JPH10224276A - Automatic electromagnetic induction type recognition device - Google Patents

Automatic electromagnetic induction type recognition device

Info

Publication number
JPH10224276A
JPH10224276A JP2414997A JP2414997A JPH10224276A JP H10224276 A JPH10224276 A JP H10224276A JP 2414997 A JP2414997 A JP 2414997A JP 2414997 A JP2414997 A JP 2414997A JP H10224276 A JPH10224276 A JP H10224276A
Authority
JP
Japan
Prior art keywords
resonance
circuit
antenna coil
interrogation
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2414997A
Other languages
Japanese (ja)
Other versions
JP3564917B2 (en
Inventor
Takahide Kitahara
高秀 北原
Fumio Asakura
史生 浅倉
Koichi Mizuno
耕一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2414997A priority Critical patent/JP3564917B2/en
Publication of JPH10224276A publication Critical patent/JPH10224276A/en
Application granted granted Critical
Publication of JP3564917B2 publication Critical patent/JP3564917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lock And Its Accessories (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfactorily maintain the response signal reception performance of an interrogator by emitting residual vibration energy at the time of every stop of serial resonance, when an interrogation signal is transmitted and stopping the emission before the next time of serial resonance each time. SOLUTION: A control circuit 3 generates a control signal, while an interrogation signal is transmitted and sends in to a transmission circuit 1 and a switching circuit 51. Every time the resonant state of an antenna coil 1 and a condenser 2 is shifted from serial resonance to parallel resonance, the cathode of a diode 51b of the circuit 51 is connected to the ground. With this, a common terminal 1a of the coil 1 and the condenser 2 is connected to the ground. because of this, resonance vibration energy that is accumulated in a resonant circuit of the coil 1, and the condenser 21 is rapidly emitted to the ground immediately before the stop of each serial resonance, and the resonance voltage of the terminal 1a rapidly falls to the forward voltage of the diode 51. The circuit 3 generates a control signal while a response signal is received, and maintains the resonance state of the coil 1 and the condenser 2 in parallel resonance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は車両用盗難防止装置
等に採用するに適した電磁誘導式自動認識装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction type automatic recognition device suitable for use in a vehicle anti-theft device and the like.

【0002】[0002]

【従来の技術】従来、この種の電磁誘導式自動認識装置
に採用される質問器には、図7にて示すごとく、構成し
たものがある(特開平5−252081号公報にて示す
類例参照)。この質問器は、質問用アンテナコイル1
と、このアンテナコイル1と共に共振回路を構成する共
振用コンデンサ2とを備える。また、この質問器は、制
御回路3に接続した送信回路4と、この送信回路4とア
ンテナコイル1との間に接続した駆動回路5と、制御回
路3とアンテナコイル1及びコンデンサ2の共通端子1
aとの間に接続した復調回路6とを備える。ここで、駆
動回路5は、Pチャンネル型及びNチャンネル型の両電
界効果トランジスタ5a、5b(以下、FET5a、5
bという)をハーフブリッジ構成に接続したものであ
る。
2. Description of the Related Art Conventionally, there is an interrogator employed in this type of electromagnetic induction type automatic recognition apparatus as shown in FIG. 7 (refer to a similar example disclosed in Japanese Patent Application Laid-Open No. H5-252581). ). This interrogator is a question antenna coil 1
And a resonance capacitor 2 that forms a resonance circuit together with the antenna coil 1. The interrogator includes a transmitting circuit 4 connected to the control circuit 3, a driving circuit 5 connected between the transmitting circuit 4 and the antenna coil 1, and a common terminal for the control circuit 3, the antenna coil 1 and the capacitor 2. 1
a) and a demodulation circuit 6 connected between the two. Here, the drive circuit 5 includes both P-channel and N-channel field effect transistors 5a and 5b (hereinafter, FETs 5a and 5b).
b) is connected to a half-bridge configuration.

【0003】そして、この質問器は、通常、応答器との
通信を行うにあたり、図8で示すように、チャージ期
間、質問信号送信期間及び応答信号受信期間の三つの期
間に亘る時分割作動を行う。ここで、チャージ期間は、
質問器から応答器へ高周波電力を供給する期間であり、
質問信号送信期間は、質問器から応答器へ質問信号を送
信する期間であり、応答信号受信期間は、質問器が応答
器から応答信号を受信する期間である。
In order to communicate with a transponder, this interrogator normally performs a time-sharing operation over three periods of a charge period, an interrogation signal transmission period and a response signal reception period as shown in FIG. Do. Here, the charge period is
This is the period for supplying high frequency power from the interrogator to the responder,
The interrogation signal transmission period is a period during which the interrogator transmits an interrogation signal to the transponder, and the response signal reception period is a period during which the interrogator receives the response signal from the transponder.

【0004】この時分割作動において、チャージ期間で
は、応答器に通信に必要な高周波電力を供給するため、
制御回路3が、ローレベルにて制御信号(図8にて符号
A参照)を発生すると、送信回路4は、この制御信号A
を受けて、搬送周波数f及び振幅Vcのクロックパルス
(図8にて符号B参照)を駆動回路5に出力する。この
ため、両FET5a、5bが、その各ゲート端子にて、
送信回路4からクロックパルスBを順次受けると、これ
ら両FET5a、5bの各ゲート電圧が零(V)のと
き、FET5aがオフすると同時にFET5bがオンす
る。また、上記各ゲート電圧が正の振幅Vcのとき、逆
にFET5aがオンすると同時にFET5bがオフす
る。
In this time-sharing operation, during the charging period, high-frequency power necessary for communication is supplied to the transponder,
When the control circuit 3 generates a control signal at a low level (see reference symbol A in FIG. 8), the transmission circuit 4
In response to this, a clock pulse having a carrier frequency f and an amplitude Vc (see reference sign B in FIG. 8) is output to the drive circuit 5. For this reason, both FETs 5a and 5b are connected at their respective gate terminals.
When the clock pulse B is sequentially received from the transmission circuit 4, when the gate voltages of the two FETs 5a and 5b are zero (V), the FET 5a turns off and the FET 5b turns on at the same time. When each gate voltage has a positive amplitude Vc, the FET 5a is turned on and the FET 5b is turned off at the same time.

【0005】よって、両FET5a、5bが交互にオン
オフされることにより、アンテナコイル1とコンデンサ
2は、FET5bのオン毎に周波数fにて直列共振す
る。アンテナコイル1はこの直列共振に基づき磁界を発
生し、当該磁界を媒体として端子電圧(図8にて符号C
参照)に対応する高周波電力を応答器に供給する。但
し、アンテナコイル1のインダクタンスをLとし、コン
デンサ2の静電容量をCとしたとき、次の数1の式が成
立するようにインダクタンスL及び静電容量Cが調整さ
れている。
[0005] Therefore, when the FETs 5a and 5b are alternately turned on and off, the antenna coil 1 and the capacitor 2 resonate in series at the frequency f each time the FET 5b is turned on. The antenna coil 1 generates a magnetic field based on the series resonance, and uses the magnetic field as a medium to generate a terminal voltage (C in FIG. 8).
) Is supplied to the transponder. However, when the inductance of the antenna coil 1 is L and the capacitance of the capacitor 2 is C, the inductance L and the capacitance C are adjusted so that the following equation 1 is satisfied.

【0006】[0006]

【数1】f=1/2π(LC)-1/2 なお、応答器は、上記磁界を受信したときこの受信磁界
(図8にて符号D参照)でもって電力を供給される。次
に、質問信号送信期間では、制御回路3が、質問内容を
表す複数ビットからなる質問信号を制御信号として発生
する。
F = 1 / 2π (LC) -1/2 When the transponder receives the above magnetic field, the transponder is supplied with power by the received magnetic field (refer to the symbol D in FIG. 8). Next, in the interrogation signal transmission period, the control circuit 3 generates an interrogation signal composed of a plurality of bits representing the content of the interrogation as a control signal.

【0007】ここで、質問信号は、「1」を表すビット
(以下、Hビットという)及び「0」を表すビット(以
下、Lビットという)の集合からなる。また、Hビット
及びLビットは、共に、ハイレベル期間とローレベル期
間とにより構成されており、質問信号のPWM符号化
は、これら各Hビット及びLビットのハイレベル期間と
ローレベル期間とを、上記質問内容を特定すべく互いに
異ならしめることで行われている。
Here, the interrogation signal is composed of a set of bits representing "1" (hereinafter, referred to as H bits) and bits representing "0" (hereinafter, referred to as L bits). Further, both the H bit and the L bit are constituted by a high level period and a low level period, and the PWM encoding of the interrogation signal is performed by dividing the high level period and the low level period of each of the H bit and the L bit. This is done by differentiating each other in order to identify the content of the above question.

【0008】このため、制御回路3の制御信号は、上記
質問信号の内容に対応してPWM符号化された信号(図
8にて符号A1参照)となる。すると、送信回路4が、
制御回路3からPWM符号化制御信号A1を受けてPW
M符号化パルス(図8にて符号B1参照)を駆動回路5
に出力する。このため、この駆動回路5では、両FET
5a、5bがPWM符号化パルスB1によりPWM制御
されてオンオフする。これに伴い、この駆動回路5のP
WM作動のもと、アンテナコイル1とコンデンサ2は、
FET5aのオフ及びFET5bのオンの時に直列共振
し、FET5aのオン及びFET5bのオフの時に並列
共振する。
For this reason, the control signal of the control circuit 3 is a signal (see reference numeral A1 in FIG. 8) PWM-coded in accordance with the contents of the inquiry signal. Then, the transmission circuit 4
Upon receiving the PWM coding control signal A1 from the control circuit 3,
The M coded pulse (refer to the code B1 in FIG. 8)
Output to Therefore, in this drive circuit 5, both FETs
5a and 5b are turned on and off under PWM control by the PWM coding pulse B1. Accordingly, the P of the driving circuit 5
Under the WM operation, the antenna coil 1 and the capacitor 2
A series resonance occurs when the FET 5a is turned off and the FET 5b is turned on, and a parallel resonance occurs when the FET 5a is turned on and the FET 5b is turned off.

【0009】これに伴い、アンテナコイル1aが、上記
PWM制御に応じた直列共振及びこの直列共振を停止さ
せる並列共振に基づき、PWM符号化によるAM変調を
かけた質問用磁界(図8にて符号C1参照)を発生する
とともにこの磁界を媒体として質問信号を応答器に送信
する。すると、この応答器は、その応答用アンテナコイ
ルにて、上記質問用磁界を受信磁界(図8にて符号D1
参照)として受信し、この受信磁界を媒体として質問信
号を受信する。
Accordingly, the antenna coil 1a generates an interrogation magnetic field (denoted in FIG. 8) by applying AM modulation by PWM coding based on the series resonance according to the PWM control and the parallel resonance for stopping the series resonance. C1) and transmits an interrogation signal to the transponder using the magnetic field as a medium. Then, the transponder uses the response antenna coil to transmit the interrogation magnetic field to the reception magnetic field (D1 in FIG. 8).
), And an interrogation signal is received using the received magnetic field as a medium.

【0010】ついで、応答器は、受信質問信号のレベル
が閾値(図8参照)よりも低下する幅を検出して質問信
号を復調信号(図8にて符号E1参照)として復調し、
この復調信号に基づき所定のIDコードを応答用アンテ
ナコイルから応答用磁界を媒体として応答信号として質
問器に返信する。ついで、応答信号受信期間では、制御
回路3がハイレベルの制御信号(図8にて符号A2参
照)を発生する。このため、送信回路4がその出力をハ
イレベルVc(図8にて符号B2参照)に維持する。
Next, the transponder detects a width in which the level of the received interrogation signal is lower than the threshold value (see FIG. 8), and demodulates the interrogation signal as a demodulated signal (see symbol E1 in FIG. 8).
Based on this demodulated signal, a predetermined ID code is returned from the response antenna coil to the interrogator as a response signal using the response magnetic field as a medium. Next, during the response signal receiving period, the control circuit 3 generates a high-level control signal (see A2 in FIG. 8). For this reason, the transmission circuit 4 maintains its output at the high level Vc (see reference numeral B2 in FIG. 8).

【0011】従って、駆動回路5が、FET5aをオン
状態に維持するとともにFET5bをオフ状態に維持す
る。このため、アンテナコイル1が、その一端子1bに
て、接地されて、応答用磁界を受信しコンデンサ2と共
に並列共振する。このとき、アンテナコイル1の端子電
圧は零(図8にて符号C2参照)となる。これに伴い、
アンテナコイル1は、その並列共振のもと、応答器から
応答信号を受信し、復調回路6は、アンテナコイル1の
受信信号を共振電圧として、アンテナコイル1とコンデ
ンサ2との共通端子1aから受けて増幅した後復調し復
調信号として制御回路3に出力する。
Therefore, the drive circuit 5 keeps the FET 5a on and keeps the FET 5b off. Therefore, the antenna coil 1 is grounded at one terminal 1b, receives the response magnetic field, and resonates in parallel with the capacitor 2. At this time, the terminal voltage of the antenna coil 1 becomes zero (refer to the symbol C2 in FIG. 8). Along with this,
The antenna coil 1 receives a response signal from the transponder under the parallel resonance, and the demodulation circuit 6 receives the reception signal of the antenna coil 1 as a resonance voltage from a common terminal 1a of the antenna coil 1 and the capacitor 2. The signal is then demodulated and output to the control circuit 3 as a demodulated signal.

【0012】これに伴い、制御回路3が、復調回路6か
らの復調信号に基づきIDコードとの一致不一致を判定
し、一致時に応答器を正しいものとして認識する。
Accordingly, the control circuit 3 determines whether or not the ID code matches with the ID code based on the demodulated signal from the demodulation circuit 6, and recognizes the transponder as correct when the ID code matches.

【0013】[0013]

【発明が解決しようとする課題】ところで、上記質問信
号送信期間において、アンテナコイル1とコンデンサ2
との直列共振を並列共振に切り換えて停止するとき、ア
ンテナコイル1とコンデンサ2との共通端子1aに生じ
ている共振電圧(即ち、共振エネルギー)は、上記直列
共振の並列共振への切り換え後における残留振動のた
め、徐々にしか減少しない。また、応答器のアンテナコ
イルには、質問用磁界の集磁効率を高めるために、フェ
ライトコアが用いられている。
During the above-mentioned interrogation signal transmission period, the antenna coil 1 and the capacitor 2
When the series resonance is switched to the parallel resonance and stopped, the resonance voltage (that is, the resonance energy) generated at the common terminal 1a of the antenna coil 1 and the capacitor 2 is changed after the series resonance is switched to the parallel resonance. It decreases only gradually due to residual vibration. In addition, a ferrite core is used for the antenna coil of the transponder in order to increase the magnetic flux collection efficiency of the interrogating magnetic field.

【0014】従って、応答器のアンテナコイルの受信磁
界強度(図8にて各符号Ma、Mb参照)は、応答器と
質問器との間の距離が短い程高くなる。なお、受信磁界
強度Maは受信磁界強度Mbよりも高い。このため、上
述のように直列共振停止後の残留振動の減少は、応答器
と質問器との間の距離が短い程、遅い。換言すれば、応
答器の受信磁界強度の減少は、図8の符号D1にて示す
ごとく、応答器と質問器との間の距離が短い程遅い。
Accordingly, the received magnetic field strength of the antenna coil of the transponder (see reference numerals Ma and Mb in FIG. 8) increases as the distance between the transponder and the interrogator decreases. The reception magnetic field strength Ma is higher than the reception magnetic field strength Mb. For this reason, as described above, the decrease in the residual vibration after the series resonance stops is slower as the distance between the transponder and the interrogator is shorter. In other words, the decrease in the received magnetic field strength of the transponder is slower as the distance between the transponder and the interrogator is shorter, as indicated by reference numeral D1 in FIG.

【0015】従って、応答器と質問器との間の距離が短
い程、応答器の受信磁界に含まれる質問信号のレベルが
閾値(図8参照)まで低下する時間が遅れる。よって、
応答器における検出パルスの幅(受信信号のレベルが上
記閾値以下となる幅)が、応答器と質問器との間の距離
が短い程狭い(図8にて各符号Ea、Eb参照)。な
お、検出パルス幅Eaは、検出パルス幅Ebよりの狭
い。
Therefore, the shorter the distance between the transponder and the interrogator, the longer the time required for the level of the interrogation signal contained in the received magnetic field of the transponder to drop to the threshold (see FIG. 8). Therefore,
The width of the detection pulse in the transponder (the width at which the level of the received signal is equal to or less than the above threshold) is smaller as the distance between the transponder and the interrogator is shorter (see symbols Ea and Eb in FIG. 8). Note that the detection pulse width Ea is smaller than the detection pulse width Eb.

【0016】このことは、応答器と質問器との間の距離
が短い程、制御信号即ち質問信号の波形が、応答器の検
出波形において崩れることを意味する。その結果、応答
器が正確に質問信号を復調することができないという不
具合が生ずる。これに対しては、つぎの二つの対策が考
えられる。
This means that the shorter the distance between the transponder and the interrogator, the more the waveform of the control signal, that is, the interrogation signal is distorted in the detected waveform of the transponder. As a result, a problem occurs that the transponder cannot accurately demodulate the interrogation signal. To address this, the following two measures can be considered.

【0017】第1には、直列共振から並列共振への切り
換え時に、アンテナコイル1とコンデンサ2との共通端
子1aをスイッチング回路で接地させることで、直列共
振の共振エネルギーを逃がし、直列共振の残留振動の吸
収、即ち残留振動エネルギーの放出を急峻に行うことが
考えられる。しかし、その後の応答信号受信期間では、
応答器の応答信号を受信するにあたり、質問器のアンテ
ナコイル1とコンデンサ2とを並列共振させる必要があ
る。このためには、アンテナコイル1とコンデンサ2と
の共通端子1aの接地をスイッチング回路により解除し
ておく必要がある。
First, when switching from series resonance to parallel resonance, the common terminal 1a of the antenna coil 1 and the capacitor 2 is grounded by a switching circuit, so that the resonance energy of the series resonance is released and the series resonance remains. It is conceivable to steeply absorb the vibration, that is, release the residual vibration energy. However, in the subsequent response signal reception period,
In order to receive the response signal of the transponder, it is necessary to resonate the antenna coil 1 and the capacitor 2 of the interrogator in parallel. For this purpose, the grounding of the common terminal 1a of the antenna coil 1 and the capacitor 2 needs to be released by a switching circuit.

【0018】よって、単に、上記残留振動をスイッチン
グ回路により吸収するのみでは足りない。第2には、ア
ンテナコイル1の線径を小さくする等でアンテナコイル
1の抵抗成分を増やすことが考えられる。ここで、この
抵抗成分は、質問器と応答器との間の目標通信可能距離
を考慮して決める必要がある。しかし、上述のようにア
ンテナコイル1自体の抵抗成分を増やすと、アンテナコ
イル1のコンデンサ2の直列共振時の共振電流のみなら
ず並列共振の共振電流も減少する。
Therefore, it is not sufficient to simply absorb the residual vibration by the switching circuit. Second, it is conceivable to increase the resistance component of the antenna coil 1 by reducing the wire diameter of the antenna coil 1 or the like. Here, this resistance component needs to be determined in consideration of the target communicable distance between the interrogator and the transponder. However, when the resistance component of the antenna coil 1 itself is increased as described above, not only the resonance current at the time of series resonance of the capacitor 2 of the antenna coil 1 but also the resonance current of the parallel resonance decreases.

【0019】このため、直列共振停止後の残留振動を抑
制し得るものの、抵抗値によっては、直列共振時のアン
テナコイル1の発生磁界強度が直列共振エネルギーの減
少のために不足するだけでなく、目標通信可能距離内で
の並列共振時のアンテナコイル1の応答信号受信性能が
並列共振エネルギーの減少のために低下するという不具
合が生ずる。
For this reason, although the residual vibration after the series resonance is stopped can be suppressed, depending on the resistance value, not only the intensity of the magnetic field generated by the antenna coil 1 at the time of the series resonance becomes insufficient due to the reduction of the series resonance energy, but also A problem arises in that the response signal receiving performance of the antenna coil 1 at the time of parallel resonance within the target communicable distance is reduced due to a decrease in parallel resonance energy.

【0020】そこで、本発明は、以上のようなことに対
処するため、質問信号の送信時には直列共振の停止毎に
その残留振動エネルギーを放出し、この放出を次の直列
共振時以前毎に停止するようにした電磁誘導式自動認識
装置を提供することを目的とする。また、本発明は、以
上のようなことに対処するため、質問用アンテナコイル
とは独立的に、質問器内にインピーダンス素子を別途接
続することで、残留振動を抑制しつつ質問信号送信時の
質問器の発生磁界強度を適正に確保し、かつ、目標通信
可能距離内での質問器の応答信号受信性能を良好に維持
するようにした電磁誘導式自動認識装置を提供すること
を目的とする。
Therefore, in order to cope with the above, the present invention releases the residual vibration energy every time the series resonance is stopped at the time of transmitting the interrogation signal, and stops the discharge before every next series resonance. It is an object of the present invention to provide an electromagnetic induction type automatic recognition device. Further, the present invention, in order to cope with the above, independently of the antenna coil for interrogation, by separately connecting an impedance element in the interrogator, while suppressing the residual vibration, when transmitting the interrogation signal It is an object of the present invention to provide an electromagnetic induction type automatic recognition device that appropriately secures the generated magnetic field strength of an interrogator and maintains good response signal reception performance of the interrogator within a target communicable distance. .

【0021】[0021]

【課題を解決するための手段】上記目的を達成するた
め、請求項1及び4に記載の発明によれば、放出手段
が、質問信号の内容に応じ制御手段により制御されて、
質問用アンテナコイルと共振用コンデンサからなる共振
回路の交互共振中における直列共振から並列共振への移
行時毎に、当該共振回路の残留共振エネルギーを急峻に
放出し、この放出を、次の直列共振への移行時毎に停止
する。
According to the first and fourth aspects of the present invention, the emission means is controlled by the control means in accordance with the content of the interrogation signal.
Every time the resonance circuit consisting of the interrogation antenna coil and the resonance capacitor shifts from the series resonance to the parallel resonance during the alternate resonance, the residual resonance energy of the resonance circuit is rapidly released, and this release is transmitted to the next series resonance. Stop every time when the transition to.

【0022】これにより、交互共振中における直列共振
から並列共振への移行時毎の上記残留共振エネルギーの
急峻な放出のため、質問信号がその内容を変化させるこ
となく質問用アンテナコイルの発生磁界を媒体として送
信される。従って、応答器は、質問信号の正しい内容に
合致した応答信号を返信できる。また、上記残留共振エ
ネルギーの急峻な放出が次の直列共振への移行以前毎に
停止されるので、共振回路の交互共振終了後における質
問器の応答信号受信時には共振回路が確実に並列共振状
態におかれる。このため、質問器の受信性能を損なうこ
となく応答信号の良好な受信が可能となる。
Thus, the steep emission of the residual resonance energy at each transition from the series resonance to the parallel resonance during the alternating resonance causes the interrogation signal to reduce the magnetic field generated by the interrogation antenna coil without changing its content. Sent as a medium. Therefore, the transponder can return a response signal that matches the correct content of the interrogation signal. In addition, since the steep emission of the residual resonance energy is stopped every time before the transition to the next series resonance, when the interrogator receives the response signal after the end of the alternate resonance of the resonance circuit, the resonance circuit surely enters the parallel resonance state. I will put it. For this reason, it is possible to excellently receive the response signal without impairing the reception performance of the interrogator.

【0023】また、請求項2乃至5に記載の発明によれ
ば、制御手段のインピーダンス素子が、共振回路の交互
共振時にはこの共振回路に直列に接続され、当該共振回
路の並列共振の維持時にはこの共振回路から遮断され
る。これにより、インピーダンス素子の値を適正に設定
することで、インピーダンスが直列接続されている共振
回路の交互共振時にて質問用アンテナコイルの発生磁界
強度を良好に確保しつつ、共振回路の並列共振維持時に
は、インピーダンス素子の影響を受けることなく、応答
信号を良好に受信できる。
Further, according to the present invention, the impedance element of the control means is connected in series to the resonance circuit at the time of alternate resonance of the resonance circuit, and is connected to the resonance element at the time of maintaining parallel resonance of the resonance circuit. It is cut off from the resonance circuit. Thus, by setting the value of the impedance element appropriately, the parallel resonance of the resonance circuit can be maintained while the magnetic field generated by the interrogation antenna coil can be sufficiently maintained during the alternate resonance of the resonance circuit whose impedance is connected in series. Sometimes, a response signal can be satisfactorily received without being affected by the impedance element.

【0024】ここで、請求項3に記載の発明によれば、
放出手段が、質問信号の内容に応じ制御手段により制御
されて、共振回路の交互共振中における直列共振から並
列共振への移行時毎に当該共振回路の残留共振エネルギ
ーを放出し、この放出を、次の直列共振への移行時毎に
停止する。これにより、請求項2に記載の発明の作用効
果を達成しつつ請求項1に記載の発明の作用効果をも達
成できる。
Here, according to the third aspect of the present invention,
The emission unit is controlled by the control unit in accordance with the content of the interrogation signal, and emits the residual resonance energy of the resonance circuit every time transition from the series resonance to the parallel resonance during the alternate resonance of the resonance circuit, It stops every time it shifts to the next series resonance. Thus, the function and effect of the invention of claim 1 can be achieved while achieving the function and effect of the invention of claim 2.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)以下、本発明の第1実施形態を図1乃
至図4に基づいて説明する。図1は、車両用盗難防止装
置に本発明が適用された例を示している。この盗難防止
装置は、電磁誘導式自動認識装置を備えており、この自
動認識装置は、図1及び図2にて示すごとく、当該車両
のイグニッションキーシリンダ錠10に設けた質問器Q
と、イグニッションキー20の把持部21に内蔵した応
答器Rとにより構成されている。
(First Embodiment) Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an example in which the present invention is applied to a vehicle antitheft device. This antitheft device includes an electromagnetic induction type automatic recognition device. As shown in FIGS. 1 and 2, the automatic recognition device includes an interrogator Q provided on an ignition key cylinder lock 10 of the vehicle.
And a transponder R built in the grip portion 21 of the ignition key 20.

【0026】なお、盗難防止装置においては、当該車両
の点火装置30の点火或いはその禁止が、質問器Qの出
力に基づき電子制御装置40(以下、ECU40とい
う)により制御されるようになっている。また、点火装
置30に代えて、当該車両の燃料噴射装置の燃料噴射或
いはその禁止を質問器Qの出力に基づきECU40によ
り制御するようにしてもよい。
In the anti-theft device, the ignition or prohibition of the ignition device 30 of the vehicle is controlled by an electronic control unit 40 (hereinafter referred to as ECU 40) based on the output of the interrogator Q. . Further, instead of the ignition device 30, the ECU 40 may control the fuel injection of the fuel injection device of the vehicle or the inhibition thereof based on the output of the interrogator Q.

【0027】質問器Qは、図1及び図2にて示すごと
く、質問器本体50aと、図7にて示した質問用アンテ
ナコイル1とを備えている。なお、アンテナコイル1
は、イグニッションキーシリンダ錠10のステアリング
ロック11(アンテナコイル1のコアとしての役割を果
たす)に巻装されている。また、イグニッションキー2
0のキー部22をイグニッションキーシリンダ錠10の
キー孔部に挿入回転したときオンするキースイッチが、
イグニッションキーシリンダ錠10内に設けられてい
る。
As shown in FIGS. 1 and 2, the interrogator Q includes an interrogator body 50a and the interrogating antenna coil 1 shown in FIG. The antenna coil 1
Is wound around a steering lock 11 (which functions as a core of the antenna coil 1) of the ignition key cylinder lock 10. In addition, ignition key 2
The key switch that is turned on when the key portion 22 of the key 0 is inserted into the key hole portion of the ignition key cylinder lock 10 and rotated,
It is provided in the ignition key cylinder lock 10.

【0028】質問器本体50aは、図2にて示すごと
く、図7にて示した質問器におけるアンテナコイル1を
除いた構成において、スイッチング回路51を付加した
構成を有している。ここで、制御回路3は、上記キース
イッチのオン作動に応答して作動を開始し、制御信号を
発生するとともに、質問器本体50aの出力に基づき点
火回路30aの点火の可否を判定し、この判定結果をE
CU40に出力する。
As shown in FIG. 2, the interrogator body 50a has a configuration in which the switching circuit 51 is added to the configuration of the interrogator shown in FIG. Here, the control circuit 3 starts operating in response to the ON operation of the key switch, generates a control signal, and determines whether ignition of the ignition circuit 30a is possible based on the output of the interrogator main body 50a. The judgment result is E
Output to CU40.

【0029】スイッチング回路51は、Nチャンネル型
FET51aと、ダイオード51bとを備えている。F
ET51aは、そのゲート端子にて、制御回路3に送信
回路4と共に接続されており、このFET51aのドレ
イン端子は、ダイオード51bのカソードに接続されて
いる。また、FET51aのソース端子は接地されてい
る。ダイオード51bは、そのアノードにてアンテナコ
イル1とコンデンサ2の共通端子1aに接続されてい
る。
The switching circuit 51 includes an N-channel FET 51a and a diode 51b. F
The ET 51a is connected at its gate terminal to the control circuit 3 together with the transmission circuit 4, and the drain terminal of this FET 51a is connected to the cathode of the diode 51b. The source terminal of the FET 51a is grounded. The diode 51b has its anode connected to the common terminal 1a of the antenna coil 1 and the capacitor 2.

【0030】このように構成したスイッチング回路51
では、制御回路3からの制御信号がローレベルのとき、
FET51aはオフする。一方、制御回路3からの制御
信号がハイレベルのとき、FET51aはオンし、ダイ
オード51bのカソードを接地する。ダイオード51b
は、FET51aのオフにより逆方向にバイアスされて
非導通となり、FET51aのオンにより順方向にバイ
アスされて導通する。
The switching circuit 51 thus configured
Then, when the control signal from the control circuit 3 is at a low level,
The FET 51a turns off. On the other hand, when the control signal from the control circuit 3 is at a high level, the FET 51a is turned on, and the cathode of the diode 51b is grounded. Diode 51b
Is biased in the reverse direction when the FET 51a is turned off and becomes non-conductive, and is turned on and turned on when the FET 51a is turned on.

【0031】また、アンテナコイル1とコンデンサ2と
の共通端子1aの共振電圧がダイオード51bの順方向
電圧よりも低下したときダイオード51bはオフする。
応答器Rは、上記従来技術にて述べた応答器に代わるも
ので、応答器Rは、図3にて示すごとく、応答用アンテ
ナコイル61と、このアンテナコイル61内に同心的に
嵌装したフェライト等の強磁性体からなる棒状コア62
と、両コンデンサ63、64と、電源回路65、制御回
路66と、復調回路67とを備えている。
When the resonance voltage of the common terminal 1a of the antenna coil 1 and the capacitor 2 becomes lower than the forward voltage of the diode 51b, the diode 51b turns off.
The transponder R is an alternative to the transponder described in the above-mentioned prior art. As shown in FIG. 3, the transponder R is fitted concentrically with a response antenna coil 61 in the antenna coil 61. Rod-shaped core 62 made of ferromagnetic material such as ferrite
, Capacitors 63 and 64, a power supply circuit 65, a control circuit 66, and a demodulation circuit 67.

【0032】アンテナコイル61は、質問用アンテナコ
イル1との間で磁界による電磁結合作用を発揮する。コ
ンデンサ63はアンテナコイル61と共に共振回路を構
成する。電源回路65は、アンテナコイル61とコンデ
ンサ63との共振時にアンテナコイル61に生ずる共振
電圧を整流するとともにこの整流電圧をチャージアップ
コンデンサに印加してこれを充電する。
The antenna coil 61 exerts an electromagnetic coupling action with the interrogating antenna coil 1 by a magnetic field. The capacitor 63 forms a resonance circuit with the antenna coil 61. The power supply circuit 65 rectifies a resonance voltage generated in the antenna coil 61 when the antenna coil 61 and the capacitor 63 resonate, and applies the rectified voltage to a charge-up capacitor to charge the capacitor.

【0033】復調回路67は、電源回路65から充電電
圧を受けて、IDコードを応答信号として生成する。こ
こで、応答信号の生成は、上記充電電圧(アンテナコイ
ル61の受信磁界強度に対応)が閾値よりも低下したこ
とでなされる。制御回路66は、復調回路67からの応
答信号にFM変調をかけてアンテナコイル61に出力す
る。
The demodulation circuit 67 receives the charging voltage from the power supply circuit 65 and generates an ID code as a response signal. Here, the generation of the response signal is performed when the charging voltage (corresponding to the reception magnetic field strength of the antenna coil 61) falls below a threshold. The control circuit 66 performs FM modulation on the response signal from the demodulation circuit 67 and outputs the response signal to the antenna coil 61.

【0034】アンテナコイル61は、制御回路66の出
力に基づきコンデンサ63と共に共振し磁界を媒体とし
て応答信号を返信する。以上のように構成した本第1実
施形態において、イグニッションキーシリンダ錠10に
イグニッションキー20を挿入すると、制御回路3が作
動を開始し制御信号を発生する。
The antenna coil 61 resonates with the capacitor 63 based on the output of the control circuit 66, and returns a response signal using a magnetic field as a medium. In the first embodiment configured as described above, when the ignition key 20 is inserted into the ignition key cylinder lock 10, the control circuit 3 starts operating and generates a control signal.

【0035】これに伴い、質問器Qが応答器Rに電力供
給するために上記従来技術にて述べたと同様にチャージ
期間における時分割作動を行う。このとき、制御回路3
の制御信号Aはローレベルに維持されているから、スイ
ッチング回路51のFET51aはオフしたままであ
る。このため、スイッチング回路51がアンテナコイル
1とコンデンサ2との直列共振に悪影響を与えることは
ない。
Accordingly, the interrogator Q performs a time-sharing operation in the charging period in order to supply power to the transponder R in the same manner as described in the related art. At this time, the control circuit 3
Since the control signal A is maintained at the low level, the FET 51a of the switching circuit 51 remains off. Therefore, the switching circuit 51 does not adversely affect the series resonance of the antenna coil 1 and the capacitor 2.

【0036】その後、質問器Qの時分割作動が、上記従
来技術にて述べたと同様に質問信号送信期間における動
作に移行する。この質問信号送信期間では、制御回路3
が制御信号A1を発生すると、この制御信号A1が送信
回路4に加えスイッチング回路51にも出力される。こ
のため、駆動回路5が従来技術にて述べたようにアンテ
ナコイル1とコンデンサ2との共振状態を直列共振から
並列共振に移行する毎に、スイッチング回路51のFE
T51aがオンしてダイオード51bのカソードを接地
する。
After that, the time-sharing operation of the interrogator Q shifts to the operation in the interrogation signal transmission period in the same manner as described in the prior art. In this interrogation signal transmission period, the control circuit 3
Generates the control signal A1, the control signal A1 is output to the switching circuit 51 in addition to the transmission circuit 4. Therefore, each time the drive circuit 5 changes the resonance state of the antenna coil 1 and the capacitor 2 from series resonance to parallel resonance as described in the related art, the FE of the switching circuit 51 is changed.
T51a is turned on, and the cathode of the diode 51b is grounded.

【0037】これに伴い、ダイオード51bが繰り返し
順方向に導通しアンテナコイル1とコンデンサ2との共
通端子1aを接地する。このため、各直列共振の停止直
前にアンテナコイル1とコンデンサ2の共振回路に蓄え
られていた直列共振に基づく共振振動エネルギーが共振
電流としてダイオード51bを通り急峻に接地側に放出
される。このことは、上記共通端子1aの共振電圧がダ
イオード51bの順方向電圧まで急峻に低下することを
意味する。
Accordingly, the diode 51b repeatedly conducts in the forward direction, and the common terminal 1a of the antenna coil 1 and the capacitor 2 is grounded. Therefore, the resonance vibration energy based on the series resonance stored in the resonance circuit of the antenna coil 1 and the capacitor 2 immediately before the stop of each series resonance is rapidly discharged to the ground side through the diode 51b as a resonance current. This means that the resonance voltage of the common terminal 1a drops sharply to the forward voltage of the diode 51b.

【0038】そして、上記共通端子1aの共振電圧がダ
イオード51bの順方向電圧よりも低下すると、ダイオ
ード51bがオフする。これにより、スイッチング回路
51が、当該ダイオード51bのオフ毎に上記共通端子
1aから電気的に遮断される。次の応答信号受信期間で
は、制御回路3が制御信号A2を発生すると、この制御
信号A2が送信回路4に加えスイッチング回路51にも
出力される。このため、駆動回路5が従来技術にて述べ
たようにアンテナコイル1とコンデンサ2との共振状態
を並列共振に維持する。
When the resonance voltage of the common terminal 1a falls below the forward voltage of the diode 51b, the diode 51b turns off. Thus, the switching circuit 51 is electrically disconnected from the common terminal 1a every time the diode 51b is turned off. In the next response signal receiving period, when the control circuit 3 generates the control signal A2, the control signal A2 is output to the switching circuit 51 in addition to the transmission circuit 4. Therefore, the drive circuit 5 maintains the resonance state of the antenna coil 1 and the capacitor 2 in parallel resonance as described in the related art.

【0039】このとき、質問信号送信期間の終了時に
は、上述のごとく、共振電圧がダイオード51bの順方
向電圧よりも低下することでダイオード51bがオフ
し、スイッチング回路51が共通端子1aから遮断され
ている。このため、アンテナコイル1とコンデンサ2の
上記並列共振状態が、応答信号受信期間の初期には、ス
イッチング回路51により影響されることなく、正常に
維持され得る。
At this time, at the end of the interrogation signal transmission period, as described above, the resonance voltage falls below the forward voltage of the diode 51b, so that the diode 51b is turned off, and the switching circuit 51 is cut off from the common terminal 1a. I have. Therefore, the parallel resonance state of the antenna coil 1 and the capacitor 2 can be normally maintained without being affected by the switching circuit 51 at the beginning of the response signal receiving period.

【0040】これにより、応答信号受信期間におけるア
ンテナコイル1による応答信号の受信及び復調処理が適
正になされ得る。 (第2実施形態)次に、本発明の第2実施形態を図5及
び図6に基づいて説明する。この第2実施形態では、上
記第1実施形態にて述べた質問器Qの質問器本体50a
において、スイッチング回路51を廃止するとともに、
質問器Qの質問信号を応答器Rに確実に伝達するため
に、直流電源の正側端子とFET5bのソース端子との
間に抵抗52を接続したことにその構成上の特徴があ
る。
Thus, reception and demodulation of the response signal by the antenna coil 1 during the response signal reception period can be properly performed. (Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the interrogator main body 50a of the interrogator Q described in the first embodiment is described.
In addition to eliminating the switching circuit 51,
In order to reliably transmit the interrogation signal of the interrogator Q to the transponder R, the configuration is characterized in that the resistor 52 is connected between the positive terminal of the DC power supply and the source terminal of the FET 5b.

【0041】ここで、抵抗52の抵抗値は、応答器Rが
目標通信距離以内でアンテナコイル1の発生磁界の変化
を良好に検出できる程度に選定されている。その他の構
成は、上記第1実施形態と同様である。このように構成
した本第2実施形態では、上記第1実施形態と同様に質
問器Qが応答器Rに電力供給するために上記従来技術に
て述べたと同様にチャージ期間における時分割作動を行
うと、駆動回路5には抵抗52が上述のごとく接続され
ているから、FET5a又は5bのオン作動に伴いアン
テナコイル1及びコンデンサ2に流れる電流量は、上記
直流電圧Vcから抵抗52の電圧降下分を除いた電圧に
より特定される。
Here, the resistance value of the resistor 52 is selected so that the transponder R can properly detect a change in the magnetic field generated by the antenna coil 1 within the target communication distance. Other configurations are the same as those in the first embodiment. In the second embodiment configured as described above, the interrogator Q performs the time-sharing operation in the charging period in the same manner as described in the related art in order to supply the power to the transponder R in the same manner as in the first embodiment. Since the resistor 52 is connected to the drive circuit 5 as described above, the amount of current flowing through the antenna coil 1 and the capacitor 2 when the FET 5a or 5b is turned on is reduced by the voltage drop of the resistor 52 from the DC voltage Vc. Is specified by the voltage excluding.

【0042】このため、アンテナコイル1の端子電圧に
生ずる電圧は、図6にて符号C’にて示すごとく、図8
の場合よりも低くなる。しかし、抵抗52の抵抗値は、
上述のごとく、応答器Rがアンテナコイル1の発生磁界
の変化を良好に検出できる程度に選定されているため、
応答器Rのアンテナコイル61の受信磁界強度が目標通
信距離以内で不足することがない。
For this reason, the voltage generated at the terminal voltage of the antenna coil 1 is, as shown by reference numeral C ′ in FIG.
Lower than in the case of However, the resistance value of the resistor 52 is
As described above, since the transponder R is selected so that the change in the magnetic field generated by the antenna coil 1 can be detected satisfactorily,
The received magnetic field strength of the antenna coil 61 of the transponder R does not become insufficient within the target communication distance.

【0043】また、質問信号送信期間でも、アンテナコ
イル1の端子電圧に生ずる電圧は、図8にて符号C1”
にて示すごとく、チャージ期間と同様に小さくなるが、
このときも、同様にアンテナコイル61の受信磁界強度
が良好に維持される(図8にて符号D1”参照)。続く
応答信号受信期間では、FET5aのオンにより、アン
テナコイル1とコンデンサ2が、その共通端子1aに
て、接地されて並列共振する。
Also, during the interrogation signal transmission period, the voltage generated at the terminal voltage of the antenna coil 1 is the same as the voltage C1 ″ in FIG.
As shown by, it becomes smaller like the charge period,
Also at this time, similarly, the reception magnetic field strength of the antenna coil 61 is favorably maintained (see D1 ″ in FIG. 8). In the subsequent response signal reception period, the FET 5a is turned on, so that the antenna coil 1 and the capacitor 2 are connected. The common terminal 1a is grounded and resonates in parallel.

【0044】このとき、上述のごとく、抵抗52が直流
電源の正側端子とFET5bのソース端子との間に接続
されているから、FET5bのオフのもと、共通端子1
aの接地は、抵抗52を介することなくなされる。この
ため、アンテナコイル1とコンデンサ2の並列共振が抵
抗52に影響されることなく正常に維持される。その結
果、質問器Qのアンテナコイル1における受信性能を良
好に維持できる。また、当該車両のイグニッションキー
20に他車のイグニッションキーをキーホルダーにより
付帯してある場合でも、イグニッションキー20をイグ
ニッションキーシリンダ10に差し込んだ状態において
は、付帯したイグニッションキーの応答器とアンテナコ
イル1との距離が上記目標通信距離内にない。このた
め、付帯したイグニッションキーの応答器との間で質問
器Qとの混信が生ずることもない。
At this time, as described above, the resistor 52 is connected between the positive terminal of the DC power supply and the source terminal of the FET 5b.
The grounding of “a” is performed without passing through the resistor 52. Therefore, the parallel resonance of the antenna coil 1 and the capacitor 2 is normally maintained without being affected by the resistor 52. As a result, the reception performance of the interrogator Q at the antenna coil 1 can be maintained satisfactorily. Further, even when the ignition key of the other vehicle is attached to the ignition key 20 of the other vehicle by a key holder, when the ignition key 20 is inserted into the ignition key cylinder 10, the transponder of the attached ignition key and the antenna coil 1 are attached. Is not within the target communication distance. Therefore, there is no occurrence of interference with the interrogator Q between the attached ignition key and the transponder.

【0045】なお、本発明の実施にあたり、駆動回路や
スイッチング回路では、FETに代えて、例えば、バイ
ポーラトランジスタやアナログスイッチを採用して実施
してもよい。本発明の実施にあたり、上記第1実施形態
にて述べた質問器Qにおいて、上記第2実施形態にて述
べた抵抗52を、直流電源の正側端子とFET5bのソ
ース端子との間に接続して実施にてもよい。
In implementing the present invention, the drive circuit and the switching circuit may be implemented by using, for example, a bipolar transistor or an analog switch instead of the FET. In implementing the present invention, in the interrogator Q described in the first embodiment, the resistor 52 described in the second embodiment is connected between the positive terminal of the DC power supply and the source terminal of the FET 5b. May be implemented.

【0046】これにより、上記第1及び第2の実施形態
の両作用効果を合わせて達成することが可能となる。ま
た、本発明の実施にあたり、車両用盗難防止装置に限る
ことなく、固定局と移動局を有する無線による移動局識
別装置等にも本発明を適用して実施してもよい。
Thus, it is possible to achieve both the effects of the first and second embodiments. In practicing the present invention, the present invention is not limited to a vehicle anti-theft device, but may be applied to a wireless mobile station identification device having a fixed station and a mobile station.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す概略全体構成図であ
る。
FIG. 1 is a schematic overall configuration diagram showing an embodiment of the present invention.

【図2】図1の質問器Qの回路構成図である。FIG. 2 is a circuit configuration diagram of an interrogator Q of FIG. 1;

【図3】図1の応答器Rの回路構成図である。FIG. 3 is a circuit configuration diagram of a transponder R of FIG. 1;

【図4】質問器Q及び応答器Rのチャージ期間、質問信
号送信期間及び応答信号受信期間における主要構成素子
の出力動作波形図である。
FIG. 4 is an output operation waveform diagram of main components in a charging period, an interrogation signal transmission period, and a response signal reception period of the interrogator Q and the transponder R.

【図5】本発明の第2実施形態を示す要部回路図であ
る。
FIG. 5 is a main part circuit diagram showing a second embodiment of the present invention.

【図6】上記第2実施形態における質問器Q及び応答器
Rのチャージ期間、質問信号送信期間及び応答信号受信
期間における主要構成素子の出力動作波形図である。
FIG. 6 is an output operation waveform diagram of main constituent elements in a charging period, an interrogation signal transmission period, and a response signal reception period of the interrogator Q and the transponder R in the second embodiment.

【図7】従来の質問器の回路構成図である。FIG. 7 is a circuit configuration diagram of a conventional interrogator.

【図8】図7の質問器及びその応答器のチャージ期間、
質問信号送信期間及び応答信号受信期間における主要構
成素子の出力動作波形図である。
8 is a charge period of the interrogator and its transponder of FIG. 7,
FIG. 8 is an output operation waveform diagram of a main component element during an interrogation signal transmission period and a response signal reception period.

【符号の説明】[Explanation of symbols]

Q…質問器、R…応答器、1…質問用アンテナコイル、
2…共振用コンデンサ、3…制御回路、4…送信回路、
5…駆動回路、50a…質問器本体、51…スイッチン
グ回路、51a…FET、51b…ダイオード、52…
抵抗。
Q: Interrogator, R: Answerer, 1 ... Antenna coil for interrogation,
2 ... resonance capacitor, 3 ... control circuit, 4 ... transmission circuit,
5 ... Drive circuit, 50a ... Interrogator main body, 51 ... Switching circuit, 51a ... FET, 51b ... Diode, 52 ...
resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 耕一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Koichi Mizuno 1-1-1, Showa-cho, Kariya-shi, Aichi Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質問用アンテナコイル(1)と共振用コ
ンデンサ(2)とからなる共振回路と、 質問信号の内容に応じて並列共振及び直列共振を交互に
繰り返す交互共振をするように前記共振回路を制御した
後この共振回路を並列共振に維持するように制御する制
御手段(3、4、5)とを備え、 前記共振回路の交互共振に基づき前記質問用アンテナコ
イルら生ずる質問用磁界を媒体として前記質問信号を送
信する質問器(Q)と、 前記送信質問信号を受信することにより応答信号を応答
用磁界を媒体として返信する応答器(R)とを設けて、 前記質問器が、前記共振回路の並列共振の維持に基づき
前記質問用アンテナコイルにより前記応答信号を受信す
るようにした電磁誘導式自動認識装置において、 前記質問信号の内容に応じ前記制御手段により制御され
て前記共振回路の交互共振中における直列共振から並列
共振への移行時毎に当該共振回路の残留共振エネルギー
を急峻に放出し、この放出を、次の直列共振への移行以
前毎に停止する放出手段(51)を具備する電磁誘導式
自動認識装置。
1. A resonance circuit comprising an interrogation antenna coil (1) and a resonance capacitor (2), and said resonance circuit performing alternate resonance that alternately repeats parallel resonance and series resonance according to the content of an interrogation signal. Control means (3, 4, 5) for controlling the resonance circuit so as to maintain parallel resonance after controlling the circuit, wherein the interrogation magnetic field generated from the interrogation antenna coil based on the alternate resonance of the resonance circuit is provided. An interrogator (Q) that transmits the interrogation signal as a medium, and a transponder (R) that receives the transmission interrogation signal and returns a response signal using a response magnetic field as a medium, wherein the interrogator comprises: In the electromagnetic induction type automatic recognition device configured to receive the response signal by the interrogation antenna coil based on maintaining parallel resonance of the resonance circuit, the control may be performed according to the content of the interrogation signal. Controlled by the stage, each time the resonance circuit shifts from series resonance to parallel resonance during the alternate resonance, the residual resonance energy of the resonance circuit is rapidly released, and this release is performed every time before the transition to the next series resonance. An electromagnetic induction type automatic recognition device comprising a discharge means (51) that stops at a predetermined time.
【請求項2】 質問用アンテナコイル(1)と共振用コ
ンデンサ(2)とからなる共振回路と、 質問信号の内容に応じて並列共振及び直列共振を交互に
繰り返す交互共振をするように前記共振回路を制御した
後この共振回路を並列共振に維持するように制御する制
御手段(3、4、5)とを備え、 前記共振回路の交互共振に基づき前記質問用アンテナコ
イルら生ずる質問用磁界を媒体として前記質問信号を送
信する質問器(Q)と、 前記送信質問信号を受信することにより応答信号を応答
用磁界を媒体として返信する応答器(R)とを設けて、 前記質問器が、前記共振回路の並列共振の維持に基づき
前記質問用アンテナコイルにより前記応答信号を受信す
るようにした電磁誘導式自動認識装置において、 前記制御手段が、前記共振回路の交互共振時にはこの共
振回路に直列に接続され、当該共振回路の並列共振の維
持時にはこの共振回路から遮断されるインピーダンス素
子(52)を備えることを特徴とする電磁誘導式自動認
識装置。
2. A resonance circuit comprising an interrogation antenna coil (1) and a resonance capacitor (2), and said resonance circuit performing alternate resonance in which parallel resonance and series resonance are alternately repeated according to the content of an interrogation signal. Control means (3, 4, 5) for controlling the resonance circuit so as to maintain parallel resonance after controlling the circuit, wherein the interrogation magnetic field generated from the interrogation antenna coil based on the alternate resonance of the resonance circuit is provided. An interrogator (Q) that transmits the interrogation signal as a medium, and a transponder (R) that receives the transmission interrogation signal and returns a response signal using a response magnetic field as a medium, wherein the interrogator comprises: In the electromagnetic induction type automatic recognition device configured to receive the response signal by the interrogating antenna coil based on maintenance of parallel resonance of the resonance circuit, the control unit may switch the resonance circuit. The time of resonance is connected to the resonant circuit in series, an electromagnetic induction type automatic recognition device during maintenance of the parallel resonance of the resonant circuit, characterized in that it comprises an impedance element to be cut off from the resonant circuit (52).
【請求項3】 前記質問信号の内容に応じ前記制御手段
により制御されて前記共振回路の交互共振中における直
列共振から並列共振への移行時毎に当該共振回路の残留
共振エネルギーを急峻に放出し、この放出を、次の直列
共振への移行以前毎に停止する放出手段(51)を備え
る請求項2に記載の電磁誘導式自動認識装置。
3. The residual resonance energy of the resonance circuit is sharply released every time the resonance circuit shifts from series resonance to parallel resonance during alternate resonance of the resonance circuit under the control of the control means in accordance with the content of the interrogation signal. The electromagnetic induction type automatic recognition device according to claim 2, further comprising emission means (51) for stopping the emission before the transition to the next series resonance.
【請求項4】 前記放出手段が、 前記質問信号の内容に応じ前記制御手段により制御され
て前記共振回路の交互共振中における直列共振から並列
共振への移行時毎に導通するスイッチング素子(51
a)と、 このスイッチング素子の導通毎に順方向にバイアスされ
て当該共振回路の残留共振エネルギーを前記スイッチン
グ素子を通して急峻に放出するダイオード(51b)と
を備え、 前記交互共振における並列共振から直列共振への各移行
以前に前記残留エネルギーに対応する共振電圧が前記ダ
イオードの順方向電圧より低下することで当該ダイオー
ドが前記残留エネルギーの放出を停止するようにしたこ
とを特徴とする請求項1又は3に記載のに記載の電磁誘
導式自動認識装置。
4. A switching element (51) controlled by said control means in accordance with the contents of said interrogation signal, said emission means being turned on each time said resonance circuit shifts from series resonance to parallel resonance.
a) and a diode (51b) that is biased in a forward direction each time the switching element is turned on and rapidly discharges the residual resonance energy of the resonance circuit through the switching element. 4. The diode stops emission of the residual energy when the resonance voltage corresponding to the residual energy becomes lower than the forward voltage of the diode before each transition to (b). 5. The electromagnetic induction type automatic recognition device according to any one of the above.
【請求項5】 前記制御手段が、前記質問信号の内容に
応じて前記交互共振をするように前記共振回路を駆動す
る駆動回路(5)を備えており、 前記インピーダンス素子が、前記交互共振時には前記駆
動回路を通し前記共振回路に直列接続されこの共振回路
からその並列共振の維持時に前記駆動回路により遮断さ
れる抵抗であることを特徴とする請求項2又は3に記載
の電磁誘導式自動認識装置。
5. The control means includes a drive circuit (5) for driving the resonance circuit so as to perform the alternate resonance in accordance with the content of the interrogation signal. 4. The electromagnetic induction type automatic recognition according to claim 2, wherein the resistor is connected in series to the resonance circuit through the drive circuit, and is disconnected from the resonance circuit by the drive circuit when the parallel resonance is maintained. 5. apparatus.
JP2414997A 1997-02-06 1997-02-06 Electromagnetic induction type automatic recognition device Expired - Fee Related JP3564917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2414997A JP3564917B2 (en) 1997-02-06 1997-02-06 Electromagnetic induction type automatic recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2414997A JP3564917B2 (en) 1997-02-06 1997-02-06 Electromagnetic induction type automatic recognition device

Publications (2)

Publication Number Publication Date
JPH10224276A true JPH10224276A (en) 1998-08-21
JP3564917B2 JP3564917B2 (en) 2004-09-15

Family

ID=12130288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2414997A Expired - Fee Related JP3564917B2 (en) 1997-02-06 1997-02-06 Electromagnetic induction type automatic recognition device

Country Status (1)

Country Link
JP (1) JP3564917B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538036A1 (en) * 2003-12-04 2005-06-08 Alps Electric Co., Ltd. Passive keyless entry device
WO2006030493A1 (en) * 2004-09-14 2006-03-23 Mitsubishi Denki Kabushiki Kaisha Non-contact type communication system
EP1705082A2 (en) 2005-03-24 2006-09-27 Alps Electric Co., Ltd. Passive keyless entry device
JP2009135859A (en) * 2007-12-03 2009-06-18 Panasonic Corp Antenna device
KR100959237B1 (en) 2007-07-12 2010-05-19 오므론 가부시키가이샤 Transmission device and methode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538036A1 (en) * 2003-12-04 2005-06-08 Alps Electric Co., Ltd. Passive keyless entry device
WO2006030493A1 (en) * 2004-09-14 2006-03-23 Mitsubishi Denki Kabushiki Kaisha Non-contact type communication system
EP1705082A2 (en) 2005-03-24 2006-09-27 Alps Electric Co., Ltd. Passive keyless entry device
EP1705082A3 (en) * 2005-03-24 2008-12-03 Alps Electric Co., Ltd. Passive keyless entry device
KR100959237B1 (en) 2007-07-12 2010-05-19 오므론 가부시키가이샤 Transmission device and methode
JP2009135859A (en) * 2007-12-03 2009-06-18 Panasonic Corp Antenna device

Also Published As

Publication number Publication date
JP3564917B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US6570490B1 (en) Contactless IC card
US6167236A (en) Damping modulation circuit for a full-duplex transponder
US9802572B2 (en) Driver circuit for an inductor coil, method for operating an inductor coil and active transmission system with a driver circuit
US6147659A (en) Tire with transponder and transponder for tire
CA2676911C (en) Inductive power and data transmission system based on class d and amplitude shift keying
US10129009B2 (en) Electronic device, method and system for half duplex data transmission
US5025492A (en) Damping circuit for the antenna resonance circuit of a radio transmitter-receiver
KR20020063898A (en) Remote energy transmission system with elevated output voltage
US20170331179A1 (en) Driver circuit for an inductor and active transmitter device having a driver circuit
JP3564917B2 (en) Electromagnetic induction type automatic recognition device
US20060215028A1 (en) Passive keyless entry device
GB2309605A (en) Adjusting power delivered to an aerial to ensure that it is sufficient to operate a remote device
JP2002252521A (en) Loop antenna device
JP2003513372A (en) Data carrier with load modulation means and power supply improved in load modulation process
WO2001063769A2 (en) A data coding system
US20070109819A1 (en) Modulated tuned L/C transmitter circuits
US20160275736A1 (en) Receiving Circuit For A Vehicle Remote
DE19748329A1 (en) Device for identifying key inserted into motor vehicle injection lock
US7961015B2 (en) Transceiver and method for operating the transceiver
EP0523271B1 (en) Circuit arrangement for antenna coupling
EP1393245B1 (en) Communication between a transponder and an interrogator
JP4019469B2 (en) Electromagnetic induction type automatic recognition device
US6947714B2 (en) Piezo-powered amusement device identification system
EP0392327B1 (en) Damping circuit for the antenna resonance circuit of a radio transmitter-receiver
US7064312B2 (en) Device for generating electromagnetic waves, method for operating a device of this type and method for modulating the electromagnetic waves to be generated using a device of this type in accordance with data to be transmitted

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees