JPH10227688A - Aircraft noise identifying apparatus - Google Patents

Aircraft noise identifying apparatus

Info

Publication number
JPH10227688A
JPH10227688A JP22787797A JP22787797A JPH10227688A JP H10227688 A JPH10227688 A JP H10227688A JP 22787797 A JP22787797 A JP 22787797A JP 22787797 A JP22787797 A JP 22787797A JP H10227688 A JPH10227688 A JP H10227688A
Authority
JP
Japan
Prior art keywords
aircraft
radio wave
azimuth
sound
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22787797A
Other languages
Japanese (ja)
Other versions
JP3167965B2 (en
Inventor
Noriaki Hayashi
範章 林
Ichiro Yamada
一郎 山田
Koichi Makino
康一 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Kobayashi Institute of Physical Research
Original Assignee
Rion Co Ltd
Kobayashi Institute of Physical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd, Kobayashi Institute of Physical Research filed Critical Rion Co Ltd
Priority to JP22787797A priority Critical patent/JP3167965B2/en
Publication of JPH10227688A publication Critical patent/JPH10227688A/en
Application granted granted Critical
Publication of JP3167965B2 publication Critical patent/JP3167965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aircraft noise identifying apparatus for identifying whether it is an aircraft noise or not even if a difference between an aircraft noise level and the other noise level is not sufficient. SOLUTION: The aircraft noise identifying apparatus comprises a sound wave type direction identifier 1 for detecting sound generated from an aircraft to output a direction signal αm responsive to a bearing of the aircraft, a radio type direction identifier 2 for detecting a radio wave generated from the aircraft to output a direction signal αa responsive to the bearing of the aircraft, a time difference detector 3 for outputting a time difference td between the signal αm of the identifier 1 and the signal αa of the identifier 2, and a deciding unit 4 for deciding that a sound source is the same as a radio source if the difference td is continued at the same value for a predetermined time or longer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、騒音源が航空機に
よる騒音か否かの判定を行う航空機騒音識別装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aircraft noise discriminating apparatus for determining whether a noise source is an aircraft noise.

【0002】[0002]

【従来の技術】従来、飛行する航空機に起因する騒音の
自動測定に際し、音源の識別を行うには、航空機が測定
点に接近した後に遠ざかることによって生ずる航空機か
らの音、一般に騒音の音圧レベルの時間経過による山形
の変化を測定し、そのピーク値から所定のレベル(例え
ば、αdB)だけ低下した音圧レベルとなる時間幅、或
は所定の音圧レベル以上の音圧が得られる継続時間を求
め、その値が所定の閾値を上回った場合に航空機の通過
による騒音と判断していた(例えば、実公昭60−15
143号公報参照)。
2. Description of the Related Art Conventionally, in automatic measurement of noise caused by a flying aircraft, a sound source is identified by sound from the aircraft caused by the aircraft moving away from the measurement point after approaching the measurement point, generally the sound pressure level of the noise. Is measured, and the change of the chevron shape is measured, and the time width at which the sound pressure level is reduced from the peak value by a predetermined level (for example, α dB), or the duration during which the sound pressure equal to or higher than the predetermined sound pressure level is obtained When the value exceeds a predetermined threshold value, it is determined that the noise is caused by the passage of the aircraft (for example, Japanese Utility Model Publication No. 60-15
No. 143).

【0003】しかし、このような方法においては、音源
の種類、例えば移動音源であるか静止音源であるか、地
上音源であるか空中音源であるかに関係なく、上述の条
件を満たす騒音源からの音を全て航空機騒音として判定
する欠点がある。例えば、飛行中の航空機からの騒音の
みについて測定を行おうとしても測定点の近傍を通過す
る自動車等の地上車両からの騒音によっても同様の測定
値が得られる。
However, in such a method, regardless of the type of sound source, for example, whether it is a moving sound source or a stationary sound source, a ground sound source, or an air sound source, a noise source satisfying the above-described conditions is used. There is a disadvantage that all the sounds are determined as aircraft noise. For example, even if an attempt is made to measure only noise from an aircraft in flight, a similar measurement value can be obtained by noise from a ground vehicle such as an automobile passing near the measurement point.

【0004】このような問題点を解決するために、特公
昭61−13169号公報に記載の装置が提案されてい
る。この装置は、上下に離間して設置した2個のマイク
ロホンを用い、上方から到来する音、即ち航空機の音が
2個のマイクロホンに到達する時間差を相互相関関数を
用いて検出するものである。
[0004] In order to solve such a problem, an apparatus described in Japanese Patent Publication No. 61-13169 has been proposed. This apparatus uses two microphones that are vertically separated from each other, and detects a time difference between a sound arriving from above, that is, a sound of an aircraft reaching the two microphones, using a cross-correlation function.

【0005】[0005]

【発明が解決しようとする課題】しかし、航空機の騒音
レベルとその他の騒音レベルの差は、常に十分であると
は限らず、従来の技術においては、時として相関のピー
ク位置を誤認し、判定結果に誤りが生ずるという問題点
を有している。
However, the difference between the aircraft noise level and other noise levels is not always sufficient, and in the prior art, the peak position of the correlation is sometimes misidentified and determined. There is a problem that an error occurs in the result.

【0006】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、航空機の騒音レベルとその他の騒音レベルの差
が十分でない場合でも航空機の騒音であるか否かを識別
できる航空機騒音識別装置を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide an airplane even when the noise level of the aircraft is not sufficiently different from other noise levels. It is an object of the present invention to provide an aircraft noise discriminating apparatus capable of discriminating whether or not noise is generated.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく請
求項1の発明は、航空機の発する音を検出して航空機の
方位に応じた信号を出力する音波式方位識別手段と、航
空機の発する電波を検出して航空機の方位に応じた信号
を出力する電波式方位識別手段と、前記音波式方位識別
手段の出力信号と前記電波式方位識別手段の出力信号と
の類似度を算出し、この類似度が所定の値以上の場合に
は音源と電波源が同一であると判定する類似度判定手段
を備えるものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first aspect of the present invention is a sound direction identification means for detecting a sound emitted from an aircraft and outputting a signal corresponding to the orientation of the aircraft, and a sound emitted from the aircraft. A radio wave direction identification means for detecting a radio wave and outputting a signal corresponding to the direction of the aircraft, and calculating a similarity between an output signal of the sound wave direction identification means and an output signal of the radio wave direction identification means, When the similarity is equal to or larger than a predetermined value, the sound source and the radio wave source are determined to be the same.

【0008】請求項2の発明は、航空機の発する音を検
出して航空機の方位に応じた信号を出力する音波式方位
識別手段と、航空機の発する電波を検出して航空機の方
位に応じた信号を出力する電波式方位識別手段と、前記
音波式方位識別手段の出力信号と前記電波式方位識別手
段の出力信号との時間差を出力する時間差検出手段と、
前記時間差が所定時間以上同一値を継続した場合には音
源と電波源が同一であると判定する判定手段を備えるも
のである。
According to a second aspect of the present invention, there is provided a sound wave direction identification means for detecting a sound emitted from an aircraft and outputting a signal corresponding to the direction of the aircraft, and a signal corresponding to the direction of the aircraft by detecting a radio wave emitted from the aircraft. Radio wave direction identification means for outputting a time difference detection means for outputting a time difference between an output signal of the sound wave direction identification means and an output signal of the radio wave direction identification means,
If the time difference continues to be the same value for a predetermined time or more, the sound source and the radio wave source are determined to be the same.

【0009】請求項3の発明は、航空機の発する音を検
出して航空機の方位に応じた信号を出力する音波式方位
識別手段と、航空機の発する電波を検出して航空機の方
位に応じた信号を出力する電波式方位識別手段と、前記
音波式方位識別手段の出力信号と前記電波式方位識別手
段の出力信号との相互相関関数を演算する相互相関関数
演算手段と、前記相互相関関数の最大値が同じ位置で所
定以上の値を持つ場合には音源と電波源が同一であると
判定する判定手段を備えるものである。
According to a third aspect of the present invention, there is provided a sound wave direction identification means for detecting a sound emitted from an aircraft and outputting a signal corresponding to the direction of the aircraft, and a signal corresponding to the direction of the aircraft by detecting a radio wave emitted from the aircraft. A radio wave direction identification means for outputting a cross-correlation function between the output signal of the sound wave direction identification means and the output signal of the radio wave direction identification means; and a maximum of the cross-correlation function. When the value has a value equal to or greater than a predetermined value at the same position, a determination means is provided for determining that the sound source and the radio wave source are the same.

【0010】請求項4の発明は、航空機の発する音を検
出して航空機の方位に応じた信号を出力する音波式方位
識別手段と、航空機の発する電波を検出して航空機の方
位に応じた信号を出力する電波式方位識別手段と、前記
音波式方位識別手段の出力信号及び前記電波式方位識別
手段の出力信号を時間と方位角の2次元の線画として扱
い、この2種の線画の類似度をパターンマッチングによ
り評価するパターンマッチング手段を備えるものであ
る。
According to a fourth aspect of the present invention, there is provided a sound wave direction identification means for detecting a sound emitted from an aircraft and outputting a signal corresponding to the direction of the aircraft, and a signal corresponding to the direction of the aircraft by detecting a radio wave emitted from the aircraft. Radio wave direction discriminating means, and the output signal of the sound wave direction discriminating means and the output signal of the radio wave direction discriminating means are treated as a two-dimensional line drawing of time and azimuth, and the similarity between these two kinds of line drawing Is provided with a pattern matching means for evaluating by using pattern matching.

【0011】請求項5の発明は、請求項1、2、3又は
4記載の航空機騒音識別装置に騒音計を付設すると共
に、この騒音計の指示値と前記航空機騒音識別装置の判
定結果を対応させて記録する記録手段を設けたものであ
る。
According to a fifth aspect of the present invention, a sound level meter is attached to the aircraft noise identification device according to the first, second, third or fourth aspect, and the indicated value of the noise level meter corresponds to the determination result of the aircraft noise identification device. A recording means for recording the data is provided.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は請求項1の発
明に係る航空機騒音識別装置の構成図、図2は音波式方
位識別装置の構成図、図3はマイクロホンの配置を示す
上面図、図4は電波式方位識別装置の構成図、図5はア
ンテナの配置を示す説明図、図6は電波と音の方位角の
変化の違いを示す図、図7は請求項2の発明に係る航空
機騒音識別装置の構成図、図8は請求項3の発明に係る
航空機騒音識別装置の構成図、図9は請求項4の発明に
係る航空機騒音識別装置の構成図、図10は音の到来す
る方位角をピクセル化した図、図11は電波の到来する
方位角をピクセル化した図、図12はある音の到来する
方位角をピクセル化した図、図13は請求項5の発明に
係る航空機騒音識別装置の構成図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a configuration diagram of an aircraft noise identification device according to the first embodiment of the present invention, FIG. 2 is a configuration diagram of a sound direction identification device, FIG. 3 is a top view showing an arrangement of microphones, and FIG. FIG. 5 is an explanatory diagram showing the arrangement of antennas, FIG. 6 is a diagram showing the difference in azimuth between radio waves and sound, and FIG. 7 is a configuration of an aircraft noise discriminating device according to the second embodiment. FIG. 8 is a block diagram of the aircraft noise discriminating apparatus according to the third aspect of the present invention, FIG. 9 is a block diagram of the aircraft noise discriminating apparatus according to the fourth aspect of the present invention, and FIG. FIG. 11, FIG. 11 is a diagram in which the azimuth from which a radio wave arrives is pixelated, FIG. 12 is a diagram, in which an azimuth from which a certain sound arrives is pixelated, and FIG. 13 is a configuration of the aircraft noise identification device according to the invention of claim 5. FIG.

【0013】請求項1の航空機騒音識別装置S0は、図
1に示すように、航空機の発する音を検出して航空機の
方位に応じた方位信号αmを出力する音波式方位識別装
置1と、航空機の発する電波を検出して航空機の方位に
応じた方位信号αaを出力する電波式方位識別装置2
と、音波式方位識別装置1の方位信号αmと電波式方位
識別装置2の方位信号αaとの類似度を算出し、この類
似度が所定の値以上の場合には音源と電波源が同一であ
ると判定する類似度判定装置0とからなる。
As shown in FIG. 1, an aircraft noise discriminating apparatus S0 detects a sound emitted from an aircraft and outputs a directional signal αm corresponding to the azimuth of the aircraft. Radio wave direction identification device 2 which detects a radio wave emitted by the vehicle and outputs a direction signal αa corresponding to the direction of the aircraft
And the azimuth signal αm of the sound wave type directional identification device 1 and the azimuth signal αa of the radio wave type directional identification device 2 are calculated, and when the similarity is equal to or greater than a predetermined value, the sound source and the radio source are the same. And a similarity determination device 0 which determines that there is a similarity.

【0014】音波式方位識別装置1は、図2に示すよう
に、3個の無指向性マイクロホンM1,M2,M3と、
マイクロホンM1の出力信号とマイクロホンM2の出力
信号の相関関数を算出する相関演算部E1と、マイクロ
ホンM1の出力信号とマイクロホンM3の出力信号の相
関関数を算出する相関演算部E2と、マイクロホンM1
の出力信号に対するマイクロホンM2の出力信号の遅れ
時間τxを求める遅延検出部D1と、マイクロホンM1
の出力信号に対するマイクロホンM3の出力信号の遅れ
時間τyを求める遅延検出部D2と、遅れ時間τx,τ
yから航空機の方位角αmを算出する方位角演算部P1
からなる。
As shown in FIG. 2, the sound wave type azimuth discriminating apparatus 1 includes three omnidirectional microphones M1, M2, M3,
A correlation operation unit E1 for calculating a correlation function between the output signal of the microphone M1 and the output signal of the microphone M2; a correlation operation unit E2 for calculating a correlation function between the output signal of the microphone M1 and the output signal of the microphone M3;
A delay detection unit D1 for obtaining a delay time τx of an output signal of the microphone M2 with respect to the output signal of the microphone M1;
A delay detecting unit D2 for obtaining a delay time τy of the output signal of the microphone M3 with respect to the output signal of
Azimuth angle calculation unit P1 for calculating the azimuth angle αm of the aircraft from y
Consists of

【0015】3個の無指向性マイクロホンM1,M2,
M3は、図3に示すように、マイクロホンM1とマイク
ロホンM2を結ぶ直線と、マイクロホンM1とマイクロ
ホンM3を結ぶ直線が直交するよう水平面に配置され
る。
Three omnidirectional microphones M1, M2,
As shown in FIG. 3, M3 is disposed on a horizontal plane such that a straight line connecting the microphones M1 and M2 and a straight line connecting the microphones M1 and M3 are orthogonal to each other.

【0016】マイクロホンM1とマイクロホンM2の距
離をL1、マイクロホンM1とマイクロホンM3の距離
をL2とすると、必ずしもL1=L2である必要はな
く、L1≠L2であってもよい。要は、マイクロホンM
1からマイクロホンM2を見る方向(M1・M2方向)
からの音がマイクロホンM1とマイクロホンM2とに同
時に到達しなければよく、またマイクロホンM1からマ
イクロホンM3を見る方向(M1・M3方向)からの音
がマイクロホンM1とマイクロホンM3とに同時に到達
しなければよいからである。更に、方位の検出を絶対的
な方角で行う場合には、M1・M2方向又はM1・M3
方向を東西南北のいずれかの方角に合せればよい。
Assuming that the distance between the microphone M1 and the microphone M2 is L1 and the distance between the microphone M1 and the microphone M3 is L2, it is not always necessary that L1 = L2, and L1 ≠ L2. In short, microphone M
Direction for viewing microphone M2 from 1 (M1 and M2 directions)
It is only necessary that the sound from the microphone M1 and the microphone M2 does not reach the microphone M1 and the microphone M2 at the same time, and that the sound from the direction in which the microphone M1 looks at the microphone M3 (M1 and M3 directions) does not reach the microphone M1 and the microphone M3 at the same time. Because. Further, when the azimuth is detected in an absolute direction, the direction of M1 · M2 or M1 · M3
The direction can be set to any direction of north, south, east, west.

【0017】例えば、M1・M2方向を0°、M1・M
3方向を90°とすると、マイクロホンM1,M2,M
3で捕えた音の音源である航空機の方位角αmは、方位
角演算部P1により以下のように求められる。
For example, the M1 · M2 direction is 0 °, the M1 · M
If the three directions are 90 °, the microphones M1, M2, M
The azimuth αm of the aircraft, which is the sound source of the sound captured in Step 3, is obtained by the azimuth calculation unit P1 as follows.

【0018】τx≧0かつτy≧0の場合には、αm=
tan-1(τy÷τx)〔ラジアン〕となる。
When τx ≧ 0 and τy ≧ 0, αm =
tan -1 (τy ÷ τx) [radian].

【0019】τx<0の場合には、αm=π+tan-1
(τy÷τx)〔ラジアン〕となる。
When τx <0, αm = π + tan −1
(Τy ÷ τx) [radian].

【0020】τx≧0かつτy<0の場合には、αm=
2π+tan-1(τy÷τx)〔ラジアン〕となる。
When τx ≧ 0 and τy <0, αm =
2π + tan −1 (τy ÷ τx) [radian].

【0021】次に、電波式方位識別装置2は、図4に示
すように、3個の垂直アンテナ(水平面内で無指向性)
A1,A2,A3と、垂直アンテナA1,A2,A3の
出力信号を増幅する増幅部A4,A5,A6と、増幅部
A4の出力信号と増幅部A5の出力信号との位相を比較
して±180°(±πラジアン)の位相差を±eVの電
圧に変換する位相比較部C1と、増幅部A4の出力信号
と増幅部A6の出力信号との位相を比較して±180°
(±πラジアン)の位相差を±eVの電圧に変換する位
相比較部C2と、位相比較部C1,C2の出力信号を平
均してスパイクノイズ等の高周波ノイズを除去するロー
パスフィルタF1,F2と、ローパスフィルタF1の出
力信号をデジタルコードAxに変換するA/D変換器A
7と、ローパスフィルタF2の出力信号の符号を得る電
圧比較部A8と、デジタルコードAxと符号から航空機
の方位角αaを算出する方位角演算部P2からなる。
Next, as shown in FIG. 4, the radio wave direction identification device 2 has three vertical antennas (omnidirectional in a horizontal plane).
A1, A2, and A3, amplification sections A4, A5, and A6 that amplify output signals of the vertical antennas A1, A2, and A3, and phase comparison between the output signal of the amplification section A4 and the output signal of the amplification section A5. A phase comparison unit C1 for converting a phase difference of 180 ° (± π radian) into a voltage of ± eV, and a phase of an output signal of the amplification unit A4 and a phase of an output signal of the amplification unit A6 are compared to be ± 180 °.
A phase comparison unit C2 for converting a phase difference of (± π radians) into a voltage of ± eV; low-pass filters F1 and F2 for averaging output signals of the phase comparison units C1 and C2 to remove high-frequency noise such as spike noise; A / D converter A for converting the output signal of low-pass filter F1 to digital code Ax
7, a voltage comparison unit A8 for obtaining the sign of the output signal of the low-pass filter F2, and an azimuth calculation unit P2 for calculating the azimuth αa of the aircraft from the digital code Ax and the sign.

【0022】電波式方位識別装置2が検出する航空機の
発する電波として本発明の実施の形態においては、二次
監視レーダ(SSR)の応答電波(周波数1090MH
z)を利用する。但し、航空機の発する電波としてSS
Rの応答電波に限定されるものではない。
In the embodiment of the present invention, the response radio wave (frequency 1090 MHz) of the secondary surveillance radar (SSR) is detected as the radio wave emitted by the aircraft detected by the radio wave direction identification device 2.
z) is used. However, the radio wave emitted by the aircraft is SS
It is not limited to the response radio wave of R.

【0023】3個の垂直アンテナ(水平面内で無指向
性)A1,A2,A3は、図5に示すように、アンテナ
A1とアンテナA2を結ぶ直線と、アンテナA1とアン
テナA3を結ぶ直線が直交するように配置される。ま
た、アンテナA1とアンテナA2、アンテナA1とアン
テナA3の間隔は夫々13.8cm(SSRの応答周波
数1090MHzの電波の1/2波長)とする。更に、
方位の検出を絶対的な方角で行う場合には、アンテナA
1とアンテナA2を結ぶ方向又はアンテナA1とアンテ
ナA3を結ぶ方向を東西南北のいずれかの方角に合せれ
ばよい。
As shown in FIG. 5, the three vertical antennas (omnidirectional in a horizontal plane) A1, A2, and A3 are orthogonal to a straight line connecting the antennas A1 and A2 and a straight line connecting the antennas A1 and A3. It is arranged to be. The distance between the antenna A1 and the antenna A2 and the distance between the antenna A1 and the antenna A3 are each 13.8 cm ((wavelength of the SSR response frequency of 1090 MHz). Furthermore,
When the azimuth is detected in an absolute direction, the antenna A
The direction connecting the antenna 1 to the antenna A2 or the direction connecting the antenna A1 to the antenna A3 may be adjusted to any one of north, south, east and west.

【0024】例えば、アンテナA1とアンテナA2を結
ぶ方向を0°、アンテナA1とアンテナA3を結ぶ方向
を90°とすると、アンテナA1,A2,A3で捕えた
電波の発信源である航空機の方位角αaは、方位角演算
部P2により以下のように求められる。
For example, assuming that the direction connecting antenna A1 and antenna A2 is 0 ° and the direction connecting antenna A1 and antenna A3 is 90 °, the azimuth angle of the aircraft that is the source of radio waves captured by antennas A1, A2 and A3 αa is obtained by the azimuth angle calculation unit P2 as follows.

【0025】電圧比較部A8の符号が正の場合には、α
a=cos-1(Ax)〔ラジアン〕となる。
When the sign of the voltage comparison unit A8 is positive, α
a = cos -1 (Ax) [radian].

【0026】電圧比較部A8の符号が負の場合には、α
a=2π−cos-1(Ax)〔ラジアン〕となる。
When the sign of the voltage comparison unit A8 is negative, α
a = 2π-cos -1 (Ax) [radian].

【0027】以上のように構成された請求項1の航空機
騒音識別装置S0の動作について説明する。飛行する航
空機が発する音及び電波に対し、時間的に変化する音の
到来する方位角αmを音波式方位識別装置1により検出
し、時間的に変化する電波の到来する方位角αaを電波
式方位識別装置2により検出する。
The operation of the aircraft noise discriminating apparatus S0 having the above-described structure will be described. The azimuth αm at which a time-varying sound arrives is detected by the acoustic azimuth identification device 1 with respect to the sound and radio waves emitted by a flying aircraft, and the azimuth αa at which the time-varying radio wave arrives is a radio azimuth. It is detected by the identification device 2.

【0028】次いで、図6に示すように、各方位識別装
置1,2により検出した時間的に変化する方位角αmと
時間的に変化する方位角αaを類似度判定装置0に入力
する。 すると、類似度判定装置0では、音波による方
位角αmと電波による方位角αaの類似度を算出する。
そして、類似度が所定値以上の場合には、音源と電波源
が同一、即ち音波式方位識別装置1により測定され音が
航空機の騒音であると判定する。
Next, as shown in FIG. 6, the time-varying azimuth αm and the time-varying azimuth αa detected by the azimuth discriminating devices 1 and 2 are input to the similarity determination device 0. Then, the similarity determination device 0 calculates the similarity between the azimuth αm due to the sound wave and the azimuth αa due to the radio wave.
When the similarity is equal to or greater than a predetermined value, the sound source and the radio wave source are the same, that is, the sound measured by the sound wave direction identification device 1 is determined to be aircraft noise.

【0029】このように、飛行する航空機が発する音の
到来する方位角αmと、SSRの電波が到来する方位角
αaの類似度を算出することにより、航空機による騒音
か否かの識別が容易になる。
As described above, by calculating the similarity between the azimuth αm at which the sound emitted from the flying aircraft arrives and the azimuth αa at which the SSR radio wave arrives, it is easy to identify whether the noise is caused by the aircraft. Become.

【0030】請求項2の航空機騒音識別装置S1は、図
7に示すように、航空機の発する音を検出して航空機の
方位に応じた方位信号αmを出力する音波式方位識別装
置1と、航空機の発する電波を検出して航空機の方位に
応じた方位信号αaを出力する電波式方位識別装置2
と、音波式方位識別装置1の方位信号αmと電波式方位
識別装置2の方位信号αaとの時間差tdを出力する時
間差検出部3と、時間差tdが所定時間以上同一値を継
続した場合には音源と電波源が同一であると判定する判
定部4とからなる。
As shown in FIG. 7, the aircraft noise discriminating apparatus S1 according to claim 2 detects a sound emitted from the aircraft and outputs a directional signal αm corresponding to the azimuth of the aircraft. Radio wave direction identification device 2 which detects a radio wave emitted by the vehicle and outputs a direction signal αa corresponding to the direction of the aircraft
And a time difference detection unit 3 that outputs a time difference td between the direction signal αm of the sound wave type direction identification device 1 and the direction signal αa of the radio wave type direction identification device 2, and the case where the time difference td continues the same value for a predetermined time or more. The determination unit 4 determines that the sound source and the radio wave source are the same.

【0031】なお、音波式方位識別装置1と電波式方位
識別装置2は、請求項1の航空機騒音識別装置S0にお
ける音波式方位識別装置1と電波式方位識別装置2と同
様の構成であるので、説明は省略する。
The sound wave direction identification device 1 and the radio wave direction identification device 2 have the same configuration as the sound wave direction identification device 1 and the radio wave direction identification device 2 in the aircraft noise identification device S0 of the first aspect. The description is omitted.

【0032】以上のように構成された請求項2の航空機
騒音識別装置S1の動作について説明する。飛行する航
空機が発する音及び電波に対し、時間的に変化する音の
到来する方位角αmを音波式方位識別装置1により検出
し、時間的に変化する電波の到来する方位角αaを電波
式方位識別装置2により検出する。
The operation of the aircraft noise discriminating apparatus S1 constructed as described above will now be described. The azimuth αm at which a time-varying sound arrives is detected by the acoustic azimuth identification device 1 with respect to the sound and radio waves emitted by a flying aircraft, and the azimuth αa at which the time-varying radio wave arrives is a radio azimuth. It is detected by the identification device 2.

【0033】次いで、図6に示すように、各方位識別装
置1,2により検出した時間的に変化する方位角αmと
時間的に変化する方位角αaを時間差検出部3に入力す
る。すると、時間差検出部3では、音波による方位角α
mと電波による方位角αaの時間差tdを算出する。そ
して、時間差tdが所定時間以上同一値を継続した場合
には、判定部4が音源と電波源が同一、即ち音波式方位
識別装置1により測定され音が航空機の騒音であると判
定する。
Next, as shown in FIG. 6, the time-varying azimuth αm and the time-varying azimuth αa detected by the azimuth discriminating devices 1 and 2 are input to the time difference detecting unit 3. Then, in the time difference detection unit 3, the azimuth α due to the sound wave
The time difference td between m and the azimuth αa by radio waves is calculated. Then, when the time difference td continues to be the same value for a predetermined time or more, the determination unit 4 determines that the sound source and the radio wave source are the same, that is, the sound measured by the sound wave direction identification device 1 is the aircraft noise.

【0034】このように、飛行する航空機が発する音の
到来する方位角αmの時間的変化と、SSRの電波が到
来する方位角αaの時間的変化を比較することにより、
航空機による騒音か否かの識別が容易になる。
Thus, by comparing the temporal change of the azimuth αm at which the sound emitted from the flying aircraft arrives with the temporal change of the azimuth αa at which the SSR radio wave arrives,
It is easy to determine whether the noise is caused by an aircraft.

【0035】請求項3の航空機騒音識別装置S2は、図
8に示すように、航空機の発する音を検出して航空機の
方位に応じた方位信号αmを出力する音波式方位識別装
置5と、航空機の発する電波を検出して航空機の方位に
応じた方位信号αaを出力する電波式方位識別装置6
と、音波式方位識別装置5の方位信号αmと電波式方位
識別装置6の方位信号αaとの相互相関関数を演算する
相互相関関数演算部7と、相互相関関数の最大値が同じ
位置で所定以上の値を持つ場合には音源と電波源が同一
であると判定する判定部8とからなる。
As shown in FIG. 8, the aircraft noise discriminating apparatus S2 according to a third aspect includes a sound wave direction discriminating apparatus 5 for detecting a sound emitted from an aircraft and outputting a direction signal αm corresponding to the direction of the aircraft. Radio wave direction discriminating device 6 which detects a radio wave emitted from the vehicle and outputs a direction signal αa corresponding to the direction of the aircraft.
A cross-correlation function calculator 7 for calculating a cross-correlation function between the azimuth signal αm of the sound wave type azimuth identification device 5 and the azimuth signal αa of the radio wave type azimuth identification device 6; When it has the above values, the sound source and the radio wave source are determined to be the same.

【0036】なお、音波式方位識別装置5と電波式方位
識別装置6は、請求項1の航空機騒音識別装置S0にお
ける音波式方位識別装置1と電波式方位識別装置2と同
様の構成であるので、説明は省略する。
The sound wave direction identification device 5 and the radio wave direction identification device 6 have the same configuration as the sound wave direction identification device 1 and the radio wave direction identification device 2 in the aircraft noise identification device S0 of the first aspect. The description is omitted.

【0037】以上のように構成された請求項3の航空機
騒音識別装置S2の動作について説明する。相互相関関
数演算部7は、音波式方位識別装置5により検出した音
波による方位角αmと、電波式方位識別装置6により検
出した電波による方位角αaについて、時系列データ同
士の相互相関関数を算出する。
The operation of the aircraft noise discriminating apparatus S2 constructed as described above will now be described. The cross-correlation function calculation unit 7 calculates a cross-correlation function between time-series data with respect to the azimuth αm of the sound wave detected by the sound wave direction identification device 5 and the azimuth αa of the radio wave detected by the radio wave direction identification device 6. I do.

【0038】音の到来する方位角αmは、図6に示すよ
うに、電波の到来する方位角αaに対し一定の時間だけ
遅れ、ほぼ同様に変化する。しかし、実際にはいずれの
測定データ(方位角αm,αa)にも誤差やノイズが含
まれているので、そのままの状態で互いの測定データの
相関関係を求めるのは容易でない。そこで、測定データ
に統計的手法を施して相互相関関数を求めれば、航空機
の通過に伴う事象の場合には互いの変化について大きな
相関の値を示し、誤差やノイズは無相関のため除去され
る。
As shown in FIG. 6, the azimuth αm at which the sound arrives is delayed by a certain time with respect to the azimuth αa at which the radio wave arrives, and changes substantially similarly. However, since any measurement data (azimuths αm, αa) actually contains errors and noises, it is not easy to obtain the correlation between the measurement data as it is. Therefore, if a cross-correlation function is obtained by applying a statistical method to the measurement data, in the case of an event accompanying the passage of an aircraft, a large correlation value is shown for each change, and errors and noise are removed because there is no correlation. .

【0039】次いで、判定部8は、相互相関関数演算部
7で算出した相互相関関数の最大値と予め設定してある
閾値とを比較して、相互相関関数の最大値が閾値以上の
値であれば、音源と電波源が同一、即ち音波式方位識別
装置5により測定され音が航空機の騒音であると判定す
る。このようにして、航空機による騒音か否かの安定し
た識別結果が得られる。
Next, the judgment unit 8 compares the maximum value of the cross-correlation function calculated by the cross-correlation function calculation unit 7 with a preset threshold value, and determines that the maximum value of the cross-correlation function is equal to or larger than the threshold value. If there is, the sound source and the radio wave source are the same, that is, it is determined that the sound measured by the sound wave direction identification device 5 is the aircraft noise. In this manner, a stable identification result as to whether or not the noise is caused by the aircraft can be obtained.

【0040】請求項4の航空機騒音識別装置S3は、図
9に示すように、航空機の発する音を検出して航空機の
方位に応じた方位信号αmを出力する音波式方位識別装
置9と、航空機の発する電波を検出して航空機の方位に
応じた方位信号αaを出力する電波式方位識別装置10
と、音波式方位識別装置9の方位信号αm及び電波式方
位識別装置10の方位信号αaを時間と方位角αm,α
aの2次元の線画として扱い、この2種の線画の類似度
をパターンマッチングにより評価するパターンマッチン
グ装置11からなる。
As shown in FIG. 9, the aircraft noise discriminating apparatus S3 according to claim 4 includes a sound wave direction discriminating apparatus 9 for detecting a sound emitted from an aircraft and outputting a direction signal αm corresponding to the direction of the aircraft, Radio direction identification device 10 which detects a radio wave emitted by the vehicle and outputs a direction signal αa corresponding to the direction of the aircraft.
And the azimuth signal αm of the sound wave type azimuth identification device 9 and the azimuth signal αa of the radio wave type azimuth identification device 10 as time and azimuth angles αm, α
The pattern matching device 11 is treated as a two-dimensional line drawing a and evaluates the similarity between the two kinds of line drawings by pattern matching.

【0041】なお、音波式方位識別装置9と電波式方位
識別装置10は、請求項1の航空機騒音識別装置S0に
おける音波式方位識別装置1と電波式方位識別装置2と
同様の構成であるので、説明は省略する。
The sound wave direction identification device 9 and the radio wave direction identification device 10 have the same structure as the sound wave direction identification device 1 and the radio wave direction identification device 2 in the aircraft noise identification device S0 of the first aspect. The description is omitted.

【0042】パターンマッチング装置11は、ピクセル
化部12と、相関演算部13と、判定部14からなる。
以上のように構成された請求項4の航空機騒音識別装置
S3の動作について説明する。ピクセル化部12は、時
々刻々音波式方位識別装置9により測定される方位角α
mと電波式方位識別装置10により測定される方位角α
aを、時刻情報と共に記録する。
The pattern matching device 11 comprises a pixelizing unit 12, a correlation calculating unit 13, and a determining unit 14.
The operation of the aircraft noise identification device S3 according to claim 4 configured as described above will be described. The pixilating unit 12 calculates the azimuth α measured by the sound wave type azimuth identification device 9 from moment to moment.
m and the azimuth α measured by the radio wave direction identification device 10
a is recorded together with the time information.

【0043】例えば、記録の時間間隔は1秒毎、方位角
は2°(π/90ラジアン)毎に設けた180の記憶領
域のなかで、図10及び図11に示すように、測定され
た方位角αm,αaに相当する一つの領域を「1」(図
中黒色の部分)とし、他の領域は「0」(図中白色の部
分)として記録する。図10及び図11において、縦線
の間隔は1秒に相当し、横線の間隔は方位角2°(π/
90ラジアン)に相当する。
For example, as shown in FIG. 10 and FIG. 11, the recording time interval was measured every 1 second, and the azimuth was measured in 180 storage areas provided every 2 ° (π / 90 radians). One area corresponding to the azimuths αm and αa is recorded as “1” (black part in the figure), and the other area is recorded as “0” (white part in the figure). 10 and 11, the interval between the vertical lines is equivalent to 1 second, and the interval between the horizontal lines is 2 ° (π / π).
90 radians).

【0044】このように、方位角2°毎に設けた180
の記憶領域のうちのいずれか一つの記憶領域を代表とし
て「1」とし、他の領域を「0」とし、測定された方位
角αm,αaを2値化して記録することをピクセル化と
いい、図6に示す方位角αmと方位角αaの連続的な曲
線を、図10及び図11に示すような不連続な波形に処
理することに相当する。
Thus, the 180 provided at every azimuth angle of 2 °
Pixelization means that any one of the storage areas is set to “1” as a representative, the other area is set to “0”, and the measured azimuths αm and αa are binarized and recorded. 6 corresponds to processing a continuous curve of the azimuth angle αm and the azimuth angle αa into a discontinuous waveform as shown in FIGS. 10 and 11.

【0045】次いで、相関演算部13は、図10に示す
ピクセル化した方位角αmの不連続な波形と図11に示
すピクセル化した方位角αaの不連続な波形とがマッチ
ングするか否かの判断材料を得るために、ピクセル化し
た方位角αmと方位角αaの相互相関関数φxy(△
t)を計算する。相互相関は、図10に示す一方の時間
軸(方位角αm)を図11に示す他方の時間軸(方位角
αa)に対して、例えば1秒ずつシフトさせて計算し、
最も大きい相関の値を求める。
Next, the correlation calculation unit 13 determines whether or not the discontinuous waveform of the pixelated azimuth αm shown in FIG. 10 matches the discontinuous waveform of the pixelated azimuth αa shown in FIG. In order to obtain judgment information, a cross-correlation function φxy (△) of the pixelized azimuth angle αm and azimuth angle αa is obtained.
Calculate t). The cross-correlation is calculated by shifting one time axis (azimuth angle αm) shown in FIG. 10 with respect to the other time axis (azimuth angle αa) shown in FIG.
Find the value of the largest correlation.

【0046】次いで、判定部14は、相関演算部13で
求めた相関の値が予め設定されている閾値より大きい場
合に、音源と電波源が同一であると判定する。相関演算
部13で求めた相関の値は、異なる母集団の数値の変化
の類似度を意味する。電波と音波を比較すると、電波の
方が圧倒的に速く伝播するので電波の到来する方位角α
aの変化の方が早い時期に観測され、音の到来する方位
角αmが後を追いかけるように変化する。
Next, when the value of the correlation obtained by the correlation calculator 13 is larger than a preset threshold value, the determination unit 14 determines that the sound source and the radio wave source are the same. The value of the correlation obtained by the correlation operation unit 13 means the similarity of the change in the numerical values of different populations. Comparing radio waves with sound waves, the azimuth α at which radio waves arrive
The change in a is observed earlier, and the azimuth αm at which the sound arrives changes so as to follow.

【0047】図10及び図11に示す方位角αmと方位
角αaの場合は、音の方位角αmの時間軸を2秒進むよ
うにシフトした時に相関の値が最大値「1」を得る。そ
こで、判定部14において設定する閾値を、例えば0.
8にしておけば音源と電波源が同一、即ち音波式方位識
別装置9により測定され音が航空機の騒音であると判定
される。
In the case of the azimuth αm and the azimuth αa shown in FIGS. 10 and 11, when the time axis of the azimuth αm of the sound is shifted so as to advance by 2 seconds, the maximum value of the correlation is “1”. Therefore, the threshold value set in the determination unit 14 is set to, for example, 0.
If it is set to 8, the sound source and the radio wave source are the same, that is, the sound is measured by the sound wave direction identification device 9 and the sound is determined to be aircraft noise.

【0048】また、音波式方位識別装置9により測定さ
れ音の方位角として、図12に示すような波形が得られ
た場合に、図11に示す方位角αaとの相関の最大値
は、0.05となり、判定部14において予め設定して
おく閾値を、例えば0.8にしておけば音源と電波源が
同一せず、音波式方位識別装置9により測定され音が航
空機の騒音であると判定されない。
When a waveform as shown in FIG. 12 is obtained as the azimuth of the sound measured by the sound wave type azimuth discriminating apparatus 9, the maximum value of the correlation with the azimuth αa shown in FIG. If the threshold set in advance in the determination unit 14 is, for example, 0.8, the sound source and the radio wave source are not the same, and the sound measured by the sound wave direction identification device 9 is the noise of the aircraft. Not determined.

【0049】このように、音波式方位識別装置9及び電
波式方位識別装置10の出力信号を、時間と方位角α
m,αaによる2次元の線画として扱い、この2種の線
画の類似度を2次元の相互相関を計算して最大の相関の
値を求めるパターンマッチングにより評価するため、測
定データの誤差やノイズは打ち消し合い、遅れ時間を明
確に計測でき、航空機による騒音か否かの識別が容易に
なる。特に、方位角αm,αaが緩やかに変化する場合
には、相関関数も緩やかに変動し、相関関数から特徴を
つかみ難いので、有効である。
As described above, the output signals of the sound wave type azimuth discriminating device 9 and the radio wave type directional discriminating device 10 are converted into time and azimuth angle α.
m and αa are treated as two-dimensional line drawings, and the similarity between these two types of line drawings is evaluated by pattern matching for calculating the two-dimensional cross-correlation and obtaining the maximum correlation value. The cancellation and the delay time can be clearly measured, and it is easy to determine whether the noise is caused by the aircraft. In particular, when the azimuth angles αm and αa change gradually, the correlation function also changes slowly, and it is difficult to grasp features from the correlation function, which is effective.

【0050】請求項5の航空機騒音識別装置S4は、図
13に示すように、請求項1、2、3又は4記載の航空
機騒音識別装置S0,S1,S2,S3に、騒音計15
と記録計16を付設し、騒音計15の指示値と航空機騒
音識別装置S0,S1,S2,S3の判定結果を対応さ
せ、これら指示値と判定結果を記録計16により記録す
るようにした。
As shown in FIG. 13, the aircraft noise discriminating apparatus S4 according to the fifth aspect is provided with a noise meter 15 in the aircraft noise discriminating apparatuses S0, S1, S2, and S3 according to the first, second, third, and fourth aspects.
And a recorder 16 are attached, and the indicated values of the sound level meter 15 correspond to the judgment results of the aircraft noise identification devices S0, S1, S2, and S3, and these indicated values and the judgment results are recorded by the recorder 16.

【0051】航空機騒音識別装置S0,S1,S2,S
3が音源と電波源が同一であると判定すれば、同時に騒
音計15で測定されて記録計16に記録された騒音レベ
ルが、騒音源と識別された航空機の騒音レベルであるこ
とが明確に判明する。
Aircraft noise discriminating devices S0, S1, S2, S
3 determines that the sound source and the radio wave source are the same, it is clear that the noise level simultaneously measured by the sound level meter 15 and recorded in the recorder 16 is the noise level of the aircraft identified as the noise source. Prove.

【0052】[0052]

【発明の効果】以上説明したように請求項1の発明によ
れば、飛行する航空機が発する音の到来する方位角と、
航空機が発する電波が到来する方位角との類似度を判定
することにより、航空機による騒音か否かの識別が容易
になる。
As described above, according to the first aspect of the present invention, the azimuth from which the sound from the flying aircraft arrives,
By determining the degree of similarity to the azimuth at which the radio wave emitted from the aircraft arrives, it is easy to determine whether the noise is caused by the aircraft.

【0053】請求項2の発明によれば、飛行する航空機
が発する音の到来する方位角の時間的変化と、航空機が
発する電波が到来する方位角の時間的変化を比較するこ
とにより、航空機による騒音か否かの識別が容易にな
る。
According to the invention of claim 2, the temporal change of the azimuth at which the sound emitted by the flying aircraft arrives is compared with the temporal change of the azimuth at which the radio wave emitted by the aircraft arrives. It is easy to determine whether the noise is noise.

【0054】請求項3の発明によれば、測定した音の到
来する方位角と電波が到来する方位角に統計的手法を施
して相互関係を求めるので、航空機の通過に伴う事象で
あれば互いの変化には大きな相関の値を示し、誤差やノ
イズは無相関のため除去され、航空機による騒音か否か
の安定した識別結果が得られる。
According to the third aspect of the present invention, the azimuth angle at which the measured sound arrives and the azimuth angle at which the radio wave arrives are subjected to a statistical method to determine the mutual relationship. Indicates a large correlation value, and errors and noises are removed because of no correlation, and a stable identification result as to whether or not the noise is caused by an aircraft can be obtained.

【0055】請求項4の発明によれば、測定した音の到
来する方位角及び電波が到来する方位角を2次元の線画
として扱い、この2種の線画の類似度をパターンマッチ
ングにより評価するため、2次元の相互相関を計算して
最大の相関の値を求めるので、2次元の相互相関を計算
することによって、誤差やノイズは打ち消し合い、遅れ
時間が明確に計測できる。従って、航空機による騒音か
否かの安定した識別結果が得られる。
According to the fourth aspect of the present invention, the measured azimuth at which sound arrives and the azimuth at which radio waves arrive are treated as two-dimensional line drawings, and the similarity between these two types of line drawings is evaluated by pattern matching. Since the maximum correlation value is obtained by calculating the two-dimensional cross-correlation, errors and noises are canceled by calculating the two-dimensional cross-correlation, and the delay time can be clearly measured. Therefore, a stable identification result as to whether or not the noise is caused by the aircraft can be obtained.

【0056】請求項5の発明によれば、騒音源と識別さ
れた航空機とその騒音レベルの対応関係を明確に記録す
ることができる。
According to the fifth aspect of the present invention, the correspondence between the aircraft identified as the noise source and the noise level thereof can be clearly recorded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明に係る航空機騒音識別装置の構
成図
FIG. 1 is a configuration diagram of an aircraft noise identification device according to the invention of claim 1;

【図2】音波式方位識別装置の構成図FIG. 2 is a configuration diagram of a sound wave type direction identification device.

【図3】マイクロホンの配置を示す上面図FIG. 3 is a top view showing the arrangement of microphones.

【図4】電波式方位識別装置の構成図FIG. 4 is a configuration diagram of a radio wave direction identification device.

【図5】アンテナの配置を示す説明図FIG. 5 is an explanatory diagram showing the arrangement of antennas.

【図6】電波と音の方位角の変化の違いを示す図FIG. 6 is a diagram showing a difference in change in azimuth angle between radio waves and sound.

【図7】請求項2の発明に係る航空機騒音識別装置の構
成図
FIG. 7 is a configuration diagram of an aircraft noise identification device according to the invention of claim 2;

【図8】請求項3の発明に係る航空機騒音識別装置の構
成図
FIG. 8 is a configuration diagram of an aircraft noise identification device according to the invention of claim 3;

【図9】請求項4の発明に係る航空機騒音識別装置の構
成図
FIG. 9 is a configuration diagram of an aircraft noise identification device according to the invention of claim 4;

【図10】音の到来する方位角をピクセル化した図FIG. 10 is a diagram in which the azimuth angle at which sound arrives is pixelated.

【図11】電波の到来する方位角をピクセル化した図FIG. 11 is a diagram in which the azimuth angle at which a radio wave arrives is pixelated.

【図12】ある音の到来する方位角をピクセル化した図FIG. 12 is a diagram in which the azimuth angle at which a certain sound arrives is pixelated.

【図13】請求項5の発明に係る航空機騒音識別装置の
構成図
FIG. 13 is a configuration diagram of an aircraft noise identification device according to the invention of claim 5;

【符号の説明】[Explanation of symbols]

0…類似度判定装置、1,5,9…音波式方位識別装
置、2,6,10…電波式方位識別装置、3…時間差検
出部、4,8,14…判定部、7…相互相関関数演算
部、11…パターンマッチング装置、12…ピクセル化
部、13…相関演算部、15…騒音計、16…記録計、
A1,A2,A3…垂直アンテナ、M1,M2,M3…
マイクロホン、S0,S1,S2,S3,S4…航空機
騒音識別装置。
0: Similarity determination device, 1, 5, 9 ... Sound wave direction identification device, 2, 6, 10 ... Radio wave direction identification device, 3 ... Time difference detection unit, 4, 8, 14 ... Determination unit, 7 ... Cross-correlation Function calculation unit, 11: Pattern matching device, 12: Pixel conversion unit, 13: Correlation calculation unit, 15: Sound level meter, 16: Recorder,
A1, A2, A3 ... vertical antenna, M1, M2, M3 ...
Microphone, S0, S1, S2, S3, S4... Aircraft noise identification device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 康一 東京都国分寺市東元町3丁目20番41号 財 団法人小林理学研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Makino 3-20-41 Higashimoto-cho, Kokubunji-shi, Tokyo Inside the Kobayashi Science Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 航空機の発する音を検出して航空機の方
位に応じた信号を出力する音波式方位識別手段と、航空
機の発する電波を検出して航空機の方位に応じた信号を
出力する電波式方位識別手段と、前記音波式方位識別手
段の出力信号と前記電波式方位識別手段の出力信号との
類似度を算出し、この類似度が所定の値以上の場合には
音源と電波源が同一であると判定する類似度判定手段を
備えることを特徴とする航空機騒音識別装置。
1. A sound wave direction identification means for detecting a sound emitted from an aircraft and outputting a signal corresponding to the direction of the aircraft, and a radio wave type detecting a radio wave emitted from the aircraft and outputting a signal corresponding to the direction of the aircraft. Azimuth identifying means, calculating a similarity between the output signal of the sound wave azimuth identifying means and the output signal of the radio wave azimuth identifying means, and when the similarity is equal to or greater than a predetermined value, the sound source and the radio wave source are the same. An aircraft noise identification device, comprising: a similarity determination unit that determines that the aircraft noise level is zero.
【請求項2】 航空機の発する音を検出して航空機の方
位に応じた信号を出力する音波式方位識別手段と、航空
機の発する電波を検出して航空機の方位に応じた信号を
出力する電波式方位識別手段と、前記音波式方位識別手
段の出力信号と前記電波式方位識別手段の出力信号との
時間差を出力する時間差検出手段と、前記時間差が所定
時間以上同一値を継続した場合には音源と電波源が同一
であると判定する判定手段を備えたことを特徴とする航
空機騒音識別装置。
2. A sound wave direction identification means for detecting a sound emitted from an aircraft and outputting a signal according to the direction of the aircraft, and a radio wave type detecting a radio wave emitted from the aircraft and outputting a signal according to the direction of the aircraft. Azimuth identification means, time difference detection means for outputting a time difference between the output signal of the acoustic azimuth identification means and the output signal of the radio wave azimuth identification means, and a sound source if the time difference continues the same value for a predetermined time or more. An aircraft noise identification device, comprising: a determination unit that determines that a radio wave source is the same as a radio wave source.
【請求項3】 航空機の発する音を検出して航空機の方
位に応じた信号を出力する音波式方位識別手段と、航空
機の発する電波を検出して航空機の方位に応じた信号を
出力する電波式方位識別手段と、前記音波式方位識別手
段の出力信号と前記電波式方位識別手段の出力信号との
相互相関関数を演算する相互相関関数演算手段と、前記
相互相関関数の最大値が同じ位置で所定以上の値を持つ
場合には音源と電波源が同一であると判定する判定手段
を備えたことを特徴とする航空機騒音識別装置。
3. A sound wave direction identification means for detecting a sound emitted from an aircraft and outputting a signal according to the direction of the aircraft, and a radio wave type detecting a radio wave emitted from the aircraft and outputting a signal according to the direction of the aircraft. Azimuth identification means, a cross-correlation function calculation means for calculating a cross-correlation function between the output signal of the acoustic azimuth identification means and the output signal of the radio wave azimuth identification means, An aircraft noise identification device comprising: a determination unit that determines that a sound source and a radio wave source are the same when the value has a predetermined value or more.
【請求項4】 航空機の発する音を検出して航空機の方
位に応じた信号を出力する音波式方位識別手段と、航空
機の発する電波を検出して航空機の方位に応じた信号を
出力する電波式方位識別手段と、前記音波式方位識別手
段の出力信号及び前記電波式方位識別手段の出力信号を
時間と方位角の2次元の線画として扱い、この2種の線
画の類似度をパターンマッチングにより評価するパター
ンマッチング手段を備えたことを特徴とする航空機騒音
識別装置。
4. A sound wave direction identification means for detecting a sound emitted from an aircraft and outputting a signal corresponding to the direction of the aircraft, and a radio wave type detecting a radio wave emitted from the aircraft and outputting a signal corresponding to the direction of the aircraft. The azimuth identification means, the output signal of the sound wave azimuth identification means and the output signal of the radio wave azimuth identification means are treated as two-dimensional line drawings of time and azimuth, and the similarity between these two types of line drawings is evaluated by pattern matching. An aircraft noise identification device, comprising:
【請求項5】 請求項1、2、3又は4記載の航空機騒
音識別装置に騒音計を付設すると共に、この騒音計の指
示値と前記航空機騒音識別装置の判定結果を対応させて
記録する記録手段を設けたことを特徴とする航空機騒音
識別装置。
5. A recording device comprising a noise level meter attached to the aircraft noise identification device according to claim 1, 2, 3 or 4, and recording the indicated value of the noise level meter and the determination result of the aircraft noise identification device in association with each other. An aircraft noise discriminating apparatus characterized by comprising means.
JP22787797A 1996-12-11 1997-08-25 Aircraft noise identification device Expired - Fee Related JP3167965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22787797A JP3167965B2 (en) 1996-12-11 1997-08-25 Aircraft noise identification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-331190 1996-12-11
JP33119096 1996-12-11
JP22787797A JP3167965B2 (en) 1996-12-11 1997-08-25 Aircraft noise identification device

Publications (2)

Publication Number Publication Date
JPH10227688A true JPH10227688A (en) 1998-08-25
JP3167965B2 JP3167965B2 (en) 2001-05-21

Family

ID=26527925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22787797A Expired - Fee Related JP3167965B2 (en) 1996-12-11 1997-08-25 Aircraft noise identification device

Country Status (1)

Country Link
JP (1) JP3167965B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236599A (en) * 2000-02-23 2001-08-31 Toyota Motor Corp Moving object approach condition judging device, mobile telephone terminal, moving object action controller, radio wave transmitter and moving object approach condition judging method
JP2006038772A (en) * 2004-07-29 2006-02-09 Nittobo Acoustic Engineering Co Ltd Sound pressure measuring method
JP2013061155A (en) * 2011-09-12 2013-04-04 Rion Co Ltd Aircraft noise monitoring method and aircraft noise monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236599A (en) * 2000-02-23 2001-08-31 Toyota Motor Corp Moving object approach condition judging device, mobile telephone terminal, moving object action controller, radio wave transmitter and moving object approach condition judging method
JP2006038772A (en) * 2004-07-29 2006-02-09 Nittobo Acoustic Engineering Co Ltd Sound pressure measuring method
JP2013061155A (en) * 2011-09-12 2013-04-04 Rion Co Ltd Aircraft noise monitoring method and aircraft noise monitoring device

Also Published As

Publication number Publication date
JP3167965B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
KR102099851B1 (en) Method of clustering targets detected by automotive radar system and apparatus for the same
US10473752B2 (en) System and method for detecting aerial vehicle position and velocity via sound
US10871548B2 (en) Systems and methods for transient acoustic event detection, classification, and localization
US9351071B2 (en) Audio source position estimation
JP5398288B2 (en) Radar signal processing apparatus and target judgment method thereof
US9632191B2 (en) Sound source detection device
JP6673030B2 (en) Information processing apparatus, information processing method, and program
CN110231615B (en) Distance measurement anomaly discrimination method based on sea surface target space constraint
US7397427B1 (en) Phase event detection and direction of arrival estimation
KR101793942B1 (en) Apparatus for tracking sound source using sound receiving device and method thereof
CN108417036A (en) Vehicle whistle sound localization method and device in intelligent transportation system
JP3167965B2 (en) Aircraft noise identification device
JP3179356B2 (en) Aircraft flight position detector
CN111157950B (en) Sound positioning method based on sensor
CN116520247A (en) Method for estimating the position of a target sound source from hydrophones on an underwater vehicle
US9612310B2 (en) Method and apparatus for determining the direction of arrival of a sonic boom
Uchino et al. Initial design of acoustic vehicle detector with wind noise suppressor
CN113740855B (en) Space occupation identification method and device, millimeter wave radar and storage medium
JP4499617B2 (en) Lightning position limiting system and method
Siwek Analysis of microphone use for perception of autonomous vehicles
Cevher et al. Joint acoustic-video fingerprinting of vehicles, part i
JP2607854B2 (en) Signal tracking method
US20070244952A1 (en) Signal analysis methods
CN116908782A (en) Target positioning method based on multi-source signal power intensity
JP2000241522A (en) Data-integrating and tracking apparatus between a plurality of sensors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees