JPH10227778A - Determination method for dibutyl phosphate and monobutyl phosphate - Google Patents

Determination method for dibutyl phosphate and monobutyl phosphate

Info

Publication number
JPH10227778A
JPH10227778A JP3153397A JP3153397A JPH10227778A JP H10227778 A JPH10227778 A JP H10227778A JP 3153397 A JP3153397 A JP 3153397A JP 3153397 A JP3153397 A JP 3153397A JP H10227778 A JPH10227778 A JP H10227778A
Authority
JP
Japan
Prior art keywords
phosphate
solution
dbp
mbp
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3153397A
Other languages
Japanese (ja)
Inventor
Yuji Kikuchi
雄二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3153397A priority Critical patent/JPH10227778A/en
Publication of JPH10227778A publication Critical patent/JPH10227778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a determination method for determinating DBP(dibutyl phosphate) and MBP(monobutyl phosphate) included in an organic solvent including TBP(tributyl phosphate) by 0.1mg/l. SOLUTION: In the determination of DBP and MBP in an organic solvent by using an ion chromatography, a small amount of alkali solution is brought into contact with the organic solvent, the obtained alkali solution is passed through a cation exchange resin, and the quantity of DBP and MBP in the solution obtained by adsorbing and removing the alkali metal ion in the solution by the ion exchange resin is measured by an ion chromatographic device. The pH of the alkali solution is preferably 12-14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トリブチルフォス
フェート(以下「TBP」と示す。)を含む有機溶媒中
のジブチルフォスフェート(以下「DBP」と示す。)
及びモノブチルフォスフェート(以下「MBP」と示
す。)の定量法に関するものである。
The present invention relates to dibutyl phosphate (hereinafter referred to as "DBP") in an organic solvent containing tributyl phosphate (hereinafter referred to as "TBP").
And a method for quantifying monobutyl phosphate (hereinafter referred to as “MBP”).

【0002】[0002]

【従来の技術】使用済核燃料の再処理工程で使用した抽
出有機中のTBPは、放射性元素との接触により、DB
PやMBPに分解される。これらを含んだ抽出有機を用
いると、目的元素の抽出率を低下させることから、その
濃度を0.1mg/l以下に管理する必要がある。
2. Description of the Related Art TBP in an extracted organic substance used in a reprocessing step of spent nuclear fuel is converted into DB by contact with a radioactive element.
Decomposed into P and MBP. The use of an extracted organic substance containing these substances lowers the extraction rate of the target element. Therefore, it is necessary to control the concentration of the target element to 0.1 mg / l or less.

【0003】ところで、DBPやMBPを分析する方法
には、DBPをメチル化しガスクロマトグラフ法(以下
「GC法」と示す。)で測定する方法や、イオン交換分
離を利用したイオンクロマトグラフ法(以下の「IC
法」と示す。)がある。
[0003] Incidentally, methods for analyzing DBP and MBP include a method of methylating DBP and measuring it by gas chromatography (hereinafter referred to as "GC method"), an ion chromatography method using ion exchange separation (hereinafter referred to as "GC method"). "IC
Law ". ).

【0004】しかし、GC法については、その前処理が
繁雑で、かつ、時間がかかり、又、定量下限が10mg
/lと目標とする値に対して2桁も高く高度の濃縮が必
要とされる。一方、IC法については、有機溶媒中のD
BPを水相に抽出する必要がある。又、定量下限が1m
g/lであり、GC法程ではないものの、同様に濃縮操
作が必要となる。
However, in the GC method, the pretreatment is complicated and time-consuming, and the lower limit of quantification is 10 mg.
Higher enrichment is required, two orders of magnitude higher than / l and the target value. On the other hand, for the IC method, D in an organic solvent is used.
BP needs to be extracted into the aqueous phase. The lower limit of quantification is 1m
g / l, which is not as good as the GC method, but also requires a concentration operation.

【0005】[0005]

【発明が解決しようとする課題】これらの問題により、
TBPを含む有機溶媒中のDBP及びMBPを0.1m
g/lまで定量できる方法の開発が待たれていた。しか
し、このような課題を解決する定量法は未だ実用化され
ていない。
SUMMARY OF THE INVENTION Due to these problems,
0.1 m for DBP and MBP in an organic solvent containing TBP
Development of a method capable of quantification down to g / l has been awaited. However, a quantitative method for solving such a problem has not yet been put to practical use.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく種々の検討を試み、IC法の前処理法を改
良することにより目的を達成できることを見いだし本発
明に至った。
Means for Solving the Problems The present inventor has made various studies to solve the above-mentioned problems, and found that the object can be achieved by improving the preprocessing method of the IC method, and reached the present invention.

【0007】すなわち、上記課題を解決する本発明の方
法は、IC法を用いて有機溶媒中のDBP及びMBPの
定量を行うに際して、まず有機溶媒に少量のアルカリ溶
液を接触させ、得られたアルカリ溶液を陽イオン交換樹
脂に通し、溶液中のアルカリ金属イオンをイオン交換樹
脂に吸着・除去し得た溶液中のDBPとMBPとの量を
イオンクロマトグラフ装置により測定するものである。
なお、アルカリ溶液のpHは、12〜14とすることが
好適である。
That is, in the method of the present invention for solving the above-mentioned problems, when quantifying DBP and MBP in an organic solvent by IC method, first, a small amount of an alkaline solution is brought into contact with the organic solvent, The solution is passed through a cation exchange resin, and the amounts of DBP and MBP in the solution obtained by adsorbing and removing alkali metal ions in the solution from the ion exchange resin are measured by an ion chromatograph.
The pH of the alkaline solution is preferably set to 12 to 14.

【0008】[0008]

【発明の実施の形態】本発明の方法では、前処理とし
て、有機溶媒とこれに対して少量のアルカリ溶液とを接
触させ、DBP及びMBPを水相に移すが、これは、I
C法でこれらを測定するためには水溶液とすることが必
要であるからである。かつ、目標とする定量下限が0.
1mg/lであることから濃縮することが必要なためで
ある。すなわち、DBP及びMBPを10倍に濃縮し、
かつ、水溶液にするには、アルカリ抽出が最適であるか
らである。例えば、有機溶媒20mlに対して用いるア
ルカリ溶液を2mlとすれば、簡単に10倍に濃縮が可
能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, as a pretreatment, an organic solvent is brought into contact with a small amount of an alkaline solution, and DBP and MBP are transferred to an aqueous phase.
This is because an aqueous solution is required to measure these by the method C. And the target lower limit of quantification is 0.
This is because concentration is necessary because the concentration is 1 mg / l. That is, DBP and MBP are concentrated 10 times,
In addition, alkali extraction is most suitable for preparing an aqueous solution. For example, if the amount of the alkaline solution used for 20 ml of the organic solvent is 2 ml, the concentration can be easily increased 10 times.

【0009】抽出に用いるアルカリ溶液は、pHが12
〜14に調整できる水溶性アルカリがよい。好ましく
は、水酸化ナトリウムが最適である。
The alkaline solution used for extraction has a pH of 12
A water-soluble alkali that can be adjusted to ~ 14 is preferred. Preferably, sodium hydroxide is optimal.

【0010】アルカリ溶液のpHを、12〜14の範囲
が最適とするのは、この範囲においてのみ該有機溶媒中
のDBP及びMBPが一度の抽出操作で95%以上抽出
できるからである。pHが12以下になると十分な量を
抽出するための抽出回数が多くなり目標とする定量下限
が得られなくなる。又、pHが14以上では、測定液中
のナトリウム濃度が高くなりIC法での測定が困難とな
る。IC法での測定の困難さを回避しようとして溶液を
希釈した場合には、定量下限が悪くなる。
The reason why the pH of the alkaline solution is optimally in the range of 12 to 14 is that DBP and MBP in the organic solvent can be extracted by 95% or more in a single extraction operation only in this range. When the pH is 12 or less, the number of extractions for extracting a sufficient amount increases, and the target lower limit of quantification cannot be obtained. On the other hand, when the pH is 14 or more, the concentration of sodium in the measurement solution becomes high, and the measurement by the IC method becomes difficult. When the solution is diluted in order to avoid the difficulty of the measurement by the IC method, the lower limit of quantification becomes worse.

【0011】次に、DBPとMBPを抽出したアルカリ
溶液を陽イオン交換樹脂に通すが、これはIC法での測
定時に、溶液中の陽イオンの保持時間がDBPのそれと
重なるためにDBPの測定が困難となるからである。な
お、アルカリ溶液を陽イオン交換樹脂に通してもDBP
やMBPの損失は無視できる。
Next, the alkali solution from which DBP and MBP have been extracted is passed through a cation exchange resin. This is because the retention time of cations in the solution overlaps with that of DBP during measurement by the IC method. Is difficult. It should be noted that even when an alkali solution is passed through a cation exchange resin, DBP
And MBP losses are negligible.

【0012】[0012]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0013】(実施例1)30%TBPを含むn−ドデ
カンに、DBP及びMBPをそれぞれ1mg/lとなる
ように添加して試料溶液Aを得た。
Example 1 A sample solution A was obtained by adding DBP and MBP to n-dodecane containing 30% TBP at a concentration of 1 mg / l each.

【0014】この試料溶液A20mlを7個の分液ロー
トに取り、水酸化ナトリウム溶液でpHをそれぞれ1
1.0、11.7、12.0、13.0、13.7、1
4.0及び14.7に調整したアルカリ溶液2mlをそ
れぞれに加え、振とう機で20分間振とうした。20分
間静置後、アルカリ溶液のみを分離回収し、全量を陽イ
オン交換樹脂(MERCK社製 商品名 LiChrolut SC
X)に通した。得られた溶液A1、A2、A3、A4、
A5、A6、A7中のDBP及びMBPをイオンクロマ
トグラフ分析装置を用いて定量した。なお、測定には横
河電機社製のイオンクロマトグラフ分析装置を用いた。
20 ml of this sample solution A is placed in seven separating funnels, and the pH is adjusted to 1 with sodium hydroxide solution.
1.0, 11.7, 12.0, 13.0, 13.7, 1
2 ml of the alkaline solution adjusted to 4.0 and 14.7 was added to each, and the mixture was shaken with a shaker for 20 minutes. After standing for 20 minutes, only the alkali solution was separated and collected, and the entire amount was washed with a cation exchange resin (product name: LiChrolut SC manufactured by MERCK).
X). The resulting solutions A1, A2, A3, A4,
DBP and MBP in A5, A6, and A7 were quantified using an ion chromatograph analyzer. The measurement was performed using an ion chromatograph analyzer manufactured by Yokogawa Electric Corporation.

【0015】得られた溶液中のDBPとMBPの含有量
を、試料溶液のDBP及びMBPの含有量で除した値を
回収率とした。その結果を表1に示した。この結果か
ら、12〜14のpH範囲において、得られた溶液中の
DBP及びMBPの回収率はほぼ100%であり、本法
がDBP及びMBPの定量に有効であることが分かる。
なお、A7については、陽イオンの妨害により、定量す
ることができなかった。
The value obtained by dividing the content of DBP and MBP in the obtained solution by the content of DBP and MBP in the sample solution was defined as the recovery rate. The results are shown in Table 1. From these results, in the pH range of 12 to 14, the recovery of DBP and MBP in the obtained solution was almost 100%, indicating that the present method is effective for the quantification of DBP and MBP.
A7 could not be quantified due to cation interference.

【0016】 (実施例2)水酸化ナトリウム溶液のかわりに水酸化カ
リウム溶液を用いた以外は実施例1と同様にして回収率
試験を行った。
[0016] (Example 2) A recovery test was performed in the same manner as in Example 1 except that a potassium hydroxide solution was used instead of the sodium hydroxide solution.

【0017】得られた溶液のDBP及びMBPの回収率
は実施例1と同様12〜14のpH範囲において100
%であり、本法がDBP及びMBPの定量に有効である
ことが分かる。
The recovery of DBP and MBP in the obtained solution was 100 in the pH range of 12 to 14 as in Example 1.
%, Which indicates that this method is effective for quantification of DBP and MBP.

【0018】(実施例3)実試料溶液に、DBP及びM
BPをそれぞれ0、0.1及び0.5mg/lとなるよ
うに添加して試料溶液B、C及びDを得た。
Example 3 DBP and M were added to an actual sample solution.
BP was added at 0, 0.1 and 0.5 mg / l, respectively, to obtain sample solutions B, C and D.

【0019】この試料溶液B、C及びD20mlを分液
ロートにそれぞれ取り、水酸化ナトリウム溶液でpHを
13に調整したアルカリ溶液2mlを加え、振とう機で
20分間振とうした。20分間静置後、このアルカリ溶
液のみを分離し、全量を陽イオン交換樹脂に通した。そ
して、得られた溶液のDBP及びMBPを定量した。測
定には横河電機社製のイオンクロマトグラフ分析装置を
用いた。得られた溶液のDBP及びMBPの含有量を、
試料量で除した値を定量値とした。その定量結果を表2
に示した。この結果から、定量下限は0.1mg/lで
あり、本法がDBP及びMBPの定量に有効であること
が分かる。
20 ml of each of the sample solutions B, C and D was taken into a separating funnel, 2 ml of an alkali solution adjusted to pH 13 with sodium hydroxide solution was added, and the mixture was shaken with a shaker for 20 minutes. After standing for 20 minutes, only the alkaline solution was separated, and the whole amount was passed through a cation exchange resin. And DBP and MBP of the obtained solution were quantified. For the measurement, an ion chromatograph analyzer manufactured by Yokogawa Electric Corporation was used. The content of DBP and MBP in the obtained solution was
The value divided by the sample amount was defined as the quantitative value. Table 2 shows the quantitative results.
It was shown to. The results show that the lower limit of quantification is 0.1 mg / l, indicating that the present method is effective for quantification of DBP and MBP.

【0020】 (比較例1)陽イオン交換樹脂を通さずに実施例1と同
様にして回収率試験を行った。
[0020] (Comparative Example 1) A recovery test was conducted in the same manner as in Example 1 without passing through a cation exchange resin.

【0021】得られた溶液のDBP及びMBPの測定を
行ったが、何れも多量の陽イオン等の妨害により、定量
することが困難であった。
The DBP and MBP of the obtained solution were measured. However, it was difficult to quantify each of the solutions due to interference of a large amount of cations and the like.

【0022】[0022]

【発明の効果】本発明により、TBPを含む有機溶媒中
のDBP及びMBPを0.1mg/lまで定量できる。
具体的には、使用済核燃料の再処理工程等で使用される
該有機溶媒の劣化度を判定するための、あるいは、劣化
した該有機溶媒を洗浄し再使用するときの、指標として
用いることができる。
According to the present invention, DBP and MBP in an organic solvent containing TBP can be determined up to 0.1 mg / l.
Specifically, it may be used as an index for determining the degree of deterioration of the organic solvent used in the reprocessing step of spent nuclear fuel or for washing and reusing the deteriorated organic solvent. it can.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオンクロマトグラフ分析装置を用い
てトリブチルフォスフェートを含む有機溶媒中のジブチ
ルフォスフェート及びモノブチルフォスフェートの定量
を行うに際して、該有機溶媒とこれに対して少量のアル
カリ溶液とを接触し、このアルカリ溶液を陽イオン交換
樹脂に通し、ジブチルフォスフェート及びモノブチルフ
ォスフェートを分離濃縮し、次いでイオンクロマトグラ
フ分析装置により分析することを特徴とするジブチルフ
ォスフェート及びモノブチルフォスフェートの定量法。
When quantifying dibutyl phosphate and monobutyl phosphate in an organic solvent containing tributyl phosphate using an ion chromatograph analyzer, the organic solvent and a small amount of an alkali solution are used. Contacting, passing the alkaline solution through a cation exchange resin, separating and concentrating dibutyl phosphate and monobutyl phosphate, and then analyzing the dibutyl phosphate and monobutyl phosphate by an ion chromatograph. Assay method.
【請求項2】 アルカリ溶液のpHが12〜14であ
ることを特徴とする請求項1記載のジブチルフォスフェ
ート及びモノブチルフォスフェートの定量法。
2. The method for quantifying dibutyl phosphate and monobutyl phosphate according to claim 1, wherein the pH of the alkaline solution is 12 to 14.
JP3153397A 1997-02-17 1997-02-17 Determination method for dibutyl phosphate and monobutyl phosphate Pending JPH10227778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3153397A JPH10227778A (en) 1997-02-17 1997-02-17 Determination method for dibutyl phosphate and monobutyl phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3153397A JPH10227778A (en) 1997-02-17 1997-02-17 Determination method for dibutyl phosphate and monobutyl phosphate

Publications (1)

Publication Number Publication Date
JPH10227778A true JPH10227778A (en) 1998-08-25

Family

ID=12333848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3153397A Pending JPH10227778A (en) 1997-02-17 1997-02-17 Determination method for dibutyl phosphate and monobutyl phosphate

Country Status (1)

Country Link
JP (1) JPH10227778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007190A (en) * 2014-03-21 2014-08-27 舟山出入境检验检疫局综合技术服务中心 Method for simultaneously detecting propionate, citrate and polyphosphate in aquatic product
RU2622987C2 (en) * 2010-10-06 2017-06-21 Зе Боинг Компани Evolution method and system for control of phosphoric acid esters presence in jet fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622987C2 (en) * 2010-10-06 2017-06-21 Зе Боинг Компани Evolution method and system for control of phosphoric acid esters presence in jet fuel
CN104007190A (en) * 2014-03-21 2014-08-27 舟山出入境检验检疫局综合技术服务中心 Method for simultaneously detecting propionate, citrate and polyphosphate in aquatic product

Similar Documents

Publication Publication Date Title
Prosser et al. High-precision determination of 2H/1H in H2 and H2O by continuous-flow isotope ratio mass spectrometry
Liang et al. Simultaneous determination of mercury speciation in biological materials by GC/CVAFS after ethylation and room-temperature precollection
Sturgeon et al. Comparison of methods for the determination of trace elements in seawater
CN107064330B (en) Quantitation of insulin by mass spectrometry
Caricchia et al. GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion
CN115236229A (en) Gas chromatography-mass spectrometry analysis method for haloacetic acid in drinking water
Guest et al. Determination of uranium in uranium concentrates
Benkhedda et al. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry
Lu et al. Determination of anions at trace levels in power plant water samples by ion chromatography with electrolytic eluent generation and suppression
CN111189956B (en) H 2 O 2 Method for detecting content of nitrite in sodium chloride sample by using oxidized ion chromatography
CN101246176B (en) Mass spectrum kit for detecting squamous-cell carcinoma antigen feminine cervical carcinoma serum protein and preparation method thereof
Savory et al. Gas chromatographic determination of chromium in serum
Strelow Separation of thorium from rare earths, zirconium, and other elements by cation exchange chromatography
Mitsuhashi et al. Gas chromatographic determination of total iodine in foods
JPH10227778A (en) Determination method for dibutyl phosphate and monobutyl phosphate
Spanu et al. A high-throughput, straightforward procedure for biomonitoring organomercury species in human hair
Perlado et al. Determination of phenylephrine with a modified carbon paste electrode
Musashi et al. Stable chlorine-isotope analysis of rock samples: New aspects of chlorine extraction
Bisogni Jr et al. Determination of submicrogram quantities of monomethyl mercury in aquatic samples
CN106290627B (en) The analysis method of nitrosamine burst size in a kind of cigarette smoke
Goolvard et al. Determination of methylmercury in human blood
Miller et al. The analysis of EDTA in dried bloodstains by electrospray LC-MS-MS and ion chromatography
Schaffer et al. Routine determination of nitrogen in microgram range with sealed tube digestion and direct Nesslerization
Siemer Separation of chloride and bromide from complex matrices prior to ion chromatographic determination
JPH10286561A (en) Method for separation and analysis of silicon and phosphorus