JPH10222833A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH10222833A
JPH10222833A JP2137897A JP2137897A JPH10222833A JP H10222833 A JPH10222833 A JP H10222833A JP 2137897 A JP2137897 A JP 2137897A JP 2137897 A JP2137897 A JP 2137897A JP H10222833 A JPH10222833 A JP H10222833A
Authority
JP
Japan
Prior art keywords
negative pressure
wall surface
angle
magnetic head
slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2137897A
Other languages
Japanese (ja)
Other versions
JP3810878B2 (en
Inventor
Takashi Sugiyama
隆 杉山
Masaru Suzuki
勝 鈴木
Fumio Nitanda
文雄 二反田
Tadashi Tomitani
忠史 富谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP02137897A priority Critical patent/JP3810878B2/en
Publication of JPH10222833A publication Critical patent/JPH10222833A/en
Application granted granted Critical
Publication of JP3810878B2 publication Critical patent/JP3810878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic head generating sufficient negative pressure without causing a crash caused by stuck dust since the dust doesn't stick to its negative pressure groove related to a negative pressure system magnetic head used for a magnetic disk, etc. SOLUTION: An angle θ between a wall surface 3d' cohering the negative pressure groove bottom surface 3c of the negative pressure system magnetic head with a positive pressure generation surface 3b and the negative pressure groove bottom surface 3c is processed smaller than 30 deg.. Since for generating sufficient negative pressure, since the necessity that the angle of the wall surface 3d' is made 10 deg. or above exists, the angle θ is processed so as to become within the range of 10 deg.-30 deg., or the wall surface constituted of plural surfaces so as to become a small cross angle in a part being in contact with the bottom surface 3c of the wall surface 3d', and become a large cross angle in the part being in contact with the positive pressure generation surface 3b is given.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンピュータ等に搭
載される磁気ディスクドライブに用いられる磁気ヘッド
に関し、特に磁気記録媒体との摺動に対する信頼性を向
上させた磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used for a magnetic disk drive mounted on a computer or the like, and more particularly to a magnetic head having improved reliability against sliding with a magnetic recording medium.

【0002】[0002]

【従来の技術】コンピュータに用いられる磁気ディスク
ドライブは、磁気記録媒体である磁気ディスクの回転に
伴って磁気ディスク表面近傍に生じる粘性流を利用して
磁気ヘッドを浮上させる方式を採用している。図8に磁
気ヘッドの一例を示す。磁気ヘッド1は電磁変換器2が
スライダー3に固定された構造をしており、スライダー
3はジンバル4を介してスプリングアーム5に固定され
る。このスプリングアーム5は図示されてないボイスコ
イルモーター等によって駆動され、ヘッドの位置制御が
なされる。上記磁気ヘッドは、スプリングアームによる
力でそのスライダー面が磁気ディスク(図中では省略)
に押しつけられており、磁気ディスクが回転していない
ときは両者は接触している。ここで磁気ディスクが回転
すると磁気ディスク面近傍に粘性流が発生し、この空気
流がスライダー面に作用することによりヘッドは磁気デ
ィスク表面から浮上する。磁気ヘッドの記録再生特性の
観点からこの浮上量は少ないほどよく、安定に低い浮上
量を確保することが重要である。
2. Description of the Related Art A magnetic disk drive used in a computer employs a system in which a magnetic head floats using a viscous flow generated near the surface of a magnetic disk as the magnetic disk serving as a magnetic recording medium rotates. FIG. 8 shows an example of the magnetic head. The magnetic head 1 has a structure in which an electromagnetic transducer 2 is fixed to a slider 3, and the slider 3 is fixed to a spring arm 5 via a gimbal 4. The spring arm 5 is driven by a voice coil motor or the like (not shown) to control the position of the head. The slider surface of the magnetic head is a magnetic disk (not shown in the figure) due to the force of the spring arm.
When the magnetic disk is not rotating, they are in contact with each other. Here, when the magnetic disk rotates, a viscous flow is generated near the surface of the magnetic disk, and this air flow acts on the slider surface, so that the head flies above the surface of the magnetic disk. From the viewpoint of the recording / reproducing characteristics of the magnetic head, the smaller the flying height, the better, and it is important to ensure a stable low flying height.

【0003】近年は安定した浮上を確保するために負圧
を利用した浮上式ヘッド(負圧ヘッド)が用いられるこ
とが多い。負圧ヘッドの一例としては図9に示すよう構
造のヘッドがあげられる。磁気ディスクの回転によって
生じた空気の流れは、スライダーの空気軸受け面側のス
テップ部3aから正圧発生部3bを経て負圧を発生させ
るための負圧溝3cへと流れる。このとき空気は負圧溝
を形成する段差を通過する際に膨張することになり、負
圧溝には気圧の低い領域ができる。この負圧によってス
ライダー3を磁気ディスクに側に引きつける吸引力が発
生する。したがってスライダー3には正圧部3bに発生
する浮上力により磁気ヘッドを浮上させる力と負圧溝3
cに発生する吸引力とスプリングアーム5の押しつけ力
の3力が作用作用することになり、これら3力のバラン
スで低浮上を実現している。一般に負圧溝3cはミリン
グで形成されることが多く、負圧溝の壁面3dと負圧溝
の底面とのなす角(以下、本明細書では交角とする)は
90度に近いことが多い。
In recent years, a floating head utilizing a negative pressure (negative pressure head) has been often used in order to secure stable flying. An example of the negative pressure head is a head having a structure as shown in FIG. The air flow generated by the rotation of the magnetic disk flows from the step portion 3a on the air bearing surface side of the slider to the negative pressure groove 3c for generating a negative pressure via the positive pressure generating portion 3b. At this time, the air expands when passing through the step forming the negative pressure groove, and a region having a low atmospheric pressure is formed in the negative pressure groove. This negative pressure generates a suction force that draws the slider 3 toward the magnetic disk. Accordingly, the slider 3 has a force for floating the magnetic head due to a floating force generated in the positive pressure portion 3b and a negative pressure groove 3b.
The three forces of the suction force generated at c and the pressing force of the spring arm 5 act, and low levitation is realized by the balance of these three forces. In general, the negative pressure groove 3c is often formed by milling, and the angle between the wall surface 3d of the negative pressure groove and the bottom surface of the negative pressure groove (hereinafter referred to as an intersection angle) is often close to 90 degrees. .

【0004】[0004]

【発明が解決しようとする課題】しかし、この負圧ヘッ
ドには吸引力を発生する負圧部の段差近傍に磁気ディス
クの保護膜の磨耗粉等の塵埃が溜まりやすいという問題
点がある。塵埃は圧力が低い特定の箇所に溜まりやすい
ために長期にわたって起動・停止を繰り返し使用する
と、徐々にその量を増しついには塊となってスライダー
面から剥がれ落ちてしまいヘッドクラッシュ等を発生す
る要因となることがある。
However, this negative pressure head has a problem that dust such as abrasion powder of a protective film of a magnetic disk tends to accumulate in the vicinity of a step of a negative pressure portion that generates a suction force. Dust easily accumulates in specific places where the pressure is low. May be.

【0005】本発明の目的は負圧部の段差近傍に塵埃の
付着が少なく、従って付着した塵埃が原因となるヘッド
クッラッシュが発生しにくい高い信頼性を持った負圧ヘ
ッドを供給することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly reliable negative pressure head in which dust adheres little in the vicinity of a step of a negative pressure part, so that a head crash caused by the attached dust is less likely to occur. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は磁気ディスク対向面に形成される負圧溝の
境界を構成するの複数の壁面のうち少なくとも1部につ
いて、その壁面と負圧溝の底面との交角を10度から3
0度に設定するか、あるいは前記壁面を負圧溝の底面と
の交角が異なる2面以上の面で構成させて負圧溝の底面
に接する壁面の交角を30度未満とすることによって達
成される。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a method for forming a negative pressure groove formed on a surface facing a magnetic disk. The angle of intersection with the bottom surface of the pressure groove is 10 degrees to 3
This is achieved by setting the angle to 0 degrees or by forming the wall surface from two or more surfaces having different intersection angles with the bottom surface of the negative pressure groove and making the intersection angle of the wall surface contacting the bottom surface of the negative pressure groove less than 30 degrees. You.

【0007】本発明において、負圧溝の底部と壁面との
なす角度は従来のものよりも低い角度に設定することに
より、底面の壁面に接する付近で渦流等の乱れの発生が
抑制される。一般に渦流等が生じる領域には堆積物が溜
まりやすく、従来の負圧ヘッドでは負圧溝の底面と壁面
との境界付近に塵埃が付着して、しばしば堆積した塵埃
がまとまって剥がれ落ちて、クラッシュの発生の原因と
なることがあった。これに対して本発明のように負圧溝
の底面と壁面とのなす傾斜角を小さくすることにより塵
埃が底面に付着を抑制することが可能となり、付着した
塵埃が原因となるクラッシュの発生を防止することがで
きる。
In the present invention, by setting the angle between the bottom of the negative pressure groove and the wall surface to be lower than in the conventional case, the generation of turbulence such as eddy currents near the bottom wall surface is suppressed. Generally, sediment easily accumulates in areas where swirling currents occur, and in the case of conventional negative pressure heads, dust adheres to the vicinity of the boundary between the bottom surface and the wall surface of the negative pressure groove, and the accumulated dust often comes off together and crashes Was sometimes caused. On the other hand, by reducing the inclination angle between the bottom surface and the wall surface of the negative pressure groove as in the present invention, it becomes possible to suppress dust from adhering to the bottom surface, and to prevent the occurrence of a crash caused by the attached dust. Can be prevented.

【0008】一方、負圧ヘッドの本来の設計思想では壁
面の傾斜角度は大きいほど望ましく、上記のような信頼
性の観点だけで低い交角を選択できないのが実状であ
る。図1に本発明の図9におけるa−a断面を示す。負
圧スライダー表面に流れる空気は正圧発生部3bから負
圧溝3cに流れる際にその段差によって負圧溝3cの圧
力が低くなりスライダーを媒体に引き寄せる力が発生す
る。ここでこの段差を形成する壁面の傾斜角度によって
発生する負圧の大きさが変化する。一般に交角θが90
度に近いほど発生する負圧は大きくなるが、さきに述べ
たように負圧溝底部と壁面が接する付近に塵埃が溜まり
やすくなる。しかし交角θを10度未満にすれば、塵埃
の付着は押さえられるものの、十分な負圧の効果は期待
できない。図2に図1に示した形状のスライダーの壁面
3d’を様々な交角θとした場合について、計算によっ
て求めた浮上量を示す。ここでは負圧溝3cの深さ4μ
m、バネ圧3.5gf、周速18.5m/sec、スキ
ュー角10度として計算している。交角θが10度以上
の場合にはほぼ一定の浮上量を示しているのに対して、
10度未満では負圧が極端に弱くなり、浮上量は大きく
なっていることがわかる。これより壁面3d’が単純な
平面で構成される場合には、十分な負圧を発生させるた
めに交角は10度以上でなければならないことがわか
る。
On the other hand, according to the original design concept of the negative pressure head, it is desirable that the inclination angle of the wall surface is large, and in reality, a low intersection angle cannot be selected only from the viewpoint of reliability as described above. FIG. 1 shows an aa cross section in FIG. 9 of the present invention. When the air flowing on the surface of the negative pressure slider flows from the positive pressure generating portion 3b to the negative pressure groove 3c, the pressure in the negative pressure groove 3c is reduced due to the level difference, and a force for drawing the slider to the medium is generated. Here, the magnitude of the negative pressure changes depending on the inclination angle of the wall surface forming the step. Generally, the intersection angle θ is 90
The closer the temperature is, the greater the negative pressure is generated, but as described above, dust tends to accumulate near the contact between the bottom of the negative pressure groove and the wall surface. However, if the intersection angle θ is less than 10 degrees, the adhesion of dust is suppressed, but the effect of a sufficient negative pressure cannot be expected. FIG. 2 shows the flying height obtained by calculation when the wall surface 3d 'of the slider having the shape shown in FIG. 1 has various intersection angles θ. Here, the depth of the negative pressure groove 3c is 4 μm.
m, spring pressure 3.5 gf, peripheral speed 18.5 m / sec, and skew angle 10 degrees. When the intersection angle θ is 10 degrees or more, the flying height is almost constant, whereas
At less than 10 degrees, the negative pressure is extremely weak, and the flying height is large. This indicates that when the wall surface 3d 'is formed of a simple plane, the intersection angle must be 10 degrees or more in order to generate a sufficient negative pressure.

【0009】同様の効果が得られる手法として図3に示
すように壁面を交角の異なる複数の面で構成させる方法
がある。負圧の発生においては特に正圧発生面に近い部
分での段差が特に重要でありこの部分が正圧発生面に垂
直に近いほど負圧発生の効果は大きい。一方、塵埃の付
着で問題になるのは負圧溝の底面と壁面とが接する付近
であり、底面と壁面とのなす角が小さければ塵埃は付着
しない。これら2つの条件を満足するためには本明細書
の請求項2に示すように、負圧溝の底面と接する壁面は
交角θ1を小さくして、正圧発生面に接する壁面は交角
θ2を比較的大きくすることでも達成される。
As a method of obtaining the same effect, there is a method of forming a wall surface by a plurality of surfaces having different intersection angles as shown in FIG. In the generation of a negative pressure, a step at a portion close to the positive pressure generating surface is particularly important, and the effect of generating the negative pressure is greater as this portion is closer to the positive pressure generating surface. On the other hand, the problem with the adhesion of dust is near the contact between the bottom surface and the wall surface of the negative pressure groove. If the angle between the bottom surface and the wall surface is small, the dust does not adhere. In order to satisfy these two conditions, as described in claim 2 of the present specification, the wall surface in contact with the bottom surface of the negative pressure groove has a small intersection angle θ 1 , and the wall surface in contact with the positive pressure generation surface has an intersection angle θ 2 Can also be achieved by making.

【0010】図4に壁面をこのような2つの面で構成さ
せた場合のヘッドの浮上量の計算結果を示した。ここで
は交角θ1を5度として負圧溝3cの底面から3μmの
高さまでを壁面dとして、残りの高さ1μmの部分の壁
面の交角θ2と浮上量との関係を示している。周速等の
条件は、図2の場合と同一である。この結果より交角θ
2が大きければ交角θ1がたとえ5度と小さくても大きな
負圧が発生して低い浮上量が得られることがわかる。図
5は交角θ2を60度一定とした場合の交角θ1と浮上量
との関係を計算で求めた結果を示している。交角θ1
浮上に及ぼす影響は交角θ2と比較してずっと小さいこ
とがわかる。このように負圧溝の壁面を2面以上の面で
構成させる場合、製造プロセスはやや煩雑になるもの
の、選択できる交角の範囲は広くなるという特徴があ
る。
FIG. 4 shows a calculation result of the flying height of the head when the wall surface is constituted by such two surfaces. Here, the intersection angle θ 1 is 5 degrees, and the height from the bottom surface of the negative pressure groove 3c to the height of 3 μm is the wall surface d, and the relationship between the intersection angle θ 2 of the remaining 1 μm height wall surface and the flying height is shown. Conditions such as the peripheral speed are the same as those in FIG. From this result, the intersection angle θ
It is understood that if 2 is large, even if the intersection angle θ 1 is as small as 5 degrees, a large negative pressure is generated and a low flying height can be obtained. FIG. 5 shows the result obtained by calculating the relationship between the intersection angle θ 1 and the flying height when the intersection angle θ 2 is fixed at 60 degrees. It can be seen that the influence of the intersection angle θ 1 on the flying height is much smaller than that of the intersection angle θ 2 . When the wall surface of the negative pressure groove is formed of two or more surfaces as described above, the manufacturing process is slightly complicated, but the range of selectable intersection angles is widened.

【0011】このような壁面の角度を規定する技術は特
開平7−14139に開示されている。これは交角θを
60度程度の鋭角にして加工誤差に対してヘッドの浮上
量のばらつきを低減させるためのもので、この公知例に
開示されている交角の範囲では本発明が意図する塵埃の
付着の低減は期待できない。
A technique for defining the angle of such a wall surface is disclosed in Japanese Patent Laid-Open No. 7-14139. This is intended to reduce the variation in the flying height of the head with respect to processing errors by setting the intersection angle θ to an acute angle of about 60 degrees. No reduction in adhesion can be expected.

【0012】以上のように本発明に示したいずれの場合
も負圧溝と正圧発生部を連接する壁面は正圧発生部に対
して少なくとも10度以上の角度になっているため、負
圧を発生する段差としても十分に機能し、高い信頼性と
安定した浮上量とを両立することができる。
As described above, in any case shown in the present invention, since the wall connecting the negative pressure groove and the positive pressure generating portion is at an angle of at least 10 degrees with respect to the positive pressure generating portion, the negative pressure Suffices to function as a step which generates high reliability, and achieves both high reliability and a stable flying height.

【0013】[0013]

【発明の実施の形態】以下本発明の実施例について詳細
に説明する。 (実施例1)スライダー材としてAl2O3・TiCを
用い、図9に示すような50%の負圧スライダーをミリ
ング法で加工した。あるマスク材を選択してパターンニ
ングして厚さ10μmのマスクを得た後、ある条件で熱
処理を行った。この熱処理によってマスク材は収縮する
が、マスク材の下面は基板に固定されているために図6
の6aに示すように、端面が傾斜した台形状のマスクと
なった。このマスクでミリングを行うとスライダーの負
圧溝の部分が加工されるとともに、マスクも徐々に取り
除かれ6bで示される形状になっていく。このため加工
中にマスクは図6の矢印Aに示される方向に後退してい
き、マスクの後退に伴って新たに露出したスライダー材
も順次加工される。したがってこの加工プロセスによる
と壁面3dは低い交角をもつこととなり、本発明の請求
項1に示した形状を実現できる。この交角は主にマスク
の端面の角度を決定づける熱処理条件等を調整すること
によって制御できる。ここではミリング前の熱処理の条
件等をを変えて3種の試料を作製し、試料名1−1,1
−2,1−3とした。光学式の表面形状測定器によって
壁面の角度を測定したところ3種の試料の交角はそれぞ
れ11度、23度、30度となっており、負圧溝の深さ
はどれも4μmであった。ミリング加工後、ラップ加工
によってスライダー面を仕上げ、最後にDCマグネトロ
ンスパッタ装置を使用して膜厚5nmのカーボン保護膜
をスライダー面に成膜した。スパッタ後このスライダー
をバネ荷重3.5gfのサスペンションに取り付けた。
Embodiments of the present invention will be described below in detail. Example 1 Al2O3.TiC was used as a slider material, and a 50% negative pressure slider as shown in FIG. 9 was processed by a milling method. After a certain mask material was selected and patterned to obtain a mask having a thickness of 10 μm, heat treatment was performed under certain conditions. Although the mask material shrinks by this heat treatment, since the lower surface of the mask material is fixed to the substrate, FIG.
As shown in 6a, a trapezoidal mask having an inclined end face was obtained. When milling is performed with this mask, the portion of the negative pressure groove of the slider is processed, and the mask is also gradually removed to obtain the shape shown by 6b. For this reason, the mask retreats in the direction indicated by arrow A in FIG. 6 during the processing, and the newly exposed slider material is sequentially processed with the retreat of the mask. Therefore, according to this processing process, the wall surface 3d has a low intersection angle, and the shape shown in claim 1 of the present invention can be realized. This intersection angle can be controlled mainly by adjusting heat treatment conditions and the like that determine the angle of the end face of the mask. Here, three types of samples were prepared by changing the conditions of heat treatment before milling and the like, and sample names 1-1, 1
−2, 1-3. When the angles of the wall surfaces were measured by an optical surface profiler, the intersection angles of the three samples were 11, 23, and 30 degrees, respectively, and the depth of each of the negative pressure grooves was 4 μm. After milling, the slider surface was finished by lapping, and finally a carbon protective film having a thickness of 5 nm was formed on the slider surface using a DC magnetron sputtering device. After sputtering, this slider was mounted on a suspension having a spring load of 3.5 gf.

【0014】(実施例2)上記の実施例1と同様の形状
にパターンニングした厚さ50μm程度のマスクをある
条件で熱処理を行った。ここでは実施例1の場合よりも
マスクを厚くしてあるために、熱処理後のマスクはスラ
イダー面近傍を除いて均等に収縮する。このためにマス
クの端面の形状は図7に示されるような形状となった。
このマスクでミリング加工すると、マスク6は加工中に
ミリングによって一部除去されて図7中の6aの形状か
ら6bの形状に後退する。このため点eから点fまでは
交角の低い壁面が得られる。しかし点f以降はマスク材
の膜厚が厚くなっているためにミリングによるマスクの
後退は遅くなり、f以降は大きな交角をもった壁面とな
り、本発明の請求項2に規定した形状をを得ることがで
きる。このとき負圧溝深さなど交角以外の寸法は実施例
1と同一になるように加工した。得られたスライダーの
試料番号を2−1として、光学式の表面形状測定器によ
って壁面の角度を測定した結果、図3に示すように負圧
溝の底面に近い部分と正圧発生面に近い部分とでは交角
が異なった壁面となっていることが確認された。交角1
はおよそ6度、交角2は80度で、2つの壁面の接線は
負圧溝底面より2.9μmの高さの位置であった。ミリ
ング加工後実施例1と同一条件でラップ仕上げ、カーボ
ン保護膜製膜を行い、バネ荷重およそ3.5gfのサス
ペンションに取り付けた。
Example 2 A mask having a thickness of about 50 μm and patterned in the same shape as in Example 1 was heat-treated under certain conditions. Here, since the mask is made thicker than in the case of the first embodiment, the mask after the heat treatment contracts uniformly except for the vicinity of the slider surface. For this reason, the shape of the end face of the mask was as shown in FIG.
When milling is performed with this mask, the mask 6 is partially removed by milling during the processing, and retreats from the shape of 6a in FIG. 7 to the shape of 6b. Therefore, a wall surface having a low intersection angle is obtained from the point e to the point f. However, after the point f, the retreat of the mask by milling becomes slow due to the thicker thickness of the mask material, and after the point f, the wall becomes a wall having a large intersection angle, and the shape defined in claim 2 of the present invention is obtained. be able to. At this time, processing was performed so that dimensions other than the intersection angle, such as the depth of the negative pressure groove, were the same as those in Example 1. Assuming that the sample number of the obtained slider was 2-1 and the angle of the wall surface was measured by an optical surface shape measuring instrument, as shown in FIG. 3, a portion close to the bottom surface of the negative pressure groove and close to the positive pressure generating surface were shown. It was confirmed that the intersection angle was different from that of the wall. Intersection angle 1
Was about 6 degrees, the intersection angle 2 was 80 degrees, and the tangent between the two wall surfaces was at a position 2.9 μm above the bottom of the negative pressure groove. After milling, lapping was performed under the same conditions as in Example 1, a carbon protective film was formed, and the film was attached to a suspension having a spring load of about 3.5 gf.

【0015】前記の実施例1と同様にマスクを厚さ10
μmとして所定の形状にパターンニングしたスライダー
材を、実施例1とは異なる条件で熱処理を加えた。ここ
では熱処理条件の異なる2種類のサンプルを準備した。
熱処理後にミリング加工を行い負圧溝を形成した。この
とき負圧溝深さなど交角以外の寸法は実施例1と同一に
なるように加工した。光学式の表面形状測定器によって
壁面の角度を測定したところ34度と65度サンプルが
得られていることがわかった。ミリング加工後実施例1
と同一条件でラップ仕上げ、カーボン膜製膜を行い、バ
ネ荷重およそ3.5gfのサスペンションに取り付け、
試料C−1及びC−2を得た。
As in the case of the first embodiment, a mask having a thickness of 10
A slider material patterned into a predetermined shape of μm was subjected to a heat treatment under conditions different from those in Example 1. Here, two types of samples having different heat treatment conditions were prepared.
Milling was performed after the heat treatment to form a negative pressure groove. At this time, processing was performed so that dimensions other than the intersection angle, such as the depth of the negative pressure groove, were the same as those in Example 1. When the angle of the wall surface was measured using an optical surface profiler, it was found that samples of 34 ° and 65 ° were obtained. Example 1 after milling
Lapping under the same conditions as above, forming a carbon film, attaching to a suspension with a spring load of about 3.5 gf,
Samples C-1 and C-2 were obtained.

【0016】評価は実施例及び比較例の各試料について
それぞれ5万回CSSを行った後のスライダー表面に付
着した付着物の有無で評価した。CSSテストは30度
C、相対湿度80%の環境下で行った。使用した磁気デ
ィスクは直径95mmで保護膜として15nmのカーボ
ン膜を有し、表面に潤滑剤を1.5nm程度塗布してあ
る。
The evaluation was carried out for each sample of the examples and the comparative examples based on the presence or absence of the adhering matter on the slider surface after 50,000 times of CSS. The CSS test was performed in an environment at 30 ° C. and a relative humidity of 80%. The magnetic disk used had a diameter of 95 mm, a carbon film of 15 nm as a protective film, and a lubricant of about 1.5 nm was applied to the surface.

【0017】表1にCSS5万回後のヘッド表面に付着
した塵埃の有無を調べた結果を示す。実施例の2種のヘ
ッドについてはテスト後もスライダー表面には塵埃等の
付着物は認められなかった。これに対して比較例の壁面
交角が大きいヘッドはテスト後に負圧溝底面と壁面との
接線付近に磁気ディスクの保護膜であるカーボンと見ら
れる塵埃が付着しているのが観察された。
Table 1 shows the results of checking the presence or absence of dust adhering to the head surface after 50,000 CSS operations. Regarding the two types of heads of the example, no deposit such as dust was observed on the slider surface even after the test. On the other hand, in the head of the comparative example having a large wall intersection angle, it was observed that dust, which is considered to be carbon which is a protective film of the magnetic disk, was adhered to the vicinity of the tangent between the bottom surface of the negative pressure groove and the wall surface after the test.

【0018】[0018]

【表1】 [Table 1]

【0019】以上の結果から、負圧ヘッドにおける壁面
の交角を10度から30度の間にするか、壁面を交角の
異なる2面以上の面で構成させ壁面に接する部分での交
角を30度以下と低くすることによって、多くのCSS
を行った後にも塵埃の付着の無く長期の使用に耐えうる
磁気ヘッドが得られることがわかった。
From the above results, the intersection angle of the wall surface of the negative pressure head is set between 10 degrees and 30 degrees, or the wall surface is formed of two or more surfaces having different intersection angles, and the intersection angle at the portion in contact with the wall surface is 30 degrees. By lowering the following, many CSS
It has been found that a magnetic head which can be used for a long time without dust adherence can be obtained even after performing the above.

【0020】[0020]

【発明の効果】本発明によれば、塵埃の付着のない磁気
ヘッドが得られ、長期にわたる信頼性、耐久性を確保す
ることができる。
According to the present invention, a magnetic head free of dust can be obtained, and long-term reliability and durability can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるスライダーの図9におけるa−a
間の横断面図。
FIG. 1 shows the slider according to the invention aa in FIG.
FIG.

【図2】交角と浮上量との関係。FIG. 2 shows the relationship between the intersection angle and the flying height.

【図3】本発明の他の実施例の図9におけるa−a間の
横断面図。
FIG. 3 is a cross-sectional view taken along a line aa in FIG. 9 of another embodiment of the present invention.

【図4】交角θ2と浮上量との関係。FIG. 4 shows the relationship between the intersection angle θ 2 and the flying height.

【図5】交角θ1と浮上量との関係。FIG. 5 shows the relationship between the intersection angle θ 1 and the flying height.

【図6】本発明の実施例1を説明するための図。FIG. 6 is a diagram for explaining Example 1 of the present invention.

【図7】本発明の実施例2を説明するための図。FIG. 7 is a diagram for explaining a second embodiment of the present invention.

【図8】浮上式磁気ヘッドの側面図。FIG. 8 is a side view of a floating magnetic head.

【図9】負圧型磁気ヘッドスライダーの斜視図。FIG. 9 is a perspective view of a negative pressure type magnetic head slider.

【符号の説明】[Explanation of symbols]

1 磁気ヘッド、2 電磁変換器、3 磁気ヘッドスラ
イダー、3a ステップ部、3b 正圧発生部、3c
負圧溝、4 ジンバル、5 スプリングアーム、6 マ
スク
Reference Signs List 1 magnetic head, 2 electromagnetic transducer, 3 magnetic head slider, 3a step section, 3b positive pressure generating section, 3c
Vacuum groove, 4 gimbals, 5 spring arms, 6 masks

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富谷 忠史 栃木県真岡市松山町18番地日立金属株式会 社電子部品工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Tomiya 18 Matsuyamacho, Moka-shi, Tochigi Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気ディスクに対向するスライダー面に
段差を形成する壁面と底面とから成る負圧を発生させる
ための溝を有する磁気ヘッドにおいて、少なくとも前記
壁面の一部と溝の底面とのなす角が、10度から30度
となっていることを特徴とする磁気ヘッド。
1. A magnetic head having a groove for generating a negative pressure comprising a wall surface and a bottom surface forming a step on a slider surface facing a magnetic disk, wherein at least a part of the wall surface and a bottom surface of the groove are formed. A magnetic head having an angle of 10 to 30 degrees.
【請求項2】 磁気ディスクに対向するスライダー面に
段差を形成する壁面と底面とから成る負圧を発生させる
ための溝を有する磁気ヘッドにおいて、少なくとも前記
壁面の一部が溝の底面に接する部分と正圧発生部に接す
る部分が平行でない異なる面で構成され、負圧溝底面と
それに接する壁面とがなす角が30度以下となっている
ことを特徴とする磁気ヘッド。
2. A magnetic head having a groove for generating a negative pressure, comprising a wall surface and a bottom surface forming a step on a slider surface facing a magnetic disk, wherein at least a part of the wall surface is in contact with the bottom surface of the groove. And a portion in contact with the positive pressure generating portion is formed of different surfaces that are not parallel to each other, and the angle formed between the bottom surface of the negative pressure groove and the wall surface in contact therewith is 30 degrees or less.
JP02137897A 1997-02-04 1997-02-04 Magnetic head Expired - Fee Related JP3810878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02137897A JP3810878B2 (en) 1997-02-04 1997-02-04 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02137897A JP3810878B2 (en) 1997-02-04 1997-02-04 Magnetic head

Publications (2)

Publication Number Publication Date
JPH10222833A true JPH10222833A (en) 1998-08-21
JP3810878B2 JP3810878B2 (en) 2006-08-16

Family

ID=12053440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02137897A Expired - Fee Related JP3810878B2 (en) 1997-02-04 1997-02-04 Magnetic head

Country Status (1)

Country Link
JP (1) JP3810878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277793A (en) * 2005-03-28 2006-10-12 Shinka Jitsugyo Kk Slider, head gimbal assembly, hard disk device and manufacturing method of slider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277793A (en) * 2005-03-28 2006-10-12 Shinka Jitsugyo Kk Slider, head gimbal assembly, hard disk device and manufacturing method of slider

Also Published As

Publication number Publication date
JP3810878B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US6956718B1 (en) Sandwich diamond-like carbon overcoat for use in slider designs of proximity recording heads
US7072146B2 (en) Magnetic head slider and a magnetic disk device in which the slider is mounted
EP0736859B1 (en) Slider supporting structure of magnetic disk unit
US20080259501A1 (en) Head with an air bearing surface having a shallow recessed trailing air flow dam
EP0209140B1 (en) A method of measuring a minute flying height of an object and a magnetic disk apparatus
JP3444256B2 (en) Magnetic disk drive
JPS62256280A (en) Transducer supporting device
US7167343B2 (en) Head shock resistance and head load/unload protection for reducing disk errors and defects, and enhancing data integrity of disk drives
US20010048575A1 (en) Magnetic head gimbal assembly and magnetic disk unit
US20060179927A1 (en) Apparatus for measurement of friction force at the interface of a slider and rotating disk
US6424493B1 (en) Hard disk drive magnetic head air bearing surface design for preventing particulate contamination thereon
JP2001511578A (en) Positive pressure optical slider with rear end side pad
JPH11185418A (en) Floating type magnetic head
US6497021B2 (en) Method and apparatus for providing a low cost contact burnish slider
JPH10222833A (en) Magnetic head
US7324306B2 (en) System, method, and apparatus for improving the multiple velocity performance and write element protrusion compensation of disk drive sliders
US6574074B2 (en) Air bearing surface design for inducing roll-bias during load/unload sequence
JPH10222834A (en) Magnetic head
WO2005004152A1 (en) Magnetic head slider and method of manufacturing the head slider
US7352532B2 (en) Method and apparatus for utilizing a small pad to increase a head to a disk interface reliability for a load/unload drive
JPH0328756B2 (en)
US7012785B2 (en) Method and apparatus for head slider and suspension reducing air flow turbulence about the slider when accessing a rotating disk in a disk drive
US8184402B2 (en) Magnetic disk drive slider having a trailing edge extended rear surface
JP3965257B2 (en) Magnetic head slider and magnetic disk drive equipped with the same
JP2901437B2 (en) Magnetic disk and magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees