JPH1022353A - Method for inspecting epitaxial semiconductor - Google Patents

Method for inspecting epitaxial semiconductor

Info

Publication number
JPH1022353A
JPH1022353A JP17364696A JP17364696A JPH1022353A JP H1022353 A JPH1022353 A JP H1022353A JP 17364696 A JP17364696 A JP 17364696A JP 17364696 A JP17364696 A JP 17364696A JP H1022353 A JPH1022353 A JP H1022353A
Authority
JP
Japan
Prior art keywords
semiconductor
type
epitaxial semiconductor
crystallinity
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17364696A
Other languages
Japanese (ja)
Inventor
Yuichi Sasajima
裕一 笹島
Masahiko Hata
雅彦 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP17364696A priority Critical patent/JPH1022353A/en
Publication of JPH1022353A publication Critical patent/JPH1022353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily inspecting and judging crystallization of an epitaxial semiconductor expressed by an N type Alx Ga1-x As (0<=x<=0.35) in which Si is doped at a high concentration of 2.5×10<18> cm<-3> or more. SOLUTION: In the method, inspection is carried out over crystallization of an epitaxial semiconductor expressed by an N type Alx Ga1-x As (0<=x<=0.35) in which Si is doped at a high concentration of 2.5×10<18> cm<-3> or more. In this case, a ratio (I'/I0 ) of a peak intensity I' indicative of maximum of intensities present in a range of above 0.3eV and below 1.0eV on a lower energy side of the spectrum from the band end peak position to a band end peak intensity I0 in a photoluminescence spectrum of the eptitaxial semiconductor measured at a temperature of liquid nurogen (77K) is used as an index.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高電子移動度トラ
ンジスタ等の各種電子デバイスおよび光デバイスの製造
に用いられる高濃度にSiをドーピングしたn型Alx
Ga1-x As(0≦x≦0.35)エピタキシャル半導
体の検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an n-type Al x doped with Si at a high concentration used for manufacturing various electronic devices such as high electron mobility transistors and optical devices.
The present invention relates to a method for inspecting a Ga 1-x As (0 ≦ x ≦ 0.35) epitaxial semiconductor.

【0002】[0002]

【従来の技術】高移動度ヘテロ接合トランジスタに用い
られるエピタキシャル半導体においては、一般にキャリ
ア濃度が高いほどコンダクタンスが向上し、結晶性が高
いほど高性能化が可能である。そのため、できるかぎり
高いキャリア濃度を有し、結晶性が高い半導体が必要と
されてきた。ここで、ある半導体層の結晶性が高いと
は、該半導体層中の固有欠陥が少なく、かつ該半導体層
に熱を加えたとき、該半導体層に近接する半導体層への
熱の影響が小さいことをいう。さらに、該半導体層に熱
を加えたとき、該半導体層に近接する半導体層への熱の
影響が小さいことを該半導体層の熱的安定性が高いとい
う。
2. Description of the Related Art In an epitaxial semiconductor used for a high-mobility heterojunction transistor, the conductance generally increases as the carrier concentration increases, and the performance increases as the crystallinity increases. Therefore, a semiconductor having a carrier concentration as high as possible and high crystallinity has been required. Here, high crystallinity of a certain semiconductor layer means that there are few intrinsic defects in the semiconductor layer, and when heat is applied to the semiconductor layer, the influence of heat on the semiconductor layer close to the semiconductor layer is small. That means. Further, when heat is applied to the semiconductor layer, a small influence of the heat on the semiconductor layer adjacent to the semiconductor layer is referred to as a high thermal stability of the semiconductor layer.

【0003】半導体層中の固有欠陥の濃度は、該半導体
層への不純物のドーピング濃度からキャリア濃度を差し
引いた濃度に相当する。しかしながら、従来代表的に用
いられてきた材料であるn型Alx Ga1-x As(0≦
x≦0.35)エピタキシャル半導体においては、Si
をドーピングした場合、2.5×1018cm-3以上の領
域では成長条件によっては比例関係がくずれ、不純物添
加量を増していくと、あるところからキャリア濃度がそ
れに応じて増えずに飽和する傾向がある。なお、xが
0.2以上では、一般にドナーは、通常の浅いドナー準
位とDXセンターと呼ばれる深い準位の2種を形成する
ことが知られているが、ここではその両準位の濃度和を
キャリア濃度をいう。
The concentration of intrinsic defects in a semiconductor layer corresponds to the concentration obtained by subtracting the carrier concentration from the impurity doping concentration in the semiconductor layer. However, n-type Al x Ga 1 -x As (0 ≦
x ≦ 0.35) In the epitaxial semiconductor, Si
When doping is performed, in the region of 2.5 × 10 18 cm −3 or more, the proportional relationship is broken depending on the growth conditions, and when the amount of impurity added is increased, the carrier concentration is saturated without increasing from a certain point. Tend. It is known that, when x is 0.2 or more, the donor generally forms two kinds, a normal shallow donor level and a deep level called a DX center. The sum refers to the carrier concentration.

【0004】このように、高濃度にSiをドーピングし
た場合、該半導体のキャリア濃度の正確な測定が困難で
あったので、固有欠陥の濃度も正確に求めることができ
なかった。そこで、ある製造条件で作製した半導体をデ
バイスに組み上げてから、該デバイスの評価を行ない、
試行錯誤で適切な半導体製造条件を見い出すのが実情で
あった。
As described above, when Si is doped at a high concentration, it is difficult to accurately measure the carrier concentration of the semiconductor, so that the concentration of intrinsic defects cannot be obtained accurately. Therefore, after assembling a semiconductor manufactured under certain manufacturing conditions into a device, the device is evaluated,
The reality was to find appropriate semiconductor manufacturing conditions by trial and error.

【0005】また、高濃度にSiをドーピングしたAl
x Ga1-x As(0≦x≦0.35)半導体では、同時
に大量のGa空孔に関連する固有欠陥が発生し、その欠
陥を媒介として3族元素の相互拡散係数が異常に増大す
るという事実が知られている(中島尚男、応用物理、第
54巻第11号、1167(1985))。例えば、高
濃度にSiをドープしたAlAs/GaAs超格子にお
いて、Si濃度が1×1019cm-3を超えると、熱アニ
ーリングによりAlとGaの相互拡散が生じ、容易に超
格子の破壊が生じることが知られている(L.Pave
si et al.、J.Appl.Phys.71、
2225(1992))。このような半導体層の熱的安
定性は、従来、二次イオン質量分析法(SIMS)やト
ンネル効果電子顕微鏡(TEM)により評価されていた
が、いずれも大変手間がかかる方法であり、測定に数日
以上かかることがあった。
Further, Al doped with Si at a high concentration
In x Ga 1-x As (0 ≦ x ≦ 0.35) semiconductors, a large number of intrinsic vacancies related to Ga vacancies are generated at the same time, and the interdiffusion coefficient of the group III element increases abnormally through the defects. (Nao Nakajima, Applied Physics, Vol. 54, No. 11, 1167 (1985)). For example, in an AlAs / GaAs superlattice doped with Si at a high concentration, if the Si concentration exceeds 1 × 10 19 cm −3 , interdiffusion of Al and Ga occurs due to thermal annealing, and the superlattice is easily broken. (L. Pave
si et al. J. Appl. Phys. 71,
2225 (1992)). Conventionally, the thermal stability of such a semiconductor layer has been evaluated by secondary ion mass spectrometry (SIMS) or tunnel effect electron microscope (TEM). It could take more than a few days.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、2.
5×1018cm-3以上の高濃度にSiをドーピングして
なるn型Alx Ga1-x As(0≦x≦0.35)で表
されるエピタキシャル半導体の結晶性を容易に判定する
ことができる検査方法を提供することにある。
The object of the present invention is to provide:
The crystallinity of an epitaxial semiconductor represented by n-type Al x Ga 1-x As (0 ≦ x ≦ 0.35) obtained by doping Si at a high concentration of 5 × 10 18 cm −3 or more can be easily determined. It is an object of the present invention to provide an inspection method which can perform the inspection.

【0007】[0007]

【課題を解決するための手段】本発明者らは、これらの
問題をみて、高濃度にSiをドーピングしたAlx Ga
1-x As(0≦x≦0. 35)エピタキシャル半導体を
鋭意検討した結果、2.5×1018cm-3以上のキャリ
ア濃度を有するn型Alx Ga1-x As(0≦x≦0.
35)半導体の77KにおけるPLスペクトルのI0
対するI’の比が不純物添加量の増大と共に増加し、キ
ャリア濃度飽和領域ではその比が急激に増大することを
見いだし、本発明に至った。
In view of these problems, the present inventors considered that Al x Ga doped with Si at a high concentration.
As a result of intensive studies on 1-x As (0 ≦ x ≦ 0.35) epitaxial semiconductors, n-type Al x Ga 1-x As (0 ≦ x ≦ 3) having a carrier concentration of 2.5 × 10 18 cm −3 or more 0.
35) It has been found that the ratio of I ′ to I 0 in the PL spectrum at 77 K of the semiconductor increases with an increase in the amount of impurity added, and that the ratio sharply increases in the carrier concentration saturation region, leading to the present invention.

【0008】すなわち、本発明は、〔1〕2.5×10
18cm-3以上にSiをドーピングしてなるn型Alx
1-x As(式中、0≦x≦0.35)で表されるエピ
タキシャル半導体の結晶性の検査方法において、液体窒
素温度(77K)で測定された該エピタキシャル半導体
のフォトルミネッセンススペクトルにおけるバンド端ピ
ーク強度(以下、I0 と記す。)に対する、該バンド端
ピーク位置より低エネルギー側に0.3eV以上1.0
eV以下の範囲に存在するピークのうち最大のピークを
示すピーク強度(以下、I’と記す。)の比(I’/I
0 )を指標とするエピタキシャル半導体の結晶性の検査
方法に係るものである。
That is, the present invention relates to [1] 2.5 × 10
N-type Al x G doped with 18 cm -3 or more of Si
a 1-x As (where 0 ≦ x ≦ 0.35) where a band in a photoluminescence spectrum of an epitaxial semiconductor measured at a liquid nitrogen temperature (77 K) is determined by a method of testing the crystallinity of the epitaxial semiconductor. 0.3 eV or more and 1.0 to the lower energy side from the band edge peak position with respect to the edge peak intensity (hereinafter referred to as I 0 ).
The ratio (I '/ I) of the peak intensity (hereinafter, referred to as I') indicating the largest peak among the peaks existing in the range of eV or less.
The present invention relates to a method for inspecting the crystallinity of an epitaxial semiconductor using 0 ) as an index.

【0009】さらに、本発明は、〔2〕I’/I0 の値
が5以下であるとき、該半導体の結晶性を良と判定し、
該比が5を超えるとき、該半導体の結晶性を不良と判定
する〔1〕記載のエピタキシャル半導体の結晶性の検査
方法に係るものである。また、本発明は、〔3〕n型A
x Ga1-x As(0≦x≦0.35)で表されるエピ
タキシャル半導体が、GaAs単結晶基板上に作製され
てなる〔1〕または〔2〕記載のエピタキシャル半導体
の結晶性の検査方法に係るものである。ここで、フォト
ルミネッセンススペクトル(以下、PLスペクトルと記
すことがある。)の測定には、対象とする半導体層のバ
ンドギャップエネルギー以上のエネルギーを有する励起
光を用いなければならない。
Further, according to the present invention, when the value of [2] I ′ / I 0 is 5 or less, the crystallinity of the semiconductor is judged to be good,
If the ratio exceeds 5, the crystallinity of the semiconductor is determined to be defective. Further, the present invention relates to [3] n-type A
Inspection of the crystallinity of the epitaxial semiconductor according to [1] or [2], wherein the epitaxial semiconductor represented by l x Ga 1-x As (0 ≦ x ≦ 0.35) is manufactured on a GaAs single crystal substrate. Pertains to the method. Here, for measurement of a photoluminescence spectrum (hereinafter, sometimes referred to as a PL spectrum), excitation light having energy equal to or higher than the band gap energy of a target semiconductor layer must be used.

【0010】[0010]

【発明の実施の形態】次に、本発明を詳細に説明する。
本発明のエピタキシャル半導体の検査方法は、2.5×
1018cm-3以上にSiをドーピングしてなるn型Al
x Ga1-x As(式中、0≦x≦0.35)で表される
エピタキシャル半導体の結晶性の検査方法において、液
体窒素温度(77K)で該エピタキシャル半導体のフォ
トルミネッセンススペクトルを測定し、バンド端ピーク
強度(以下、I0 と記すことがある。)に対する、該バ
ンド端ピーク位置より低エネルギー側に0.3eV以上
1.0eV以下の範囲に存在するピークのうち最大のピ
ークを示すピーク強度(以下、I’と記すことがあ
る。)の比(I’/I0 )を求めて、この値を指標とす
ることを特徴とする。ここで、バンド端ピーク強度と
は、該半導体層から放射されるフォトルミネッセンスス
ペクトルにおいて、該半導体層のバンドギャップエネル
ギーに実質的に相当するエネルギーに対応したフォトル
ミネッセンスのピークの強度のことをいう。また、バン
ド端ピーク位置とは、該半導体層のバンドギャップエネ
ルギーに相当する発光の波長の位置のことをいう。
Next, the present invention will be described in detail.
The method for inspecting an epitaxial semiconductor according to the present invention is 2.5 ×
N-type Al doped with Si to 10 18 cm -3 or more
In a method for testing the crystallinity of an epitaxial semiconductor represented by x Ga 1-x As (where 0 ≦ x ≦ 0.35), a photoluminescence spectrum of the epitaxial semiconductor is measured at a liquid nitrogen temperature (77 K), A peak showing the largest peak among peaks present in a range of 0.3 eV to 1.0 eV on the lower energy side from the band edge peak position with respect to the band edge peak intensity (hereinafter sometimes referred to as I 0 ). It is characterized in that a ratio (I ′ / I 0 ) of intensity (hereinafter, sometimes referred to as I ′) is obtained, and this value is used as an index. Here, the band edge peak intensity refers to the intensity of the photoluminescence peak corresponding to the energy substantially corresponding to the band gap energy of the semiconductor layer in the photoluminescence spectrum emitted from the semiconductor layer. The band edge peak position refers to a position of a light emission wavelength corresponding to the band gap energy of the semiconductor layer.

【0011】高キャリア濃度、低欠陥密度を有し、かつ
熱的安定性に優れた高速電子デバイスおよび光デバイス
の製造に用い得るエピタキシャル半導体を得るには、前
記の比I’/I0 の値が5以下であることが好ましく、
デバイスの動作条件によってはさらに厳しい環境に結晶
がさらされることから、前記の比I’/I0 が3以下で
あることがさらに好ましい。
In order to obtain an epitaxial semiconductor having a high carrier concentration, a low defect density and excellent thermal stability, which can be used for manufacturing a high-speed electronic device and an optical device, the value of the ratio I '/ I 0 is required. Is preferably 5 or less,
Since the crystal is exposed to a more severe environment depending on the operating conditions of the device, the ratio I ′ / I 0 is more preferably 3 or less.

【0012】また、エピタキシャル半導体は、格子整合
する基板上に成膜することによって、転位等の欠陥密度
の低減および格子緩和の抑制が可能となるため、n型A
xGa1-x As(0≦x≦0. 35)エピタキシャル
半導体は、GaAs単結晶基板上に作製されることが好
ましい。
In addition, since an epitaxial semiconductor is formed on a lattice-matched substrate, it is possible to reduce the density of defects such as dislocations and to suppress lattice relaxation.
The l x Ga 1-x As (0 ≦ x ≦ 0.35) epitaxial semiconductor is preferably formed on a GaAs single crystal substrate.

【0013】本発明のエピタキシャル半導体の検査方法
を、量子井戸構造を有する半導体に適用すると、量子井
戸構造の熱的安定性などを容易に検討することができ
る。例えば、詳細は実施例1に示すように、約3×10
18cm-3のキャリア濃度を有するn型Alx Ga1-x
s(0≦x≦0. 35)とIny Ga1-y As(0. 1
≦y≦0. 35)とを積層した歪み量子井戸構造におい
て、該n型Alx Ga1- x As(0≦x≦0. 35)に
おける77KでのPLスペクトルにおけるI0 に対する
I’の比が大きい結晶では、熱アニーリングによって容
易に該量子井戸構造が変質することがわかる。すなわ
ち、キャリア濃度が同一であっても結晶成長条件や不純
物添加量の差異によりI0 に対するI’の比が大きな半
導体結晶では、量子井戸構造に変質が容易に生じること
がわかる。
When the method for testing an epitaxial semiconductor of the present invention is applied to a semiconductor having a quantum well structure, the thermal stability of the quantum well structure can be easily studied. For example, as shown in Example 1, details are about 3 × 10
N-type Al x Ga 1 -x A having a carrier concentration of 18 cm -3
s (0 ≦ x ≦ 0.35) and In y Ga 1-y As (0.1
In ≦ y ≦ 0. 35) and the strained quantum well structure obtained by stacking, the ratio of I 'for I 0 in PL spectra at 77K in said n-type Al x Ga 1- x As (0 ≦ x ≦ 0. 35) It can be seen that, in a crystal having a large value, the quantum well structure is easily deteriorated by thermal annealing. In other words, it can be seen that even if the carrier concentration is the same, in a semiconductor crystal having a large ratio of I ′ to I 0 due to a difference in crystal growth conditions and an impurity addition amount, the quantum well structure easily undergoes deterioration.

【0014】これらは、高濃度Siドーピングによって
n型Alx Ga1-x As(0≦x≦0.35)中に発生
した欠陥が、キャリア濃度の飽和原因であると同時に歪
み量子井戸付近における3族原子の拡散を加速している
ことを意味する。このように、本発明の検査方法を用い
ることにより、量子井戸安定性を容易に検討することが
できる。
[0014] These are because defects generated in n-type Al x Ga 1 -x As (0 ≦ x ≦ 0.35) due to high concentration Si doping are the causes of saturation of the carrier concentration and at the same time, in the vicinity of the strained quantum well. It means that the diffusion of group 3 atoms is accelerated. As described above, by using the inspection method of the present invention, the quantum well stability can be easily studied.

【0015】[0015]

【実施例】以下に本発明を実施例に基づきさらに詳細に
説明するが、本発明はこれに限定されるものではない。 実施例1 本発明に係わるn型Alx Ga1-x As(0≦x≦0.
35)を含むヘテロ接合エピタキシャル半導体の一例の
概略断面図を図1に示す。MOCVD法によって、図1
における半絶縁性GaAs基板3上に、5000Åの厚
さのn型Al0.2 Ga0.8 As層1(下層)、110Å
の厚さのIn0.2Ga0.8 As層2、1000Åの厚さ
のn型Al0.2 Ga0.8 As層1(上層)を順に成長し
た。なお、n型Al0.2 Ga0.8 As層1(下層)およ
びn型Al0.2 Ga0.8 As層1(上層)には、3×1
18cm-3のSiドーピングを行った。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Example 1 An n-type Al x Ga 1 -x As (0 ≦ x ≦ 0.
FIG. 1 shows a schematic cross-sectional view of an example of a heterojunction epitaxial semiconductor including 35). Fig. 1
5,000-nm thick n-type Al 0.2 Ga 0.8 As layer 1 (lower layer) on semi-insulating GaAs substrate 3 at 110 °
The thickness of the In 0.2 Ga 0.8 As layer 2,1000Å the thickness of the n-type Al 0.2 Ga 0.8 As layer 1 (upper layer) was grown in this order. The n-type Al 0.2 Ga 0.8 As layer 1 (lower layer) and the n-type Al 0.2 Ga 0.8 As layer 1 (upper layer) have 3 × 1
A Si doping of 0 18 cm -3 was performed.

【0016】該ヘテロ接合エピタキシャル半導体のn型
Al0.2 Ga0.8 As層1(下層)のキャリア濃度を光
ホール効果測定により求めた。光ホール効果測定用試料
は、得られたエピタキシャル基板を約8mm角に劈開
し、In0.2 Ga0.8 As層2、およびn型Al0.2
0.8 As層1(上層)を除去後、その表面にVan
der Pauw法(クローバーリーフ型)のパターン
を形成し作製した。この試料に77Kにて白色光照射
後、光ホール効果測定を行なった。白色光の照射時間を
増していくと電子濃度の増加が止まり飽和する点が現れ
る。この点は、白色光の照射により、該半導体中のすべ
てのDXセンターから電子を放出させたときに相当し、
このときの電子濃度がキャリア濃度である。すなわち、
該半導体中のキャリア濃度は、該電子濃度の飽和値に相
当する。この結果、ヘテロ接合エピタキシャル基板のn
型Al0.2 Ga0.8 As層1のキャリア濃度は、3×1
18cm-3であり、ドーピングによる設定値と一致し
た。
The carrier concentration of the n-type Al 0.2 Ga 0.8 As layer 1 (lower layer) of the heterojunction epitaxial semiconductor was determined by photo-Hall effect measurement. The sample for optical Hall effect measurement was obtained by cleaving the obtained epitaxial substrate into a square of about 8 mm, forming an In 0.2 Ga 0.8 As layer 2 and an n-type Al 0.2 G
a After removing 0.8 As layer 1 (upper layer),
A der Pauw method (clover leaf type) pattern was formed and fabricated. After irradiating the sample with white light at 77K, the light Hall effect was measured. As the irradiation time of the white light is increased, the electron concentration stops increasing, and a point appears to be saturated. This point corresponds to the case where electrons are emitted from all DX centers in the semiconductor by irradiation of white light,
The electron concentration at this time is the carrier concentration. That is,
The carrier concentration in the semiconductor corresponds to a saturation value of the electron concentration. As a result, n of the heterojunction epitaxial substrate
The carrier concentration of the type Al 0.2 Ga 0.8 As layer 1 is 3 × 1
0 18 cm -3 , which was consistent with the set value due to doping.

【0017】また、得られたエピタキシャル基板のIn
0.2 Ga0.8 As層2およびn型Al0.2 Ga0.8 As
層1(上層)を除去して、n型Al0.2 Ga0.8 As層
1(下層)のPLスペクトルを測定した。そのスペクト
ルを図2に示す。PLスペクトル測定は、77Kにてア
ルゴンイオンレーザー(波長514.5nm)励起のも
と波長650nm〜1100nmの範囲で行った。図2
に見られるバンド端ピーク(700nm付近のピーク)
の強度(I0 )に対する940nm付近のピークの強度
(I’)の比は、(I’/I0 )=1.05であった。
In addition, In of the obtained epitaxial substrate
0.2 Ga 0.8 As layer 2 and n-type Al 0.2 Ga 0.8 As
The layer 1 (upper layer) was removed, and the PL spectrum of the n-type Al 0.2 Ga 0.8 As layer 1 (lower layer) was measured. The spectrum is shown in FIG. The PL spectrum was measured at 77 K under the excitation of an argon ion laser (wavelength: 514.5 nm) in the wavelength range of 650 nm to 1100 nm. FIG.
Band edge peak (peak near 700 nm)
The ratio of the intensity (I ′) of the peak near 940 nm to the intensity (I 0 ) was (I ′ / I 0 ) = 1.05.

【0018】得られたn型Al0.2 Ga0.8 Asを含む
ヘテロ接合エピタキシャル半導体のIn0.2 Ga0.8
s歪み量子井戸のPLスペクトルを図3に示す。PLス
ペクトル測定は、77Kにてアルゴンイオンレーザー励
起のもと波長800nm〜1100nmの範囲で行っ
た。図3に示したIn0.2 Ga0.8 As歪み量子井戸の
PLスペクトルを見ると、ピーク強度が強く、かつ半値
幅が小さく、良好な歪み量子井戸が形成されていること
がわかる。
The obtained heterojunction epitaxial semiconductor containing n-type Al 0.2 Ga 0.8 As of In 0.2 Ga 0.8 A
FIG. 3 shows the PL spectrum of the s-strained quantum well. The PL spectrum was measured at 77 K in the wavelength range of 800 nm to 1100 nm under argon ion laser excitation. From the PL spectrum of the In 0.2 Ga 0.8 As strained quantum well shown in FIG. 3, it can be seen that the peak intensity is strong, the half width is small, and a good strained quantum well is formed.

【0019】これに対し、上記のn型Al0.2 Ga0.8
Asを含むヘテロ接合エピタキシャル半導体に水素雰囲
気下、600℃で100分熱アニーリングを行い、In
0.2Ga0.8 As歪み量子井戸のPLスペクトルを同様
に測定した。その結果を図4に示す。得られたPLスペ
クトルと図3に示した熱アニーリング前のPLスペクト
ルとの変化は認められない。このように熱アニーリング
前後で、ヘテロ接合エピタキシャル半導体のIn0. 2
0.8 As歪み量子井戸のPLスペクトルに変化は見ら
れないことから、In0.2 Ga0.8 As歪み量子井戸に
高キャリア濃度を有するn型Al0.2 Ga0. 8 Asの影
響はないということがわかる。
On the other hand, the n-type Al 0.2 Ga 0.8
The heterojunction epitaxial semiconductor containing As is thermally annealed at 600 ° C. for 100 minutes in a hydrogen atmosphere to obtain In.
The PL spectrum of the 0.2 Ga 0.8 As strained quantum well was similarly measured. FIG. 4 shows the results. No change is observed between the obtained PL spectrum and the PL spectrum before thermal annealing shown in FIG. Thus before and after thermal annealing, the heterojunction epitaxial semiconductor an In 0. 2 G
Since a 0.8 change in PL spectra of As strained quantum well is not observed, an In 0.2 Ga 0.8 As strain effect of n-type Al 0.2 Ga 0. 8 As having a high carrier concentration in the quantum well it can be seen that no.

【0020】上記のように、高濃度にSiをドーピング
したn型Al0.2 Ga0.8 Asの性質、およびそのIn
0.2 Ga0.8 As歪み量子井戸への影響は、(I’/I
0 )が5以下の場合に同様の結果が得られた。一方、
(I’/I0 )が5を越えると、以下の比較例1で示す
ような著しい結晶性の劣化が観測された。
As described above, the properties of n-type Al 0.2 Ga 0.8 As doped with Si at a high concentration and its In
The effect on the 0.2 Ga 0.8 As strained quantum well is (I ′ / I
Similar results were obtained when ( 0 ) was 5 or less. on the other hand,
When (I ′ / I 0 ) exceeds 5, remarkable deterioration in crystallinity as shown in Comparative Example 1 below was observed.

【0021】比較例1 実施例1におけるヘテロ接合エピタキシャル半導体と同
構造であり、かつn型Al0.2 Ga0.8 AsのSiのド
ーピング量を2倍(6×1018cm-3)にしたヘテロ接
合エピタキシャル半導体に実施例1と同様の評価を行っ
た。
COMPARATIVE EXAMPLE 1 A heterojunction epitaxial semiconductor having the same structure as the heterojunction epitaxial semiconductor in Example 1 and having a doping amount of Si of n-type Al 0.2 Ga 0.8 As doubled (6 × 10 18 cm −3 ). The same evaluation as in Example 1 was performed on the semiconductor.

【0022】このヘテロ接合エピタキシャル基板のn型
Al0.2 Ga0.8 As層1(下層)のキャリア濃度を光
ホール効果測定により求めた。光ホール効果測定用試料
には、実施例1と同様の手順で加工を施し、同様に該試
料の光ホール効果測定を行った。このヘテロ接合エピタ
キシャル基板のn型Al0.2 Ga0.8 Asのキャリア濃
度は、実施例1のn型Al0.2 Ga0.8 As層1(下
層)のキャリア濃度と同じ3×1018cm-3であり、ド
ーピングによる設定値の約半分であった。
The carrier concentration of the n-type Al 0.2 Ga 0.8 As layer 1 (lower layer) of the heterojunction epitaxial substrate was determined by measuring the optical Hall effect. The sample for measuring the optical Hall effect was processed in the same procedure as in Example 1, and the optical Hall effect of the sample was measured in the same manner. The carrier concentration of the n-type Al 0.2 Ga 0.8 As heterojunction epitaxial substrate are the same 3 × 10 18 cm -3 and the carrier concentration of the n-type Al 0.2 Ga 0.8 As layer 1 of Example 1 (lower layer), doped Was about half of the set value.

【0023】得られたn型Al0.2 Ga0.8 As層1
(下層)のPLスペクトルを図5に示す。該PLスペク
トル測定は、実施例1と同様にIn0.2 Ga0.8 As層
2までをエッチングによって除去して、同条件で行っ
た。図5に見られるバンド端ピーク(700nm付近の
ピーク)の強度と940nm付近のピークの強度の比は
20であった。
Obtained n-type Al 0.2 Ga 0.8 As layer 1
FIG. 5 shows the PL spectrum of (lower layer). The PL spectrum was measured under the same conditions as in Example 1, except that the In 0.2 Ga 0.8 As layer 2 was removed by etching. The ratio between the intensity of the band edge peak (peak near 700 nm) and the intensity of the peak near 940 nm shown in FIG. 5 was 20.

【0024】得られたn型Al0.2 Ga0.8 Asを含む
ヘテロ接合エピタキシャル半導体のIn0.2 Ga0.8
s歪み量子井戸のPLスペクトルを図6に示す。PLス
ペクトル測定は、実施例1と同条件で行った。図3のP
Lスペクトルと比較すると明らかなように、すでにPL
スペクトルにはSiドーピング量を増やしたn型Al
0.2 Ga0.8 Asの影響が現れ、In0. 2 Ga0.8 As
歪み量子井戸のピークの強度は、図3のピーク強度に比
べ約8分の1に、またピーク位置に短波長シフトと半値
幅の増大が観測された。
The obtained heterojunction epitaxial semiconductor containing n-type Al 0.2 Ga 0.8 As of In 0.2 Ga 0.8 A
FIG. 6 shows the PL spectrum of the s-strained quantum well. The PL spectrum was measured under the same conditions as in Example 1. P in FIG.
As is clear from the comparison with the L spectrum,
The spectrum shows n-type Al with increased Si doping
It appears the effect of 0.2 Ga 0.8 As, In 0. 2 Ga 0.8 As
The peak intensity of the strained quantum well was about one-eighth of the peak intensity in FIG. 3, and a short wavelength shift and an increase in the half width at the peak position were observed.

【0025】さらに、得られたn型Al0.2 Ga0.8
sを含むヘテロ接合エピタキシャル半導体に水素雰囲気
下、600℃で100分の熱アニーリングを行い、In
0.2Ga0.8 As歪み量子井戸のPLスペクトルを実施
例1と同様に測定した。その結果を図7に示す。アニー
リング後のIn0.2 Ga0.8 As歪み量子井戸のピーク
の強度は、アニーリング前のピークの強度の約1/3に
なった。なお、図7のPLスペクトルは、図6のIn
0.2 Ga0.8 As歪み量子井戸のピーク強度で規格化し
てある。図6と図7の比較から明らかなように熱アニー
リング前後で、比較例1のn型Al0.2 Ga0.8 Asを
含むヘテロ接合エピタキシャル半導体のIn0.2 Ga0.
8 As歪み量子井戸のPLスペクトルには顕著な変化が
見られた。In0.2 Ga0.8 As歪み量子井戸のフォト
ルミネッセンスピークは、熱アニーリング前よりさらに
大きく短波長側にシフトし、半値幅の増大、フォトルミ
ネッセンス強度の減少が見られ、3族構成元素のGa、
In、Alに相互拡散、およびIn0.2 Ga0.8 Asに
格子緩和が生じていることを示している。
Further, the obtained n-type Al 0.2 Ga 0.8 A
thermal annealing at 600 ° C. for 100 minutes in a hydrogen atmosphere to the heterojunction epitaxial semiconductor containing
The PL spectrum of the 0.2 Ga 0.8 As strained quantum well was measured in the same manner as in Example 1. FIG. 7 shows the result. The peak intensity of the In 0.2 Ga 0.8 As strained quantum well after annealing was about 約 of the intensity of the peak before annealing. Note that the PL spectrum of FIG.
It is normalized by the peak intensity of the 0.2 Ga 0.8 As strained quantum well. Figure 6 and in longitudinal thermal annealing As is apparent from a comparison of FIG. 7, In 0.2 Ga 0 heterojunction epitaxial semiconductor including n-type Al 0.2 Ga 0.8 As in Comparative Example 1.
A remarkable change was observed in the PL spectrum of the 8As strained quantum well. The photoluminescence peak of the In 0.2 Ga 0.8 As strained quantum well is further shifted to the shorter wavelength side than before the thermal annealing, an increase in the half width and a decrease in the photoluminescence intensity are observed.
In, shows that lattice relaxation occurs in the interdiffusion, and In 0.2 Ga 0.8 As to Al.

【0026】比較例1で示すように、本発明のエピタキ
シャル半導体の検査方法を用いることにより、不純物添
加量を増やしたn型Al0.2 Ga0.8 Asは、実施例1
のn型Al0.2 Ga0.8 Asと同じキャリア濃度を有し
ているが、それとヘテロ接合するIn0.2 Ga0.8 As
への影響は大きいことがわかる。比較例1におけるn型
Al0.2 Ga0.8 Asを用いることでは、量子井戸の形
状や界面の急峻性を保つことが難しいことが予測され、
高速電子デバイスや半導体レーザーや発光ダイオード、
フォトダイオードなど各種光デバイスに充分な特性を与
えることが困難であることがわかる。
As shown in Comparative Example 1, n-type Al 0.2 Ga 0.8 As with an increased amount of impurity added by using the method for inspecting an epitaxial semiconductor of the present invention was used in Example 1.
Has the same carrier concentration as n-type Al 0.2 Ga 0.8 As, but has an heterojunction with In 0.2 Ga 0.8 As.
It can be seen that the effect on the environment is large. It is predicted that it is difficult to maintain the shape of the quantum well and the steepness of the interface by using n-type Al 0.2 Ga 0.8 As in Comparative Example 1.
High-speed electronic devices, semiconductor lasers, light-emitting diodes,
It can be seen that it is difficult to give sufficient characteristics to various optical devices such as photodiodes.

【0027】これに対して、本発明のエピタキシャル半
導体の検査方法を用いることにより、実施例1から明ら
かなように、高濃度にSiをドーピングしたn型Alx
Ga 1-x As(0≦x≦0.35)エピタキシャル基板
において、欠陥密度が小さく、かつ他層への影響が小さ
いn型Alx Ga1-x As(0≦x≦0.35)を判別
することが可能であることがわかる。したがって、本発
明のエピタキシャル半導体の検査方法を用いることによ
り、性能及び信頼性に優れた高キャリア濃度を有するn
型Alx Ga1-x As(0≦x≦0.35)を含む高速
電子デバイスおよび半導体レーザーや発光ダイオード、
フォトダイオードなど各種光デバイス用エピタキシャル
基板を工業的に製造することが容易に可能になるもので
ある。
On the other hand, the epitaxial half of the present invention
By using the conductor inspection method, it becomes clear from the first embodiment.
As expected, n-type Al doped with high concentration of Six
Ga 1-xAs (0 ≦ x ≦ 0.35) epitaxial substrate
Low defect density and little effect on other layers
N-type AlxGa1-xJudge As (0 ≦ x ≦ 0.35)
It turns out that it is possible to do. Therefore,
By using Ming's epitaxial semiconductor inspection method
With high carrier concentration, excellent in performance and reliability
Type AlxGa1-xHigh speed including As (0 ≦ x ≦ 0.35)
Electronic devices and semiconductor lasers and light emitting diodes,
Epitaxial for various optical devices such as photodiodes
It makes it easy to manufacture substrates industrially.
is there.

【0028】[0028]

【発明の効果】本発明のエピタキシャル半導体の検査方
法を用いることにより、2.5×10 18cm-3以上の高
濃度にSiをドーピングしてなるn型Alx Ga1-x
s(0≦x≦0.35)で表されるエピタキシャル半導
体の結晶性を容易に判定することができる。該検査方法
は、高キャリア濃度、低欠陥密度を有し、かつ高速性能
と同時に熱的安定性および信頼性に優れた高電子移動度
ヘテロ接合トランジスタ等の各種電子デバイスおよび光
デバイスの製造に有用である。
The inspection method of the epitaxial semiconductor of the present invention
2.5 × 10 18cm-3More than high
N-type Al doped with SixGa1-xA
epitaxial semiconductor represented by s (0 ≦ x ≦ 0.35)
The crystallinity of the body can be easily determined. The inspection method
Has high carrier concentration, low defect density and high speed performance
At the same time, high electron mobility with excellent thermal stability and reliability
Various electronic devices such as heterojunction transistors and light
Useful for device manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】n型Alx Ga1-x As(0≦x≦0.35)
を含むヘテロ接合エピタキシャル基板の概略断面図。
FIG. 1 n-type Al x Ga 1 -x As (0 ≦ x ≦ 0.35)
FIG. 2 is a schematic cross-sectional view of a heterojunction epitaxial substrate including:

【図2】I’/I0 =1.05におけるn型Al0.2
0.8 As層のPLスペクトル。
FIG. 2 shows n-type Al 0.2 G at I ′ / I 0 = 1.05.
a PL spectrum of 0.8 As layer.

【図3】I’/I0 =1.05におけるn型Al0.2
0.8 Asとヘテロ接合するIn0.2 Ga0.8 As歪み
量子井戸のアニール前のPLスペクトル。
FIG. 3 shows n-type Al 0.2 G at I ′ / I 0 = 1.05.
4 is a PL spectrum before annealing of an In 0.2 Ga 0.8 As strained quantum well heterojunction with a 0.8 As.

【図4】I’/I0 =1.05におけるn型Al0.2
0.8 Asとヘテロ接合するIn0.2 Ga0.8 As歪み
量子井戸のアニール後のPLスペクトル。
FIG. 4 shows n-type Al 0.2 G at I ′ / I 0 = 1.05.
10 is a PL spectrum after annealing of an In 0.2 Ga 0.8 As strained quantum well heterojunction with a 0.8 As.

【図5】I’/I0 =20におけるn型Al0.2 Ga
0.8 As層のPLスペクトル。
FIG. 5 shows n-type Al 0.2 Ga at I ′ / I 0 = 20.
PL spectrum of 0.8 As layer.

【図6】I’/I0 =20におけるn型Al0.2 Ga
0.8 Asとヘテロ接合するIn0.2 Ga0.8 As歪み量
子井戸のアニール前のPLスペクトル。
FIG. 6 shows n-type Al 0.2 Ga at I ′ / I 0 = 20.
0.8 As heterojunction to an In 0.2 Ga 0.8 As strain PL spectrum before annealing the quantum well.

【図7】I’/I0 =20におけるn型Al0.2 Ga
0.8 Asとヘテロ接合するIn0.2 Ga0.8 As歪み量
子井戸のアニール後のPLスペクトル。
FIG. 7 shows n-type Al 0.2 Ga at I ′ / I 0 = 20.
0.8 As and PL spectra after annealing of an In 0.2 Ga 0.8 As strained quantum well to the heterojunction.

【符号の説明】[Explanation of symbols]

1・・・n型Alx Ga1-x As(0≦x≦0.35) 2・・・Iny Ga1-y As(0.1≦y≦0.35) 3・・・半絶縁性GaAs基板1 ... n-type Al x Ga 1-x As (0 ≦ x ≦ 0.35) 2 ... In y Ga 1-y As (0.1 ≦ y ≦ 0.35) 3 ... semi-insulating GaAs substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】2.5×1018cm-3以上にSiをドーピ
ングしてなるn型Alx Ga1-x As(式中、0≦x≦
0.35)で表されるエピタキシャル半導体の結晶性の
検査方法において、液体窒素温度(77K)で測定され
た該エピタキシャル半導体のフォトルミネッセンススペ
クトルにおけるバンド端ピーク強度(以下、I0 と記
す。)に対する、該バンド端ピーク位置より低エネルギ
ー側に0.3eV以上1.0eV以下の範囲に存在する
ピークのうち最大のピークを示すピーク強度(以下、
I’と記す。)の比(I’/I0 )を指標とすることを
特徴とするエピタキシャル半導体の結晶性の検査方法。
1. A 2.5 × 10 18 cm in -3 is formed by doping Si into n-type Al x Ga 1-x As (wherein, 0 ≦ x ≦
In the method for testing crystallinity of an epitaxial semiconductor represented by 0.35), a band edge peak intensity (hereinafter, referred to as I 0 ) in a photoluminescence spectrum of the epitaxial semiconductor measured at a liquid nitrogen temperature (77 K). A peak intensity (hereinafter, referred to as a peak intensity) indicating a maximum peak among peaks present in a range of 0.3 eV to 1.0 eV on the low energy side from the band edge peak position.
Notated as I '. A method for inspecting the crystallinity of an epitaxial semiconductor, wherein the ratio (I ′ / I 0 ) is used as an index.
【請求項2】I’/I0 の値が5以下であるとき、該半
導体の結晶性を良と判定し、該比が5を超えるとき、該
半導体の結晶性を不良と判定することを特徴とする請求
項1記載のエピタキシャル半導体の結晶性の検査方法。
2. When the value of I ′ / I 0 is 5 or less, the crystallinity of the semiconductor is determined to be good, and when the ratio exceeds 5, the crystallinity of the semiconductor is determined to be poor. 2. The method for testing the crystallinity of an epitaxial semiconductor according to claim 1, wherein:
【請求項3】I’/I0 の値が3以下であるとき、該半
導体の結晶性を良と判定し、該比が3を超えるとき、該
半導体の結晶性を不良と判定することを特徴とする請求
項1記載のエピタキシャル半導体の結晶性の検査方法。
3. When the value of I ′ / I 0 is 3 or less, the crystallinity of the semiconductor is determined to be good, and when the ratio exceeds 3, the crystallinity of the semiconductor is determined to be poor. 2. The method for testing the crystallinity of an epitaxial semiconductor according to claim 1, wherein:
【請求項4】n型Alx Ga1-x As(0≦x≦0.3
5)で表されるエピタキシャル半導体が、GaAs単結
晶基板上に作製されてなることを特徴とする請求項1、
2または3記載のエピタキシャル半導体の結晶性の検査
方法。
4. An n-type Al x Ga 1 -x As (0 ≦ x ≦ 0.3
2. The method according to claim 1, wherein the epitaxial semiconductor represented by 5) is formed on a GaAs single crystal substrate.
4. The method for testing crystallinity of an epitaxial semiconductor according to 2 or 3.
JP17364696A 1996-07-03 1996-07-03 Method for inspecting epitaxial semiconductor Pending JPH1022353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17364696A JPH1022353A (en) 1996-07-03 1996-07-03 Method for inspecting epitaxial semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17364696A JPH1022353A (en) 1996-07-03 1996-07-03 Method for inspecting epitaxial semiconductor

Publications (1)

Publication Number Publication Date
JPH1022353A true JPH1022353A (en) 1998-01-23

Family

ID=15964480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17364696A Pending JPH1022353A (en) 1996-07-03 1996-07-03 Method for inspecting epitaxial semiconductor

Country Status (1)

Country Link
JP (1) JPH1022353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164533A (en) * 2000-11-29 2002-06-07 Showa Denko Kk Compound semiconductor laminated structure and bipolar transistor using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164533A (en) * 2000-11-29 2002-06-07 Showa Denko Kk Compound semiconductor laminated structure and bipolar transistor using the same

Similar Documents

Publication Publication Date Title
US8309980B2 (en) Infrared light emitting device
US11201261B2 (en) Deep ultraviolet light emitting element and method of manufacturing the same
KR102115752B1 (en) Optoelectronic devices incorporating single crystalline aluminum nitride substrate
US6344375B1 (en) Substrate containing compound semiconductor, method for manufacturing the same and semiconductor device using the same
Wang et al. Temperature dependent pohotoluminescence investigation of AlGaAs/GaAs quantum wires grown by flow rate modulation epitaxy
KR100385039B1 (en) Semiconductor device
Allenic et al. Microstructure and electrical properties of p-type phosphorus-doped ZnO films
JP4100759B2 (en) Method for manufacturing compound semiconductor device
Götz et al. Shallow and deep level defects in GaN
US8294146B2 (en) ZnO-containing semiconductor layer and device using the same
JPH1022353A (en) Method for inspecting epitaxial semiconductor
Watanabe et al. Annealing effect on the carrier concentration in heavily C‐doped p+‐AlGaAs
Swaminathan et al. Photoluminescence of thermally treated n+ Si-doped and semi-insulating Cr-doped GaAs substrates
Eda et al. photoluminescence in AlGaAs/GaAs heterojunction bipolar transistors
Johnstone et al. Electrical and optical characterization of GaSb based diode laser material for 2-4 μm applications
US7691655B2 (en) Method of manufacturing semiconductor optical device
KR100599357B1 (en) Method for fabricating semiconductor device having quantum dot structure
Grillo et al. MBE growth and microstructural evaluation of Zn (S, Se)-based LEDs and diode lasers
US20020050595A1 (en) 3-5 Group compound semiconductor and light-emitting element
Postigo et al. Low temperature solid-source molecular-beam epitaxy growth of Al-free quantum well laser diodes using a GaP-decomposition source
JPH0851251A (en) Photosemiconductor device
Olego et al. Optoelectronic properties of ZnSe GaAs interfaces: Role of interface chemistry and structural defects
JPH11204601A (en) Measurement of carrier concentration in compound semiconductor epitaxial thin film
Yoshimoto et al. Growth of Luminescent GaAsP on Si Substrate by Metalorganic Molecular Beam Epitaxy Using GaP Buffer Layer
Cho et al. Effect of isoelectronic In doping on deep levels in GaN grown by MOCVD