JPH10227253A - Intake air amount detector for internal combustion engine - Google Patents

Intake air amount detector for internal combustion engine

Info

Publication number
JPH10227253A
JPH10227253A JP2785797A JP2785797A JPH10227253A JP H10227253 A JPH10227253 A JP H10227253A JP 2785797 A JP2785797 A JP 2785797A JP 2785797 A JP2785797 A JP 2785797A JP H10227253 A JPH10227253 A JP H10227253A
Authority
JP
Japan
Prior art keywords
air amount
intake air
signal
calculated
basis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2785797A
Other languages
Japanese (ja)
Other versions
JP3680472B2 (en
Inventor
Isamu Kazama
勇 風間
Hiroshi Iwano
岩野  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP02785797A priority Critical patent/JP3680472B2/en
Publication of JPH10227253A publication Critical patent/JPH10227253A/en
Application granted granted Critical
Publication of JP3680472B2 publication Critical patent/JP3680472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To memorize only the fluctuation rate of an intake air amount to an ROM, eliminate necessity that weight factors in all driving ranges are memorized, and reduce constants stored in the ROM, by self-optimizing the weight factors at the time of normal operation on the basis of the calculated result of a cylinder intake air amount equivalent signal. SOLUTION: A signal from an airflow meter 1 is converted 12 into an intake air amount signal Qa, and a reference injection pulse width TPO is calculated 13 on the basis of this intake air amount Qa and an engine speed Ne. Also, an A/F flat correction pulse widths TPTRM are calculated 14 on the basis of the TPO. While, it is judged 15 whether the operational condition of an engine is in a normal period or a transient period on the basis of the signal of a throttle opening sensor 3, and a normal/transient operation changing over part 18 is changed over according to the judged result, thereby an intercylinder intake air amount equivalent pulse width TP is calculated 19 from filter coefficients K1 and K2 being changed over, TPTRM and an air amount at the time of the previous calculation, and various kind of corrections are executed on the basis of this TP so as to determine a fuel injection amount TI.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の吸入空気
量検出装置に関する。
The present invention relates to a device for detecting the amount of intake air of an internal combustion engine.

【0002】[0002]

【従来の技術】従来の内燃機関の吸入空気量検出装置と
して、例えば特開平1−240752号公報に開示され
たようなものがある。
2. Description of the Related Art As a conventional apparatus for detecting the amount of intake air for an internal combustion engine, there is one disclosed, for example, in Japanese Patent Application Laid-Open No. 1-240752.

【0003】これはエアフローメータにより検出された
吸入空気量が脈動的に変動するを補償するため、エアフ
ローメータの検出値をデジタルフィルタにかけ、フィル
タ定数により重み付けして適正化を行い、かつこの定数
をアイドル時と定常運転時において切換えることで、吸
入空気量の信号としての信頼性を高めている。しかも、
この場合、定常運転時でも各運転条件によって要求され
る定数は微妙に変化するので、エンジンのスロットル開
度と回転数に基づいて定常状態での全ての運転領域にお
いて定数を設定し、各運転条件においてそれぞれの定数
を選び、吸入空気量を適正に補正している。
In order to compensate for the pulsating fluctuation of the intake air amount detected by the air flow meter, the detected value of the air flow meter is subjected to a digital filter, weighted by a filter constant, optimized, and this constant is calculated. By switching between idling and steady operation, the reliability of the signal of the intake air amount is increased. Moreover,
In this case, the constant required for each operating condition changes delicately even during steady operation, so the constant is set in all operating regions in the steady state based on the throttle opening of the engine and the number of revolutions. In, each constant is selected, and the intake air amount is appropriately corrected.

【0004】[0004]

【発明が解決しようとする課題】しかし、このようにエ
アフローメータで検出された吸入空気量の脈動を除去す
るためのデジタルフィルタの定数を、全ての運転領域に
おいてマップに格納する方式では、これらを記憶してお
くROMが大きくなり、またマップ定数を決定するにも
多くの工程が必要となるなどの問題もあった。
However, in the method of storing the constants of the digital filter for eliminating the pulsation of the intake air amount detected by the air flow meter in the map in all the operation regions, these are not used. There is also a problem that the ROM to be stored becomes large and many steps are required to determine the map constant.

【0005】そこで、本発明はシリンダ内吸気量の変動
率のみを記憶しておき、これに基づいて重み係数を自己
最適化することで、上記した問題の解決を図った内燃機
関の吸入空気量検出装置を提供することを目的とする。
Accordingly, the present invention stores only the fluctuation rate of the intake air amount in the cylinder, and self-optimizes the weight coefficient based on the stored data, thereby solving the above-mentioned problem. It is an object to provide a detection device.

【0006】[0006]

【課題を解決するための手段】第1の発明は、吸気絞弁
上流の空気量に応じた出力を生じるエアフローメータ
と、このエアフローメータの出力に基づいて単位回転当
たりの空気量相当信号を演算する手段と、単位回転当た
りの空気量相当信号に重みをかけて平滑しシリンダ吸入
空気量相当の信号を演算する手段と、エンジンの負荷信
号に基づいて定常運転と過渡運転とを判定する手段と、
この判定結果に基づいて前記平滑化の重みかけとしての
定常運転時と過渡運転時の重み係数を切換える手段と、
定常運転時の重み係数を前記シリンダ吸入空気量相当信
号の演算結果に基づいて自己最適化処理する手段とを備
える。
According to a first aspect of the present invention, there is provided an air flow meter which generates an output corresponding to an air amount upstream of an intake throttle valve, and calculates an air amount equivalent signal per unit rotation based on the output of the air flow meter. Means for weighting and smoothing the signal corresponding to the amount of air per unit rotation to calculate a signal corresponding to the amount of cylinder intake air, and means for determining steady operation and transient operation based on the load signal of the engine. ,
Means for switching a weighting factor during a steady operation and a transient operation as a weighting of the smoothing based on the determination result;
Means for performing a self-optimization process on the weighting factor during the steady operation based on the calculation result of the signal corresponding to the cylinder intake air amount.

【0007】第2の発明は、第1の発明において、前記
重み係数の自己最適化処理手段が、運転性などから要求
されるシリンダ吸入空気量相当信号の変動率を記憶する
手段と、単位回転当たりの空気量相当信号を演算する手
段と、シリンダ吸入空気量相当信号の中心値を演算する
手段と、単位回転当たりの空気量相当信号の振幅を演算
する手段とを備える。
According to a second aspect, in the first aspect, the weight coefficient self-optimizing processing means includes means for storing a variation rate of a signal corresponding to a cylinder intake air amount required from drivability and the like; A means for calculating a signal corresponding to the amount of air per cylinder; a means for calculating the center value of the signal corresponding to the amount of air taken into the cylinder; and a means for calculating the amplitude of the signal corresponding to the amount of air per unit rotation.

【0008】[0008]

【発明の効果】本発明においては、定常運転時の重み係
数を前記シリンダ吸入空気量相当信号の演算結果に基づ
いて自己最適化処理するので、ROMへの記憶はシリン
ダ内吸気量の変動率のみでよく、全ての運転領域での重
み係数を記憶しておく必要がなく、このためROMに格
納される定数が削減され、かつその定数設定のための工
程も削減できる。
According to the present invention, the self-optimizing process of the weighting coefficient during the steady operation is performed based on the calculation result of the signal corresponding to the cylinder intake air amount, so that the ROM stores only the variation rate of the intake air amount in the cylinder. Therefore, it is not necessary to store the weighting coefficients in all the operation regions. Therefore, the number of constants stored in the ROM can be reduced, and the number of steps for setting the constants can be reduced.

【0009】[0009]

【発明の実施の形態】以下図面にしたがって説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0010】図1において、1はエンジンの吸入空気量
を測定するエアフローメータ、2はエンジン回転数を検
出する回転数センサ、3はスロットル開度を検出するス
ロットル開度センサである。
In FIG. 1, reference numeral 1 denotes an air flow meter for measuring an intake air amount of an engine, reference numeral 2 denotes a rotation speed sensor for detecting an engine speed, and reference numeral 3 denotes a throttle opening sensor for detecting a throttle opening.

【0011】エアフローメータ1からの信号(AMF)
は、エアフローメータ出力信号取り込部11を介してア
ナログ信号をデジタル化したAMF出力信号USとして
単位変換部12へ出力される。単位変換部12ではAM
F出力信号USを単位回転当たりの吸入空気量信号Qa
に変換する。
A signal (AMF) from the air flow meter 1
Is output to the unit converter 12 as an AMF output signal US obtained by digitizing an analog signal via the air flow meter output signal capturing unit 11. In the unit converter 12, AM
The F output signal US is converted to the intake air amount signal Qa per unit rotation.
Convert to

【0012】燃料基本パルス幅計算部13ではこの吸入
空気量Qaと、回転数センサ2からのエンジン回転数N
eに基づいて次式のように基本噴射パルス幅TPOを演
算する。
The basic fuel pulse width calculating unit 13 calculates the intake air amount Qa and the engine speed N from the speed sensor 2.
Based on e, the basic injection pulse width TPO is calculated as in the following equation.

【0013】 TPO=KCONST・Qa/Ne…(1) ただし、KCONSTは定数である。TPO = KCONST · Qa / Ne (1) where KCONST is a constant.

【0014】そして、A/F(空燃比)フラット補正パ
ルス幅計算部14では、演算されたこのTPOに基づい
てA/Fフラット補正パルス幅TPTRMを次式により
計算する。
The A / F (air-fuel ratio) flat correction pulse width calculator 14 calculates the A / F flat correction pulse width TTPRM based on the calculated TPO by the following equation.

【0015】TPTRM=KTRM・TPO…(2) ここでKTRMは空気量やインジェクタのエラーをエン
ジン運転条件毎に補正するための係数で、例えばエンジ
ン回転数Neと負荷Qh0で割り付けられたマップを参
照して求める。これにより、上記したエラーに基づくパ
ルス幅の変動を抑制する。
TTPRM = KTRM · TPO (2) where KTRM is a coefficient for correcting an air amount and an injector error for each engine operating condition. For example, refer to a map assigned by the engine speed Ne and the load Qh0. Ask for it. As a result, fluctuations in pulse width based on the above-described error are suppressed.

【0016】一方、エンジンの運転条件が定常であるか
過渡であるかを、スロットル開度センサ3からの信号に
基づいて定常過渡判定部15において判定する。なお、
定常、過渡の判定は単位時間当たりのスロットル開度の
変化量、あるいは負荷の変化量(例えばΔQh0)が、
予め決められた設定値以上であれば過渡、それ以外は定
常というように判定される。
On the other hand, whether the operating condition of the engine is steady or transient is determined by the steady-state transient determining unit 15 based on a signal from the throttle opening sensor 3. In addition,
The determination of the steady state or the transient state is based on the change amount of the throttle opening per unit time or the change amount of the load (for example, ΔQh0).
If the value is equal to or more than a predetermined set value, it is determined that the state is transient, and if not, it is determined that the state is steady.

【0017】定常時空気量演算係数計算部16と、過渡
時空気量演算係数計算部17とでは、それぞれ定常と過
渡でのエアフローメータ検出空気量に相当するTPTR
Mの脈動を除去するためのフィルタ係数K1、K2がそ
れぞれ計算される(詳細については後述)。この定常と
過渡での各係数K1、K2は、定常過渡判定部15から
の判定信号で切り換えられる定常過渡切換部18を介し
てデジタルフィルタに相当するシリンダ内吸気量相当パ
ルス幅計算部19に出力される。
The steady-state air amount operation coefficient calculation unit 16 and the transient air amount operation coefficient calculation unit 17 calculate the TPTR corresponding to the air flow meter detected air amount in the steady state and the transient state, respectively.
Filter coefficients K1 and K2 for removing M pulsation are calculated (details will be described later). The coefficients K1 and K2 in the steady state and the transient state are output to a pulse width calculating section 19 corresponding to a digital filter via a steady state transient switching section 18 which is switched by a decision signal from the steady state transient decision section 15. Is done.

【0018】このシリンダ内吸気量相当パルス幅計算部
19では、前記したA/Fフラット補正パルス幅TPT
RMと、重み付けのためのこれら係数K1、K2と、前
回演算時の空気量TP[n−1]とを用いて、次式のよ
うにしてシリンダ内吸気量相当パルス幅TPを演算す
る。
The in-cylinder intake amount-equivalent pulse width calculating section 19 calculates the A / F flat correction pulse width TPT.
Using the RM, the coefficients K1 and K2 for weighting, and the air amount TP [n-1] at the time of the previous calculation, the pulse width TP corresponding to the intake air amount in the cylinder is calculated by the following equation.

【0019】 TP[n]=K1・TPTRM+K2・TP[n−1]…(3) そして、燃料噴射パルス幅計算部20において、このよ
うに算出されたTPを基にして、これに温度補正等の各
種の補正を行い燃料噴射量TIを決定する。
TP [n] = K1 · TPTRM + K2 · TP [n−1] (3) Then, the fuel injection pulse width calculator 20 calculates the temperature correction and the like based on the TP calculated in this manner. And the fuel injection amount TI is determined.

【0020】以上の構成にもとづく作用は図3のフロー
チャートに示す。
The operation based on the above configuration is shown in the flowchart of FIG.

【0021】ステップ1ではAMF信号をA/D変換し
て空気量USとして取り込み、ステップ2ではこのUS
に基づいて吸入空気量相当信号Qaに変換する。このQ
aとエンジン回転数Neに基づいて基本噴射パルス幅T
POを、TPO=KCONST・Qa/Neとして計算
する(ステップ3)。
In step 1, the AMF signal is A / D converted and taken in as the air amount US.
Is converted into a signal Qa corresponding to the amount of intake air. This Q
a and the basic injection pulse width T based on the engine speed Ne.
Calculate PO as TPO = KCONST.Qa / Ne (step 3).

【0022】さらに、ステップ4において、空気量やイ
ンジャクタのエラーをエンジン運転条件毎に補正するた
めの補正係数KTRMと、このTPOとに基づいてA/
Fフラット補正パルス幅TPTRMを算出する。
Further, at step 4, A / A is calculated based on the TPO and a correction coefficient KTRM for correcting an air amount or an error of the injector for each engine operating condition.
The F flat correction pulse width TTPRM is calculated.

【0023】ステップ5で定常運転か過渡運転かを判断
し、定常運転ならばステップ6に進み、定常時のTP演
算係数K1、K2を計算し、また過渡時ならばステップ
7に進み、過渡時のTP演算係数K1、K2を計算す
る。
In step 5, it is determined whether the operation is a steady operation or a transient operation. If the operation is a steady operation, the process proceeds to a step 6, where the TP calculation coefficients K1 and K2 in the steady state are calculated. TP calculation coefficients K1 and K2 are calculated.

【0024】そして、ステップ8において、これら定常
時と過渡時とに対応して演算した係数K1、K2を用い
て、シリンダ内吸気量相当パルス幅TPを、TP[n]
=K1・TPTRM+K2・TP[n−1]として算出
するのである。
In step 8, the pulse width TP corresponding to the in-cylinder intake amount is calculated by using the coefficients K1 and K2 calculated corresponding to the steady state and the transient state.
= K1.TPRM + K2.TP [n-1].

【0025】次に本発明の要点となる定常時のTP演算
係数K1、K2を演算するための構成を説明する。
Next, a configuration for calculating the TP calculation coefficients K1 and K2 in the steady state, which is the main point of the present invention, will be described.

【0026】前記したA/Fフラット補正パルス幅、換
言すると脈動するAMF検出空気量(TPTRM)は
(4)式、フィルタ通過後の空気量(TP)は(5)式
によって近似的に求められる。
The A / F flat correction pulse width, in other words, the pulsating AMF detected air amount (TPTRM) is approximately obtained by equation (4), and the air amount after passing through the filter (TP) is approximately obtained by equation (5). .

【0027】 TPTRM=A+B・sin(ωt)…(4) TP=A+C・sin(ωt+φ)…(5) ただし、図6にも示すように、Aは脈動の中心値、B、
Cは振幅を表す。
TTPRM = A + B · sin (ωt) (4) TP = A + C · sin (ωt + φ) (5) Here, as shown in FIG.
C represents the amplitude.

【0028】一般に1次遅れフィルタの伝達関数G(j
ω)、及びそのゲインMは、次式により与えられる。
In general, the transfer function G (j
ω) and its gain M are given by the following equations.

【0029】G(jω)=1/(1+jωT)…(6)
ただし、Tは時定数である。
G (jω) = 1 / (1 + jωT) (6)
Here, T is a time constant.

【0030】 M=│G(jω)│=│1/(1+jωT)│…(7)
ここで、振幅Bのsin波を振幅Cのsin波にするた
めのフィルタゲインMは、次式のように設定すればよ
い。
M = │G (jω) │ = │1 / (1 + jωT) │ (7)
Here, the filter gain M for converting the sine wave having the amplitude B into the sine wave having the amplitude C may be set as in the following equation.

【0031】M=C/B…(8) (7)式の両辺を2乗すると(9)式となり、この
(9)式をTについて解くと(10)式となる。すなわ
ち、 M2=1/{1+(ωT)2}…(9) T=(1/ω)・√{(1/M2)−1}…(10) 一方、離散系においては、このような1次遅れは、(1
1)式のような加重平均で表わすことができ、加重平均
係数Kと時定数Tとの関係は(12)式のようになる。
M = C / B (8) Equation (9) is obtained by squaring both sides of equation (7), and equation (10) is obtained by solving equation (9) for T. That is, M 2 = 1 / {1+ (ωT) 2 } (9) T = (1 / ω) · {(1 / M 2 ) −1} (10) On the other hand, in a discrete system, The first-order lag is (1
It can be expressed by a weighted average as shown in equation (1), and the relationship between the weighted average coefficient K and the time constant T is as shown in equation (12).

【0032】 TP[n]=K・TPTRM+(1−K)・TP[n−1]…(11) T=−Δt/Ln(1−K)…(12) ただし、tは演算間隔を表す。TP [n] = K ・ TPRM + (1−K) · TP [n−1] (11) T = −Δt / Ln (1−K) (12) where t represents a calculation interval. .

【0033】この(12)式をKについて解くと近似的
に次式のようになる。
When this equation (12) is solved for K, the following equation is approximately obtained.

【0034】 K=1−Ln(−Δt/T)=1−exp(−Δt/T)…(13) このような原理に基づいて定常時のTP演算係数K1、
K2を求めるのであり、このため、図1において、21
はTPの振幅Bを計算する計算部、23はTPの中心値
Aを計算する計算部、24は目標振幅Cを計算する計算
部であり、また22は前回のTP[n−m]を記憶する
RAM、25は予めサージ要求などから決まるTPの変
動率、すなわちΔTP/TPを記憶するROMである。
K = 1−Ln (−Δt / T) = 1−exp (−Δt / T) (13) On the basis of such a principle, the TP calculation coefficient K1 in the steady state is
K2 is calculated. For this reason, in FIG.
Is a calculation unit for calculating the amplitude B of the TP, 23 is a calculation unit for calculating the central value A of the TP, 24 is a calculation unit for calculating the target amplitude C, and 22 is the previous TP [nm]. The RAM 25 is a ROM for storing a rate of change of TP determined in advance from a surge request or the like, that is, ΔTP / TP.

【0035】これらの構成を図2を参照しながらさらに
詳細に説明する。まず空気量(シリンダ内吸気量相当パ
スル幅)TPの脈動の中心値Aを求める。この例では、
脈動周期の平均値をとることにする。
These configurations will be described in more detail with reference to FIG. First, a center value A of the pulsation of the air amount (pulse width corresponding to the intake amount in the cylinder) TP is obtained. In this example,
The average value of the pulsation cycle is taken.

【0036】現在よりもmサンプル前までのTPを予め
RAM1に記憶しておき、中心値Aの計算実行時にこれ
らを読み出し、その平均値を求め、これをAとする。
The TPs up to m samples before the present time are stored in the RAM 1 in advance, read out when the calculation of the center value A is executed, and the average value is obtained.

【0037】エンジン回転数Ne[rpm]のとき、m
は次の式によって計算される。
When the engine speed is Ne [rpm], m
Is calculated by the following equation.

【0038】 m=120/(Ne・N)Δt・i…(14) ただし、Nはエンジン気筒数、iは任意の整数である。M = 120 / (Ne · N) Δt · i (14) where N is the number of engine cylinders, and i is an arbitrary integer.

【0039】この場合、図4のフローチャートにも示す
ように、RAM1にはTPのLサンプル前までのデータ
が記憶できるように、アドレスADD〜ADD+Lが割
り付けてある。TP計算毎に現在格納されているアドレ
スから1を加算したアドレスにデータを移し、最新値T
P[n]をアドレスADDにストアする。こうしてTP
の新しい順にアドレスADD〜ADD+Lに格納される
(ステップ11、12)。なお、Lは最大必要なデータ
数であればよく、次式(15)によって与えられる。
In this case, as shown in the flowchart of FIG. 4, addresses ADD to ADD + L are allocated to the RAM 1 so that data up to L samples before TP can be stored. The data is transferred to the address obtained by adding 1 from the currently stored address for each TP calculation, and the latest value T
Store P [n] at address ADD. Thus TP
Are stored at the addresses ADD to ADD + L in the new order (steps 11 and 12). Note that L may be a maximum required number of data and is given by the following equation (15).

【0040】 L=120/(Nemin・N)/Δt・i…(15)
ただし、Neminはエンジン最低回転数である。
L = 120 / (Nemin · N) / Δt · i (15)
Here, Nemin is the minimum engine speed.

【0041】次にTPの振幅Cを求めると、ROM1に
予めサージ要求などから求められるTP変動率ΔTP/
TPを記憶しておき、これを読み出して前記した中心値
(平均値)Aに乗算し、これをCとする。すなわち、 C=A・ΔTP/TP…(16) さらにTPTRMの振幅であるBを求める。この振幅B
は図5のフローチャートに示すようにして算出される。
Next, when the amplitude C of the TP is obtained, the TP fluctuation rate ΔTP / TP /
The TP is stored, read out and multiplied by the above-mentioned center value (average value) A, and this is set as C. That is, C = A · ΔTP / TP (16) Further, B, which is the amplitude of TTPRM, is obtained. This amplitude B
Is calculated as shown in the flowchart of FIG.

【0042】ステップ21において、A/Fフラット補
正パルス幅TPTRMから前述のようにして求めた中心
値Aを減算し、その値をXとする。
In step 21, the center value A obtained as described above is subtracted from the A / F flat correction pulse width TTPRM, and the value is set as X.

【0043】ステップ22でXが正か負かを判定し、正
であればステップ23に移行してXがRAM2に格納さ
れているB1より大きいかどうかを判定する。もしB1
よりも大きければB1にXがストアされ、そうでなけれ
ばB1の値が保持される(ステップ25、26)。同じ
ようにして、Xが負であればステップ24に進み、Xが
RAM2に格納されているB2よりも小さいかどうか判
定され、B2よりも小ならばB2にXがストアされ、そ
うでなければB2の値がそのまま保持される(ステップ
27、28)。
In step 22, it is determined whether X is positive or negative. If it is positive, the flow proceeds to step 23 to determine whether X is larger than B1 stored in the RAM2. If B1
If it is larger than X, X is stored in B1, otherwise, the value of B1 is held (steps 25 and 26). Similarly, if X is negative, the process proceeds to step 24, where it is determined whether X is smaller than B2 stored in RAM2. If X is smaller than B2, X is stored in B2; The value of B2 is held as it is (steps 27 and 28).

【0044】次にステップ29でカウンタjの値がmと
なったかどうか判定され、カウンタがmとなっていれば
BにB1とB2の平均値がストアされ(ステップ3
0)、これが振幅Bとなり、同時にB1、B2、jがク
リアされる(ステップ31)。
Next, at step 29, it is determined whether or not the value of the counter j has reached m. If the value of the counter has reached m, the average value of B1 and B2 is stored in B (step 3).
0), this becomes the amplitude B, and at the same time, B1, B2, j are cleared (step 31).

【0045】これに対してカウンタがmとなっていなけ
れば、ステップ32に移行し、カウンタをインクリメン
トして、j=mとなるまで上記した操作が繰り返され
る。
On the other hand, if the counter has not reached m, the routine goes to step 32, where the counter is incremented and the above operation is repeated until j = m.

【0046】このようにして振幅Bはmサンプル毎に更
新され、次のサイクルのTP演算に反映される(図6参
照)。
In this manner, the amplitude B is updated every m samples, and is reflected in the TP calculation in the next cycle (see FIG. 6).

【0047】次に図2に戻り、これらCとBから前述し
た(8)式によりゲインMが計算される。また、角速度
ωがエンジン回転数Neに基づいて、次式のようにして
演算される。
Next, returning to FIG. 2, the gain M is calculated from these C and B by the aforementioned equation (8). Further, the angular velocity ω is calculated based on the engine speed Ne as in the following equation.

【0048】 ω=2π/120/(Ne・N)…(17) さらにゲインMと角速度ωにより、前記した(10)式
にしたがって時定数Tが演算される。このようにして求
めた時定数Tに基づいて(13)式により加重平均係数
Kを算出する。そして、K1にK、K2に1−Kをスト
アして、前記した(11)式に基づいてTPを算出す
る。
Ω = 2π / 120 / (Ne · N) (17) Further, the time constant T is calculated from the gain M and the angular velocity ω in accordance with the above-mentioned equation (10). The weighted average coefficient K is calculated by the equation (13) based on the time constant T thus obtained. Then, K is stored in K1 and 1-K is stored in K2, and TP is calculated based on the above-described equation (11).

【0049】このようにして、本発明では 定常運転時
の重み係数(演算係数)K1、K2を前記シリンダ吸入
空気量相当信号TPの演算結果に基づいて自己最適化処
理するので、ROMには要求されるTPの変動率のみを
記憶するだけでよく、これらの結果、要求どうりにTP
変動を抑え、同時にROMの記憶するフィルタ定数を削
減できるのである。
As described above, in the present invention, the weighting coefficients (calculation coefficients) K1 and K2 during the steady operation are self-optimized based on the calculation result of the cylinder intake air amount equivalent signal TP. It is only necessary to memorize the rate of change of the TP to be performed.
It is possible to suppress the fluctuation and at the same time reduce the filter constant stored in the ROM.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】同じくシリンダ内吸気量相当パルス幅演算係数
を算出する過程を示す説明図である。
FIG. 2 is an explanatory diagram showing a process of calculating a pulse width calculation coefficient corresponding to an in-cylinder intake amount.

【図3】シリンダ内吸気量相当パルス幅を算出するため
の制御動作を示すフローチャートである。
FIG. 3 is a flowchart illustrating a control operation for calculating a pulse width corresponding to an in-cylinder intake amount.

【図4】同じくその制御動作の一部を示すフローチャー
トである。
FIG. 4 is a flowchart showing a part of the control operation.

【図5】同じくその制御動作の一部を示すフローチャー
トである。
FIG. 5 is a flowchart showing a part of the control operation.

【図6】吸気量の脈動状態を示す説明図である。FIG. 6 is an explanatory diagram showing a pulsating state of the intake air amount.

【符号の説明】[Explanation of symbols]

1 エアフローメータ 2 エンジン回転数センサ 3 スロットル開度センサ 12 単位変換部 15 定常過渡判定部 16 定常時空気量演算係数計算部 17 過渡時空気量演算係数計算部 19 シリンダ内吸気量相当パルス幅計算部 DESCRIPTION OF SYMBOLS 1 Air flow meter 2 Engine speed sensor 3 Throttle opening sensor 12 Unit conversion part 15 Steady transient judgment part 16 Constant air amount calculation coefficient calculation part 17 Transient air amount calculation coefficient calculation part 19 In-cylinder intake air equivalent pulse width calculation part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸気絞弁上流の空気量に応じた出力を生じ
るエアフローメータと、 このエアフローメータの出力に基づいて単位回転当たり
の空気量相当信号を演算する手段と、 単位回転当たりの空気量相当信号に重みをかけて平滑し
シリンダ吸入空気量相当の信号を演算する手段と、 エンジンの負荷信号に基づいて定常運転と過渡運転とを
判定する手段と、 この判定結果に基づいて前記平滑化の重みかけとしての
定常運転時と過渡運転時の重み係数を切換える手段と、 定常運転時の重み係数を前記シリンダ吸入空気量相当信
号の演算結果に基づいて自己最適化処理する手段と、を
備えたことを特徴とする内燃機関の空気量検出装置。
1. An air flow meter for generating an output corresponding to an air amount upstream of an intake throttle valve, means for calculating a signal corresponding to an air amount per unit rotation based on the output of the air flow meter, and an air amount per unit rotation Means for calculating a signal corresponding to the cylinder intake air amount by weighting the corresponding signal and smoothing the signal; means for determining a steady operation and a transient operation based on an engine load signal; and performing the smoothing based on the determination result. Means for switching the weighting factor during steady-state operation and transient operation as a weighting of, and means for self-optimizing the weighting factor during steady-state operation based on the calculation result of the cylinder intake air amount equivalent signal. An air amount detection device for an internal combustion engine.
【請求項2】前記重み係数の自己最適化処理手段が、運
転性などから要求されるシリンダ吸入空気量相当信号の
変動率を記憶する手段と、単位回転当たりの空気量相当
信号を演算する手段と、シリンダ吸入空気量相当信号の
中心値を演算する手段と、単位回転当たりの空気量相当
信号の振幅を演算する手段とを備えている請求項1に記
載の内燃機関の空気量検出装置。
2. The means for self-optimizing the weighting coefficient includes means for storing a variation rate of a signal corresponding to a cylinder intake air amount required from drivability and the like, and means for calculating a signal corresponding to an air amount per unit rotation. 2. The air amount detecting device for an internal combustion engine according to claim 1, further comprising: means for calculating a center value of the signal corresponding to the cylinder intake air amount; and means for calculating the amplitude of the signal corresponding to the air amount per unit rotation.
JP02785797A 1997-02-12 1997-02-12 Intake air amount detection device for internal combustion engine Expired - Fee Related JP3680472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02785797A JP3680472B2 (en) 1997-02-12 1997-02-12 Intake air amount detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02785797A JP3680472B2 (en) 1997-02-12 1997-02-12 Intake air amount detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10227253A true JPH10227253A (en) 1998-08-25
JP3680472B2 JP3680472B2 (en) 2005-08-10

Family

ID=12232592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02785797A Expired - Fee Related JP3680472B2 (en) 1997-02-12 1997-02-12 Intake air amount detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3680472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229644A (en) * 2011-04-26 2012-11-22 Toyota Motor Corp Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229644A (en) * 2011-04-26 2012-11-22 Toyota Motor Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP3680472B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
US6668812B2 (en) Individual cylinder controller for three-cylinder engine
US7027910B1 (en) Individual cylinder controller for four-cylinder engine
JP2973418B2 (en) Method for detecting intake pipe pressure of internal combustion engine
JP2008138630A (en) Control device of internal combustion engine
JP2796432B2 (en) Compensation method of measurement error of thermal thin film air weighing device
JPH07247886A (en) Feedback control device using adaptive control
JP3039162B2 (en) Air-fuel ratio control device for internal combustion engine
JP5660319B2 (en) Control device for internal combustion engine
JPH07280686A (en) Cylinder internal-pressure sensor for internal combustion engine
JPH10227253A (en) Intake air amount detector for internal combustion engine
JP2000028412A (en) Method for correcting mass of air sucked by inlet pipe of internal combustion engine and measured in intake pipe
JP5611166B2 (en) Intake parameter calculation device for internal combustion engine
JP5297509B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11223145A (en) Air-fuel ratio control device
JP3277915B2 (en) Method and apparatus for predicting intake pipe pressure of internal combustion engine
JPH08232749A (en) Intake air amount estiminating device for internal combustion engine
JP3013401B2 (en) Control system for vehicle engine
JPH0742892B2 (en) Intake air amount detector
JPH04116249A (en) Control device for internal combustion engine
JP2543762B2 (en) Fuel supply control device for internal combustion engine
JP3105230B2 (en) Fuel supply control device for internal combustion engine
JP2004093525A (en) Intake-air volume calculating system
JP2002227683A (en) Fuel injection amount controller for internal combustion engine
JPH0777440A (en) Intake air quantity detecting device for internal combustion engine
JPH10184438A (en) Air amount detecting device for engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050426

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080527

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090527

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees