比)と相対減幅比(流体慣性管18がある
場合とない場合の減幅比の比、減幅比は安定性を示す指
標)との関係の一例を示した。流体慣性管18長さを下
部プレナム7高さ(燃料集合体2の長さとほぼ等しい)
の1/2(相対長さ0.5 )にしても相対減幅比は0.
9 になる。つまり、流体慣性管18長さを半分にして
も流体慣性管18がない場合に比べてチャンネル内の流
動安定性を10%向上させる効果があり、自然循環時の
運転余裕が増大する。
The fluid inertia tube 18 provides inertia to the coolant and serves to improve the flow stability in the channel. In particular, the flow stability in the channel during natural circulation is significantly improved. The relative length (the ratio of the length of the fluid inertia tube 18 to the length of the fuel assembly 2) and the relative width reduction ratio (the ratio of the width reduction ratio with and without the fluid inertia tube 18 and the width reduction ratio in FIG. 13 are stable) An example of the relationship is shown below. Increase the length of the fluid inertia tube 18 to the height of the lower plenum 7 (substantially equal to the length of the fuel assembly 2)
Even if it is 1/2 (relative length 0.5), the relative width reduction ratio is 0.5.
9 That is, even if the length of the fluid inertia tube 18 is reduced to half, there is an effect that the flow stability in the channel is improved by 10% as compared with the case where the fluid inertia tube 18 is not provided, and the operation margin during natural circulation is increased.

【0023】以上に本発明の実施例として、1/2長さ
の流体慣性管18と十字型制御棒案内管17を組み合わ
せた例を示したが、図13に示したように相対長さが
0.2以上であれば相対減幅比が小さくなり、チャンネ
ル内の流動安定性を向上させる効果がある。しかし、流
体慣性管18をあまり短くすると十字型制御棒案内管1
7のねじれ振動の問題が再浮上し、逆に流体慣性管18
をあまり長くするとチャンネル内の流動安定性向上効果
は大きくなるが冷却材流量配分の不均一問題が再浮上す
る。
As described above, as an embodiment of the present invention, an example is shown in which the fluid inertia tube 18 having a length of 1/2 and the cross-shaped control rod guide tube 17 are combined. As shown in FIG. If it is 0.2 or more, the relative width reduction ratio becomes small, and there is an effect of improving the flow stability in the channel. However, if the fluid inertia tube 18 is too short, the cross-shaped control rod guide tube 1
7, the problem of torsional vibration resurfaces, and conversely, the fluid inertia tube 18
If the length is too long, the effect of improving the flow stability in the channel will increase, but the problem of non-uniform distribution of coolant flow will resurface.

【0024】流体慣性管18と十字型制御棒案内管17
の組み合わせた場合の最適な両者の長さの比率は炉心3
の大きさによって異なると考えられるが、1/2長さの
流体慣性管18と十字型制御棒案内管17を組み合わせ
ると、最適ではないかも知れないが、個々に使用した場
合の欠点が解消される。
Fluid inertia tube 18 and cruciform control rod guide tube 17
The optimal ratio of both lengths when combining
It is considered that the combination of the 慣 length fluid inertia tube 18 and the cruciform control rod guide tube 17 may not be optimal, but eliminates the disadvantages when used individually. You.

【0025】また、制御棒案内管は十字型に限らず、特
開平5−249275 号公報に示されている四角の辺を内側に
湾曲させた四角状の制御棒案内管のように制御棒案内管
同士が干渉せず、流体慣性管が開口する下部プレナム部
に冷却材流路が確保できるものであれば、十字型制御棒
案内管と同じ効果が得られる。
The control rod guide tube is not limited to a cross shape, but may be a control rod guide tube such as a square control rod guide tube having a square side curved inward as shown in Japanese Patent Application Laid-Open No. 5-249275. If the pipes do not interfere with each other and a coolant flow path can be secured in the lower plenum portion where the fluid inertia pipe opens, the same effect as that of the cross-shaped control rod guide pipe can be obtained.

【0026】[0026]

【発明の効果】本発明によれば、大型燃料集合体を採用
した沸騰水型原子炉で、製造・廃棄時の経済性,機械的
強度及び運転性能などで優れた炉心の支持構造を提供で
きる。
According to the present invention, it is possible to provide a boiling water reactor employing a large fuel assembly, which can provide a core support structure which is excellent in economy, mechanical strength, operation performance, and the like at the time of production and disposal. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示し炉心支持構造の一部の斜
視図。
FIG. 1 is a perspective view showing a part of a core support structure according to an embodiment of the present invention.

【図2】本発明の実施例を示す炉心支持構造の一部の断
面図。
FIG. 2 is a cross-sectional view of a part of a core support structure showing an embodiment of the present invention.

【図3】現行の沸騰水型原子炉の断面図。FIG. 3 is a cross-sectional view of a current boiling water reactor.

【図4】現行の沸騰水型原子炉の炉心支持構造の断面
図。
FIG. 4 is a sectional view of a core support structure of a current boiling water reactor.

【図5】現行の沸騰水型原子炉の炉心の一部の横断面
図。
FIG. 5 is a cross-sectional view of a part of a core of a current boiling water reactor.

【図6】大型燃料集合体を採用した炉心の一部を横断面
図。
FIG. 6 is a cross-sectional view of a part of a core employing a large fuel assembly.

【図7】燃料支持金具付十字型制御棒案内管の斜視図。FIG. 7 is a perspective view of a cross-shaped control rod guide tube with a fuel support fitting.

【図8】燃料支持金具付十字型制御棒案内管の炉心支持
状態を示す断面図。
FIG. 8 is a cross-sectional view showing a core-supported state of a cruciform control rod guide tube with a fuel support fitting.

【図9】流体慣性管による炉心支持状態を示す断面図。FIG. 9 is a cross-sectional view showing a core support state by a fluid inertial tube.

【図10】仕切板を高い位置にした場合の流体慣性管に
よる炉心支持状態を示す断面図。
FIG. 10 is a cross-sectional view showing a state in which a core is supported by a fluid inertial tube when a partition plate is set at a high position.

【図11】本発明の流体慣性管の組立状態を示す部分断
面図。
FIG. 11 is a partial sectional view showing an assembled state of the fluid inertial tube of the present invention.

【図12】流体慣性管と十字型制御棒案内管の横断面
図。
FIG. 12 is a cross-sectional view of a fluid inertia tube and a cross-shaped control rod guide tube.

【図13】流体慣性管のチャンネル安定性向上効果を示
す特性図。
FIG. 13 is a characteristic diagram showing an effect of improving channel stability of a fluid inertial tube.

【符号の説明】[Explanation of symbols]

1…圧力容器、2…燃料集合体、6′…制御棒駆動機構
ハウジング、8…制御棒、16…燃料支持金具、17…
十字型制御棒案内管、18…流体慣性管、24…リン
グ、25…板、26…流体慣性管支持格子。
DESCRIPTION OF SYMBOLS 1 ... Pressure vessel, 2 ... Fuel assembly, 6 '... Control rod drive mechanism housing, 8 ... Control rod, 16 ... Fuel support bracket, 17 ...
Cross-shaped control rod guide tube, 18 ... fluid inertia tube, 24 ... ring, 25 ... plate, 26 ... fluid inertia tube support lattice.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多数の燃料棒を束ねた燃料集合体を多数配
置した炉心を支える炉心支持構造において、上部を流体
に慣性を与える管とし、下部を隣接のものとの干渉を避
ける形状の制御棒案内管としたことを特徴とする炉心支
持構造。
1. A core support structure for supporting a core in which a large number of fuel assemblies in which a large number of fuel rods are bundled are arranged, wherein the upper part is a tube for imparting inertia to the fluid, and the lower part is shaped so as to avoid interference with an adjacent one. A core support structure comprising a rod guide tube.
【請求項2】流体に慣性を与える管が直円管で、その長
さが燃料集合体長さの0.2 倍以上である請求項1に記
載の炉心支持構造。
2. The core supporting structure according to claim 1, wherein the pipe for imparting inertia to the fluid is a right circular pipe, the length of which is at least 0.2 times the length of the fuel assembly.
【請求項3】制御棒案内管の形状が十字型である請求項
1に記載の炉心支持構造。
3. The core support structure according to claim 1, wherein the control rod guide tube has a cross shape.
【請求項4】制御棒案内管の形状が四角形状である請求
項1に記載の炉心支持構造。
4. The core support structure according to claim 1, wherein the control rod guide tube has a square shape.
JP9033585A 1997-02-18 1997-02-18 Core support structure Pending JPH10227883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9033585A JPH10227883A (en) 1997-02-18 1997-02-18 Core support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9033585A JPH10227883A (en) 1997-02-18 1997-02-18 Core support structure

Publications (1)

Publication Number Publication Date
JPH10227883A true JPH10227883A (en) 1998-08-25

Family

ID=12390604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9033585A Pending JPH10227883A (en) 1997-02-18 1997-02-18 Core support structure

Country Status (1)

Country Link
JP (1) JPH10227883A (en)

Similar Documents

Publication Publication Date Title
JPS61234392A (en) Fragment trapping and mooring trap for fuel aggregate
JPS582630B2 (en) Reactor
EP3050063B1 (en) Steam generator and method of securing tubes within a steam generator against vibration
KR100784008B1 (en) Nuclear fuel assembly low pressure drop top nozzle
JPH01126592A (en) Spider assembly for supporting control rod cluster
EP0555081A1 (en) Spacer with steam separator
JP4825763B2 (en) Reflector-controlled fast reactor
KR970004351B1 (en) Improved bwr assembly
KR890001250B1 (en) Nuclear reactor having a control cluster guide device
JPH10227883A (en) Core support structure
US5255300A (en) Fuel assembly for boiling water reactors
JPH11505926A (en) Boiling water reactor fuel assemblies
JP3626844B2 (en) Radial neutron reflector for nuclear reactors
US5513233A (en) Nuclear reactor
US4914679A (en) Fuel assembly
JPH0153437B2 (en)
JP2510006B2 (en) Fuel bundles for boiling water reactors
JPH088478Y2 (en) Control rod cluster guide tube
JPH0746156B2 (en) Reactor with low core coolant intake
JP2009210497A (en) Low-pressure loss steam separator of boiling water reactor
JP5591439B2 (en) Boiling water reactor
JPH09159779A (en) Control rod cluster guide tube
JPH02271292A (en) Control rod cluster guide tube
JP2007232434A (en) Chimney structure in boiling-water reactor of natural circulation system
JP6752072B2 (en) Boiling water reactor