JPH1022777A - Crystal vibrator and manufacture therefor - Google Patents

Crystal vibrator and manufacture therefor

Info

Publication number
JPH1022777A
JPH1022777A JP19537696A JP19537696A JPH1022777A JP H1022777 A JPH1022777 A JP H1022777A JP 19537696 A JP19537696 A JP 19537696A JP 19537696 A JP19537696 A JP 19537696A JP H1022777 A JPH1022777 A JP H1022777A
Authority
JP
Japan
Prior art keywords
sealing
vibration frequency
heat treatment
crystal vibrator
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19537696A
Other languages
Japanese (ja)
Inventor
Toshinori Ide
利則 井出
Toshiya Hayashi
俊哉 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Original Assignee
Miyota KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK filed Critical Miyota KK
Priority to JP19537696A priority Critical patent/JPH1022777A/en
Publication of JPH1022777A publication Critical patent/JPH1022777A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide crystal vibrator with less dispersion by soldering an electrode formed crystal vibration piece to an airtight terminal, turning it to a half-complete crystal vibrator, then washing it, performing a heat treatment in nitrogen atmosphere, then adjusting a vibration frequency and performing sealing. SOLUTION: An electrode formation process (11), an assembling process (12) and a washing process (13) are the same as a conventional technique. A nitrogen atmosphere heat treatment (14) is then performed to the washed half-complete crystal vibrator. Temperature distribution in a heating tank is easily uniformized by the convection of gaseous nitrogen, heat transmission to the half-complete crystal vibrator is quick and moisture absorbed to the half-complete crystal vibrator is sufficiently removed in a short time. After the nitrogen atmosphere heat treatment (14), leaving time in atmosphere is shortened as much as possible and an (f) adjustment process (15) is started. In the (f) adjustment process (15), silver is vapor-deposited to the surface of the crystal vibrator inside a vacuum tank. A vibration frequency is adjusted by the (f) adjustment process and the next sealing process (16) is immediately started. Thus, since frequency adjustment and sealing are performed in the state of less moisture absorption, the difference of an (f) adjustment target value and a complete vibration frequency is made small and the dispersion is made small as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水晶振動子及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal resonator and a method for manufacturing the same.

【0002】[0002]

【従来の技術】水晶振動子は多くの分野でクロック源と
して採用されている。特に水晶振動子は音叉型水晶振動
片を使用したシリンダータイプ、振動片を矩形状にした
ATカット水晶振動片を使用したシリンダータイプが多
用されている。本発明の説明では矩形ATカット水晶振
動子を例にとるが、本発明は水晶振動片の形状に関係な
く適用できるものである。
2. Description of the Related Art Quartz resonators are employed as clock sources in many fields. In particular, as the crystal resonator, a cylinder type using a tuning fork type crystal resonator element and a cylinder type using an AT-cut crystal resonator element having a rectangular resonator element are frequently used. In the description of the present invention, a rectangular AT-cut quartz resonator is taken as an example, but the present invention can be applied regardless of the shape of the quartz resonator blank.

【0003】図1は従来技術による矩形状水晶振動片を
2本のリードに固定したシリンダータイプ水晶振動子の
斜視図である。水晶振動片1は、2本のリード4、4を
絶縁材料(ガラス)3で金属環2にハーメチックシール
した気密端子の2本のリード4、4にハンダ7により固
定されている。封止管5は水晶振動片1を覆い金属環2
の外周に圧入されている。
FIG. 1 is a perspective view of a cylinder-type crystal resonator in which a rectangular crystal resonator element according to the prior art is fixed to two leads. The crystal resonator element 1 is fixed by solder 7 to two leads 4, 4 of an airtight terminal in which two leads 4, 4 are hermetically sealed to a metal ring 2 with an insulating material (glass) 3. The sealing tube 5 covers the quartz vibrating piece 1 and the metal ring 2
Is press-fitted to the outer periphery.

【0004】一般に封止管5と金属環2の圧入部には圧
入部の気密性を確保するために軟質金属を介在させてい
る。水晶振動子の製造としては、人工水晶を所望の矩形
状ATカット水晶振動片に加工し、(1)水晶振動片1
に蒸着又はスパッタリング等の薄膜形成方法で電極6を
形成し、(2)電極6を形成した水晶振動片1を気密端
子にハンダ付けして半完成水晶振動子とし、ハンダ付け
後に(3)洗浄し、(4)半完成水晶振動子の振動周波
数調整(以下f調という)をし、その後、(5)真空雰
囲気中で熱処理し、(9)ハンダ又はニッケルメッキし
て(10)真空中で熱処理した封止管5を(6)金属環
2の外周に圧入封止し、さらに(7)熱処理をして
(8)検査をしている。封止前に半完成水晶振動子と封
止管を真空雰囲気中で熱処理するのは夫々の表面に水分
が吸着しているのを脱離させるためである。
[0004] Generally, a soft metal is interposed between the press-fitting portion of the sealing tube 5 and the metal ring 2 in order to ensure the airtightness of the press-fitting portion. To manufacture a crystal resonator, artificial quartz is processed into a desired rectangular AT-cut crystal resonator element, and (1) a quartz resonator element 1
The electrode 6 is formed by a thin film forming method such as vapor deposition or sputtering, and (2) the crystal vibrating piece 1 on which the electrode 6 is formed is soldered to a hermetic terminal to form a semi-finished crystal vibrator. And (4) adjusting the vibration frequency of the semi-finished crystal unit (hereinafter referred to as f-adjustment), and then (5) heat treating in a vacuum atmosphere, (9) soldering or nickel plating, and (10) in vacuum. The heat-treated sealing tube 5 is (6) press-fitted and sealed around the outer periphery of the metal ring 2, and further (7) heat-treated and (8) inspected. The heat treatment of the semi-finished crystal unit and the sealing tube in a vacuum atmosphere before the sealing is for desorbing moisture adsorbed on the respective surfaces.

【0005】前記工程のフローチャートを図2に示す。
(3)の洗浄工程はハンダ付けのフラックスや付着物を
除去するためのものであり、一般に有機溶剤(例えば塩
化メチレン)が使用される。(4)のf調工程は水晶振
動片の表面に金属膜を形成して振動周波数を調整する工
程であり、一般に真空槽内で銀を蒸着している。(5)
の真空熱処理工程は半完成水晶振動子を真空槽内で加熱
して水分を脱離する工程である。可能な限り高温で長時
間の処理が望ましいが、ハンダの種類や装置能力による
制限があり、共晶系ハンダを使用している場合は130
℃で2時間、Pb系の高温ハンダを使用している場合で
200℃で2時間程度である。(6)の封止工程は、半
完成水晶振動子の金属環外周に封止管を圧入する工程で
あり真空槽内で行われる。(7)の熱処理工程は、完成
後の水晶振動子の振動周波数が高温保存やハンダリフロ
ーのような温度上昇により変化するのを防ぐための工程
であり、共晶系ハンダを使用している場合は100℃で
24時間、Pb系の高温ハンダを使用している場合で1
70℃で24時間程度である。
FIG. 2 shows a flowchart of the above process.
The washing step (3) is for removing soldering flux and deposits, and generally uses an organic solvent (for example, methylene chloride). The f-adjustment step (4) is a step of adjusting the oscillation frequency by forming a metal film on the surface of the quartz-crystal vibrating piece, and generally deposits silver in a vacuum chamber. (5)
The vacuum heat treatment step is a step of heating the semi-finished quartz resonator in a vacuum chamber to desorb water. It is desirable to perform the treatment for as long as possible at a temperature as high as possible. However, there is a limitation due to the type of solder and the equipment capacity.
2 hours at 200 ° C. and about 2 hours at 200 ° C. when a Pb-based high-temperature solder is used. The sealing step (6) is a step of press-fitting a sealing tube to the outer periphery of the metal ring of the semi-finished crystal unit, and is performed in a vacuum chamber. The heat treatment step (7) is a step for preventing the vibration frequency of the completed crystal unit from changing due to temperature rise such as high-temperature storage or solder reflow. In the case where eutectic solder is used. Is 1 hour when using Pb-based high-temperature solder at 100 ° C for 24 hours.
It is about 24 hours at 70 ° C.

【0006】[0006]

【発明が解決しようとする課題】(4)のf調工程で振
動周波数を調整するが、工程が進み(8)の検査工程に
おいて完成振動周波数のバラツキが大きくなってしま
う。図3は、f調終了時の振動周波数バラツキをゼロと
して、各工程後の振動周波数中央値と標準偏差の推移を
夏(湿度70%)と冬(湿度30%)に調査したグラフ
である。縦軸は振動周波数変化量(Δf/f)であり、
横軸は工程を表している。グラフ中のポイントから上下
に延びる矢印は各ポイントでの振動周波数のバラツキを
示す標準偏差(3σ)である。振動周波数のばらつく原
因は、各工程間で室内空気に晒される際に水晶振動片の
表面に水分が物理吸着すること、室内空気中に含まれる
微量物質(例えば硫化水素、塩素、炭酸ガス、メタンガ
スなど)と電極(材質は一般に銀)とが化学反応するこ
と、及び、室内空気に含まれる塵埃が付着すること等に
より振動周波数がマイナスにシフトする現象による。
The vibration frequency is adjusted in the f-adjustment step (4), but the process proceeds, and the variation in the completed vibration frequency becomes large in the inspection step (8). FIG. 3 is a graph in which changes in the vibration frequency median value and the standard deviation after each process are investigated in summer (humidity 70%) and winter (humidity 30%) assuming that the vibration frequency variation at the end of the f adjustment is zero. The vertical axis is the vibration frequency change (Δf / f),
The horizontal axis represents a process. Arrows extending up and down from the points in the graph are standard deviations (3σ) indicating variations in the vibration frequency at each point. The causes of fluctuations in the vibration frequency are that water is physically adsorbed on the surface of the crystal vibrating piece when exposed to room air between processes, and trace substances contained in room air (for example, hydrogen sulfide, chlorine, carbon dioxide, methane gas, etc.). Etc.) and an electrode (generally made of silver) undergo a chemical reaction, and the vibration frequency shifts to a negative value due to the adhesion of dust contained in room air.

【0007】水晶振動片への水分の物理吸着量は、水晶
振動片の表面粗さ、電極膜の状態、半完成水晶振動子の
置かれる環境等によって異なるが、湿度の高い夏の方が
多い。特に多分子層的吸着である毛管凝縮現象は相対湿
度が60%以上で急激に増大するといわれ、湿度の高い
場所に置かれた場合の方が水分の物理吸着量が多くバラ
ツキも多い。洗浄で表面に物理吸着した水分や塵埃は除
去されるが、電極膜の内部に侵入した水分や化学反応物
質は除去されない。電極膜を蒸着してからf調までの手
番は2〜3日であり、その間の振動周波数シフトは20
MHzの水晶振動子の年平均で20〜30ppmであ
る。勿論、夏場は振動周波数シフトが20〜30ppm
より大きく、冬場は小さい。洗浄で戻る振動周波数は前
記シフト量の約半分である。この状態でf調をすると真
空排気時の水分付着によりさらに振動周波数がマイナス
にシフトする。そしてこのシフト量にもバラツキがあ
る。次の真空熱処理では結果として振動周波数の平均
値、バラツキともほとんど変化していない。
The amount of physical adsorption of water to the crystal resonator element depends on the surface roughness of the crystal resonator element, the state of the electrode film, the environment in which the semi-finished crystal resonator is placed, and the like, but is higher in summer when the humidity is higher. . In particular, the capillary condensation phenomenon, which is multi-layered adsorption, is said to increase sharply when the relative humidity is 60% or more, and the physical adsorption amount of water is larger and more uneven when placed in a place with high humidity. The cleaning removes moisture and dust physically adsorbed on the surface, but does not remove moisture or chemically reactive substances that have entered the inside of the electrode film. The turn from the deposition of the electrode film to the f adjustment is 2-3 days, during which the vibration frequency shift is 20 days.
It is 20 to 30 ppm on a yearly average for a crystal oscillator of MHz. Of course, in summer the vibration frequency shift is 20-30ppm
Bigger and smaller in winter. The vibration frequency returned by washing is about half of the shift amount. When the f-adjustment is performed in this state, the vibration frequency further shifts to a negative value due to the adhesion of water during evacuation. The shift amount also varies. In the next vacuum heat treatment, the average value and the variation of the vibration frequency hardly change as a result.

【0008】真空熱処理では空気分子による熱の授受が
行われないので輻射か固体による熱伝導を利用しなけれ
ばならない。しかし、半完成水晶振動子は互いに接触さ
せると欠けたりするので互いに離して配置しなければな
らず、固体による熱伝導が行われる場所とそうでない場
所で温度差が生じ水分脱離にバラツキを来す。又、輻射
熱を利用するためには半完成水晶振動子を一列に配置せ
ねばならず、高価な真空炉で熱処理(脱ガス)すること
の出来る半完成水晶振動子の数が少なくなり経済的に不
利である。このような理由から真空炉に沢山の半完成水
晶振動子を入れて熱処理しようとしても熱が充分に伝わ
らないので水分の脱離が充分に行われない。勿論数十時
間以上時間をかければ熱は伝わり温度も上がるがデリバ
リーの点で不利となる。よって、封止して熱処理するこ
とにより水晶振動片から水分が脱離し振動周波数が変化
(シフト)する。この振動周波数の変化量は水晶振動片
の保有している水分量、封止管、気密端子の保有してい
る水分量により変化するから水晶振動片、封止管、気密
端子の保有している水分量がばらつくことは熱処理によ
る振動周波数変化量がばらつくことと同義である。
In the vacuum heat treatment, heat is not transferred by air molecules, so that radiation or heat conduction by a solid must be used. However, semi-finished quartz resonators are chipped when they come into contact with each other, so they must be placed apart from each other.Therefore, there is a temperature difference between the place where solid heat conduction occurs and the place where heat conduction does not occur, resulting in variations in moisture desorption. You. In addition, in order to use radiant heat, semi-finished quartz oscillators must be arranged in a line, and the number of semi-finished quartz oscillators that can be heat-treated (degassed) in an expensive vacuum furnace is reduced, and the cost is reduced. Disadvantageous. For this reason, even if a large number of semi-finished quartz oscillators are put into a vacuum furnace and subjected to heat treatment, the heat is not sufficiently transmitted, so that the moisture is not sufficiently removed. Of course, if it takes more than several tens of hours, heat is transmitted and the temperature rises, but it is disadvantageous in terms of delivery. Therefore, moisture is desorbed from the crystal vibrating piece by performing heat treatment after sealing, and the vibration frequency changes (shifts). The amount of change in the vibration frequency varies depending on the amount of water held by the quartz vibrating piece, the sealed tube, and the amount of moisture held by the hermetic terminal. The variation in the water content is equivalent to the variation in the vibration frequency variation due to the heat treatment.

【0009】水分の吸着をゼロにすることは不可能であ
るから、水分の吸着を少なくすることと、吸着した水分
を如何に一様に脱離するかが振動周波数の変化と偏差
(3σ)の少ない水晶振動子を製造するうえで重要であ
る。
Since it is impossible to make the adsorption of water zero, it is necessary to reduce the adsorption of water and how to uniformly desorb the adsorbed water. This is important in manufacturing a crystal resonator with less noise.

【0010】水分を脱離する方法としては真空槽内で加
熱することが有効とされているが、真空槽内を真空にす
る瞬間、真空槽内の空気は瞬間的に断熱膨張するので温
度が下がり、空気中の相対湿度が急上昇し、飽和蒸気圧
を超えるので水晶振動片の表面に結露付着する。このよ
うな要因が絡み合って真空熱処理後の振動周波数シフト
のばらつく原因となっている。f調工程と封止工程の間
に真空熱処理工程があるので、半完成水晶振動子がf調
工程から封止工程に入るまでに大気に触れる機会が2回
存在する。夏冬の湿度を一定にすることは技術的には可
能であるが経済的には低コスト製品を製造する目的にあ
わない。
As a method for desorbing water, heating in a vacuum chamber is considered effective. However, at the moment when the vacuum chamber is evacuated, the air in the vacuum chamber instantaneously expands adiabatically. As the relative humidity in the air drops suddenly and rises above the saturated vapor pressure, it condenses on the surface of the crystal vibrating piece. Such factors are intertwined and cause fluctuation of the vibration frequency shift after the vacuum heat treatment. Since there is a vacuum heat treatment step between the f-adjustment step and the sealing step, there are two opportunities for the semi-finished crystal unit to come into contact with the atmosphere from the f-adjustment step to the sealing step. It is technically possible to make the humidity in summer and winter constant, but it is not economically suitable for producing low-cost products.

【0011】[0011]

【課題を解決するための手段】少なくとも、水晶振動片
に電極を形成する工程と、電極を形成した水晶振動片を
気密端子にハンダ付けして半完成水晶振動子とする工程
と、ハンダ付け後に洗浄する工程と、窒素雰囲気中で熱
処理する工程と、半完成水晶振動子の振動周波数を調整
する工程と、封止する工程よりなる水晶振動子の製造方
法とする。封止する工程が、封止管にハンダメッキ又は
ニッケルメッキをしてから窒素雰囲気中で熱処理をして
から封止する工程とする。
At least a step of forming an electrode on a crystal vibrating piece, a step of soldering the crystal vibrating piece on which the electrode is formed to an airtight terminal to form a semi-finished crystal vibrator, A method of manufacturing a crystal resonator includes a step of cleaning, a step of heat treatment in a nitrogen atmosphere, a step of adjusting the vibration frequency of the semi-finished crystal resonator, and a step of sealing. The step of sealing is a step of performing solder plating or nickel plating on the sealing tube, heat treating in a nitrogen atmosphere, and then sealing.

【0012】半完成水晶振動子を洗浄後速やかに窒素雰
囲気の加熱槽に投入する。清浄な表面に水分が吸着する
速度は速いので大気中への放置時間は短いほど良い。窒
素雰囲気中で熱処理するのは、可能な限り高温で長時間
行うのが水分の脱離には良い。熱処理工程終了後のf調
工程投入時も投入までの大気中への放置時間は短いほど
良く、好ましくはドライな窒素雰囲気中に保管するのが
良い。また、f調工程終了後は同じ理由で速やかに封止
するのが良いが、f調終了後の振動周波数調整機には大
気ではなく窒素ガスを導入し、封止するまではドライな
窒素雰囲気中に保管するとさらによい。
After washing the semi-finished quartz oscillator, it is immediately put into a heating tank in a nitrogen atmosphere. Since the speed at which moisture is adsorbed on a clean surface is high, the shorter the standing time in the air, the better. The heat treatment in a nitrogen atmosphere is preferably performed at as high a temperature as possible for a long time to remove moisture. When the f-adjustment step is performed after completion of the heat treatment step, it is better that the leaving time in the air before the introduction is shorter, and it is preferable to store the apparatus in a dry nitrogen atmosphere. After the f-adjustment step, it is preferable to seal immediately after the end of the f-adjustment process for the same reason. It is even better to keep it inside.

【0013】封止は真空槽内で行われるが、封止後の熱
処理による影響は水晶振動片だけでなく気密端子のイン
ナー側と封止管の内壁に吸着している水分やその他のガ
スの影響も受ける。よって、封止管もメッキして洗浄後
窒素雰囲気中で熱処理をする。封止管のメッキは、ハン
ダメッキの場合は下地にニッケル又は銅メッキ、ニッケ
ルメッキの場合は直接又は下地に銅メッキを施す。
Although the sealing is performed in a vacuum chamber, the influence of the heat treatment after the sealing is not limited to the quartz vibrating reed, but also to the moisture or other gas adsorbed on the inner side of the hermetic terminal and the inner wall of the sealing tube. Affected. Therefore, after the sealing tube is also plated and cleaned, a heat treatment is performed in a nitrogen atmosphere. For plating the sealing tube, nickel or copper plating is applied to the base in the case of solder plating, and copper plating is applied directly or to the base in the case of nickel plating.

【0014】[0014]

【発明の実施の形態】図4は本発明を説明するための水
晶振動子の製造工程フローチャートである。(11)の
電極形成工程、(12)の組立工程、(13)の洗浄工
程は従来技術と同様である。(14)は窒素雰囲気熱処
理であり、本発明の特徴的な工程である。(15)はf
調工程であるが窒素雰囲気熱処理後なのが本発明の特徴
である。(16)は封止工程、(17)は熱処理工程、
(18)は検査工程である。(19)は封止管のメッキ
工程であり、(20)は窒素雰囲気熱処理である。封止
工程(16)がf調工程の直後にあることと、封止管を
窒素雰囲気中で熱処理するのも本発明の特徴である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 4 is a flow chart of a manufacturing process of a quartz oscillator for explaining the present invention. The electrode forming step of (11), the assembling step of (12), and the cleaning step of (13) are the same as in the prior art. (14) is a nitrogen atmosphere heat treatment, which is a characteristic step of the present invention. (15) is f
It is a feature of the present invention that the preparation step is performed after heat treatment in a nitrogen atmosphere. (16) is a sealing step, (17) is a heat treatment step,
(18) is an inspection step. (19) is a plating step of the sealing tube, and (20) is a nitrogen atmosphere heat treatment. It is also a feature of the present invention that the sealing step (16) is immediately after the f-adjustment step and that the sealing tube is heat-treated in a nitrogen atmosphere.

【0015】(13)の洗浄工程後窒素雰囲気中で熱処
理をしてからf調をする。ハンダが共晶系の場合は13
0℃で2時間、Pb系の高温ハンダの場合は200℃で
2時間程の熱処理をする。熱処理温度と時間は封止管の
場合も条件は同じであるが時間を長くするとより確実に
水分の脱離ができる(本例では72時間)。洗浄後に窒
素雰囲気中で熱処理することにより、半完成水晶振動子
に吸着している水分を均等に脱離できる。これは、窒素
の対流により加熱槽の中の温度分布が一様になりやすい
からである。半完成水晶振動子への熱伝達も早く、熱伝
導の媒体となる窒素があるので加熱槽内をファンで強制
的に撹拌することもできる。真空排気系が必要ないので
油ポンプ等からの油の逆流もなく、また、加熱槽のメイ
ンテナンスが容易である。
After the cleaning step (13), a heat treatment is performed in a nitrogen atmosphere, and then the f-tone is adjusted. 13 if the solder is eutectic
Heat treatment is performed at 0 ° C. for 2 hours, and in the case of Pb-based high-temperature solder at 200 ° C. for about 2 hours. The heat treatment temperature and time are the same in the case of the sealed tube, but the longer the time, the more reliably the water can be eliminated (72 hours in this example). By performing a heat treatment in a nitrogen atmosphere after the cleaning, the moisture adsorbed on the semi-finished quartz oscillator can be uniformly desorbed. This is because the convection of nitrogen tends to make the temperature distribution in the heating tank uniform. The heat transfer to the semi-finished quartz oscillator is fast, and the heating tank can be forcibly stirred with a fan because of the presence of nitrogen as a medium for heat conduction. Since a vacuum exhaust system is not required, there is no backflow of oil from an oil pump or the like, and maintenance of the heating tank is easy.

【0016】窒素雰囲気熱処理後にf調工程により振動
周波数を調整し次の封止工程に移る。窒素雰囲気熱処理
で水分を脱離後すぐに振動周波数調整をし、封止するの
で水分吸着の少ない状態で振動周波数調整ができ、ま
た、振動周波数調整後水分吸着の少ない状態で封止され
ることになる。f調工程前の均等脱離による周波数変化
量の減少とバラツキの低減、振動周波数調整後大気に触
れる機会の減少(1回になっている)による吸着の減少
による周波数変化量の減少とバラツキの低減の効果がで
る。
After the heat treatment in the nitrogen atmosphere, the vibration frequency is adjusted by the f-adjustment step, and the process proceeds to the next sealing step. Vibration frequency is adjusted immediately after moisture is desorbed by nitrogen atmosphere heat treatment, and sealing is performed. Vibration frequency can be adjusted with less moisture adsorption, and sealing is performed with less moisture adsorption after vibration frequency adjustment. become. Decrease in frequency change amount and variation due to uniform desorption before f-adjustment process, decrease in frequency change amount and variation due to decrease in adsorption due to reduced chance of coming into contact with air after vibration frequency adjustment (one time). The effect of reduction is obtained.

【0017】図5は本発明により製造された水晶振動子
の、f調時の振動周波数バラツキをゼロとして、各工程
後の振動周波数中央値と標準偏差の推移を夏(湿度70
%)と冬(湿度30%)に調査したグラフである。縦軸
は振動周波数変化量であり、横軸は工程を表している。
グラフ中のポイントから上下に延びる矢印は各ポイント
での振動周波数のバラツキを示す標準偏差(3σ)であ
る。従来技術による水晶振動子のグラフである図3と比
較すると振動周波数中央値と標準偏差の変化が半分以下
に低減している。f調前に水晶振動片に吸着した水分は
窒素雰囲気中の熱処理によって短時間で充分に除去され
ているので真空封止時に脱離する水分は絶対量も少ない
しバラツキも少ないからf調工程と封止工程間の周波数
変化も少ないし封止後の振動周波数のバラツキも小さ
い。同様に、熱処理によって水晶振動片、封止管、気密
端子から脱離する水分の絶対量が少ないので振動周波数
の変化も少なくバラツキが拡大することもない。この結
果、f調狙い値と完成振動周波数の差が小さいのでf調
工程では完成振動周波数に限りなく近い値を狙えば良く
作業性も向上する。
FIG. 5 shows the transition of the median vibration frequency and the standard deviation after each step in the summer (humidity 70
%) And winter (30% humidity). The vertical axis indicates the vibration frequency change amount, and the horizontal axis indicates the process.
Arrows extending up and down from the points in the graph are standard deviations (3σ) indicating variations in the vibration frequency at each point. Compared to FIG. 3, which is a graph of a quartz oscillator according to the prior art, the change in the median vibration frequency and the standard deviation is reduced to less than half. Since the moisture adsorbed on the crystal vibrating piece before the f adjustment is sufficiently removed in a short time by heat treatment in a nitrogen atmosphere, the amount of moisture desorbed during vacuum sealing is small and the dispersion is small. The frequency change between the sealing steps is small, and the variation in the vibration frequency after the sealing is small. Similarly, since the absolute amount of water desorbed from the quartz vibrating piece, the sealing tube, and the airtight terminal by the heat treatment is small, the change in the vibration frequency is small and the variation is not increased. As a result, since the difference between the target f-tuning value and the completed vibration frequency is small, it is sufficient to aim at a value as close as possible to the completed vibration frequency in the f-adjustment step, and the workability is improved.

【0018】[0018]

【発明の効果】本発明により製造した水晶振動子は 1)封止完成後の熱処理工程を経た後も中心振動周波数
のシフトが少なく且つバラツキも小さい。 2)前記効果により熱処理工程(17)を省略すること
も可能である。 3)水分の脱離が効果的にされているので、封止後の長
期的振動周波数変化が少なく、安定した高精度の振動子
が製造できる。 4)熱処理装置に真空排気系を使用しないので熱処理装
置が安価に調達でき、またメインテナンスも容易であ
る。 5)熱処理装置に真空排気系を使用しないのでポンプ系
からの油の逆流による品質低下のおそれが無くなる。 6)湿度変化による影響を低減できるので夏場冬場の差
も少なく安定した品質の水晶振動子を製造することがで
きる。
The quartz resonator manufactured according to the present invention has the following advantages. 1) Even after a heat treatment step after completion of sealing, the shift of the center vibration frequency is small and the dispersion is small. 2) Due to the above effects, the heat treatment step (17) can be omitted. 3) Since desorption of water is made effective, a long-term vibration frequency change after sealing is small, and a stable and high-precision vibrator can be manufactured. 4) Since a vacuum exhaust system is not used for the heat treatment apparatus, the heat treatment apparatus can be procured at low cost, and maintenance is easy. 5) Since a vacuum exhaust system is not used in the heat treatment apparatus, there is no risk of quality deterioration due to backflow of oil from the pump system. 6) Since the influence of a change in humidity can be reduced, a stable quality quartz resonator can be manufactured with little difference between summer and winter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水晶振動子の斜視図FIG. 1 is a perspective view of a crystal unit.

【図2】従来技術による水晶振動子の製造フローチャー
FIG. 2 is a manufacturing flowchart of a quartz resonator according to the related art.

【図3】従来技術により製造された水晶振動子のf調終
了時の振動周波数バラツキをゼロとして、各工程後の振
動周波数中央値と標準偏差の推移を夏(湿度70%)と
冬(湿度30%)に調査したグラフ
FIG. 3 shows the transition of the median vibration frequency and the standard deviation after each process in summer (humidity 70%) and winter (humidity), assuming that the oscillation frequency variation at the end of the f-adjustment of the quartz oscillator manufactured by the prior art is zero. 30%)

【図4】本発明による水晶振動子の製造フローチャートFIG. 4 is a flowchart for manufacturing a quartz oscillator according to the present invention.

【図5】本発明により製造された水晶振動子のf調終了
時の振動周波数バラツキをゼロとして、各工程後の振動
周波数中央値と標準偏差の推移を夏(湿度70%)と冬
(湿度30%)に調査したグラフ
FIG. 5 is a graph showing the transition between the median vibration frequency and the standard deviation after each process in summer (humidity 70%) and winter (humidity), with the vibration frequency variation at the end of f-tuning of the quartz resonator manufactured according to the present invention as zero. 30%)

【符号の説明】[Explanation of symbols]

1 水晶振動片 2 金属環 3 絶縁材料 4 リード 5 封止管 6 電極 7 ハンダ DESCRIPTION OF SYMBOLS 1 Crystal vibrating piece 2 Metal ring 3 Insulating material 4 Lead 5 Sealing tube 6 Electrode 7 Solder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水晶振動片に電極を形成し、電極を形成
した水晶振動片を気密端子にハンダ付けして半完成水晶
振動子とし、ハンダ付け後に洗浄し、窒素雰囲気中で熱
処理し、半完成水晶振動子の振動周波数を調整し、封止
したことを特徴とする水晶振動子。
An electrode is formed on a crystal vibrating piece, and the crystal vibrating piece on which the electrode is formed is soldered to an airtight terminal to form a semi-finished crystal vibrator. A crystal unit wherein the vibration frequency of a completed crystal unit is adjusted and sealed.
【請求項2】 封止管にハンダメッキ又はニッケルメッ
キをしてから窒素雰囲気中で熱処理をして封止したこと
を特徴とする請求項1記載の水晶振動子。
2. The crystal unit according to claim 1, wherein the sealing tube is solder-plated or nickel-plated, and then heat-treated in a nitrogen atmosphere for sealing.
【請求項3】 少なくとも、水晶振動片に電極を形成す
る工程と、電極を形成した水晶振動片を気密端子にハン
ダ付けして半完成水晶振動子とする工程と、ハンダ付け
後に洗浄する工程と、窒素雰囲気中で熱処理する工程
と、半完成水晶振動子の振動周波数を調整する工程と、
封止する工程よりなる水晶振動子の製造方法。
3. At least a step of forming an electrode on the quartz-crystal vibrating piece, a step of soldering the quartz-crystal vibrating piece on which the electrode is formed to an airtight terminal to obtain a semi-finished quartz-crystal vibrator, and a step of cleaning after soldering. Heat treating in a nitrogen atmosphere, and adjusting the vibration frequency of the semi-finished quartz resonator,
A method for manufacturing a crystal resonator, comprising a sealing step.
【請求項4】 封止する工程が、封止管にハンダメッキ
又はニッケルメッキをしてから窒素雰囲気中で熱処理を
して封止する工程である請求項3記載の水晶振動子の製
造方法。
4. The method according to claim 3, wherein the step of sealing is a step of performing solder plating or nickel plating on the sealing tube and then performing heat treatment in a nitrogen atmosphere for sealing.
JP19537696A 1996-07-05 1996-07-05 Crystal vibrator and manufacture therefor Pending JPH1022777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19537696A JPH1022777A (en) 1996-07-05 1996-07-05 Crystal vibrator and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19537696A JPH1022777A (en) 1996-07-05 1996-07-05 Crystal vibrator and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH1022777A true JPH1022777A (en) 1998-01-23

Family

ID=16340146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19537696A Pending JPH1022777A (en) 1996-07-05 1996-07-05 Crystal vibrator and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH1022777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072351A1 (en) * 2007-12-06 2009-06-11 Murata Manufacturing Co., Ltd. Piezoelectric vibration component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072351A1 (en) * 2007-12-06 2009-06-11 Murata Manufacturing Co., Ltd. Piezoelectric vibration component
JP4458203B2 (en) * 2007-12-06 2010-04-28 株式会社村田製作所 Piezoelectric vibration parts
JPWO2009072351A1 (en) * 2007-12-06 2011-04-21 株式会社村田製作所 Piezoelectric vibration parts
US8330336B2 (en) 2007-12-06 2012-12-11 Murata Manufacturing Co., Ltd. Piezoelectric vibration component

Similar Documents

Publication Publication Date Title
US3135591A (en) Separation of helium from a gaseous mixture by means of a novel selective diffusion barrier
JP2620606B2 (en) High purity flexible expanded graphite sheet and method for producing the same
JPH1022777A (en) Crystal vibrator and manufacture therefor
US4686324A (en) Cold-seal package for withstanding high temperatures
US4080696A (en) Method of making piezoelectric vibrator
Kusters et al. Thermal hysteresis in quartz resonators-A review (frequency standards)
KR100799092B1 (en) A method for sealing display devices
CN103457567A (en) Inner surface processing method of superconductive resonant cavity used for superconductive frequency-stabilizing oscillator
JP2004152530A (en) Manufacturing method for glass panel and glass panel manufactured by it
JPS63303505A (en) Cylinder type crystal vibrator
US4209556A (en) Method of processing glazed tubular inserts
JP2003142614A (en) Hermetically sealed electronic component
JP4268724B2 (en) Manufacturing method of crystal unit
JP3107414B2 (en) Quartz crystal resonator and sealing method thereof
US4741076A (en) Method of making a high stability quartz crystal oscillator
JP3774869B2 (en) Highly stable quartz crystal and its manufacturing method
JPH11145757A (en) Container for piezoelectric oscillator
Byrne et al. Effect of High-Temperature Processing on the Aging Behavior of Precision 5-MHz Quartz Crystal Units
JP3520865B2 (en) Hermetically sealed electronic components
JPS5818805B2 (en) Chiyokogata Atsushi Shindoushi Unit
JPH0226405A (en) Cylinder-type crystal resonator
JPH07249623A (en) Silicon nitride film forming method
JPS62221163A (en) Formation of thin film transistor
Amiotti et al. Development of thin film getters for assuring high reliability and long lifetime to crystal oscillators
RU2330376C1 (en) Method of manufacturing for piezoelectric devices