JPH10221323A - Continuously using method and device of adsorption column - Google Patents

Continuously using method and device of adsorption column

Info

Publication number
JPH10221323A
JPH10221323A JP2632897A JP2632897A JPH10221323A JP H10221323 A JPH10221323 A JP H10221323A JP 2632897 A JP2632897 A JP 2632897A JP 2632897 A JP2632897 A JP 2632897A JP H10221323 A JPH10221323 A JP H10221323A
Authority
JP
Japan
Prior art keywords
adsorption column
adsorption
liquid
carrier layer
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2632897A
Other languages
Japanese (ja)
Inventor
Kenji Nagura
賢治 名倉
Masaru Yamamoto
勝 山本
Takeshi Majima
剛 馬島
Saichi Yamada
佐一 山田
Hideki Takeuchi
英樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Teijin Ltd
Original Assignee
NGK Insulators Ltd
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Teijin Ltd filed Critical NGK Insulators Ltd
Priority to JP2632897A priority Critical patent/JPH10221323A/en
Publication of JPH10221323A publication Critical patent/JPH10221323A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuously using method and device of an adsorption column capable of suppressing a rise in pressure loss due to clogging and maintaining high efficiency in treatment even in the case of operating at the high velocity of flow. SOLUTION: After the completion of a series of operation of the balancing of an adsorption column, the loading of a liquid to be treated, washing, and the recovery of elution, the adsorption column is washed and regenerated sequentially with (1) a mixture between acetic acid and ethanol, (2) a mixture between sodium hydroxide and ethanol, and (3) an acid solution such as hydrochloric acid. An adsorbing layer 8 of adsorption supports with particle diameters of less than 100μm and an inert unadsorbed-support layer 9 of gel filtration supports, etc., with particle diameters coarser than those adsorption supports are arranged in the same or different column, and a liquid to be treated is brought to pass from the side of the unadsorbed-support layer 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バイオ医薬品の製
造等において用いられる分取用液体クロマトグラフィ装
置の吸着カラムの連続使用方法及び装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for continuously using an adsorption column of a preparative liquid chromatography apparatus used in the production of biopharmaceuticals and the like.

【0002】[0002]

【従来の技術】バイオ医薬品の製造工程においては、液
体クロマトグラフィーによる精製法が多用されている。
バイオ医薬品となる有用蛋白質の原料液は、動物細胞な
どを培地で培養して得られる細胞培養液であるが、その
原料液から細胞除去した培養上清をイオン交換体、アフ
ィニティ担体などを充填した吸着カラムに通液し、処理
することにより有用蛋白質の濃縮、精製処理が行われて
いる。その際、培養上清中の有用蛋白質濃度が希薄な
為、多量の培養上清を1回に処理する必要があることか
ら、近年開発された処理能力の高い高速高吸着容量の吸
着担体が使用されるようになった。また、この吸着担体
を充填したカラムは蛋白分取装置に装着されるが、蛋白
へのダメージ防止とスケールアップ時の操作性などの観
点から蛋白分取装置の操作耐圧は5kgf/cm2 以下の低圧
損で行われ、そのため系内の圧損を低く抑えた条件下で
吸着、回収操作を行うことが必要となる。
2. Description of the Related Art In the production process of biopharmaceuticals, a purification method by liquid chromatography is frequently used.
The raw material solution of the useful protein to be a biopharmaceutical is a cell culture solution obtained by culturing animal cells and the like in a medium, and the culture supernatant obtained by removing cells from the material solution is filled with an ion exchanger, an affinity carrier, and the like. Concentration and purification of useful proteins are performed by passing the solution through an adsorption column and treating. At that time, since the useful protein concentration in the culture supernatant is low, it is necessary to treat a large amount of the culture supernatant at one time. It was started. The column packed with the adsorption carrier is mounted on a protein fractionation apparatus. From the viewpoint of preventing damage to the protein and operability at scale-up, the operating pressure of the protein fractionation apparatus is 5 kgf / cm 2 or less. It is carried out with a low pressure loss, so that it is necessary to carry out the adsorption and recovery operations under the condition that the pressure loss in the system is kept low.

【0003】しかしながら、現実には原料液中に培地成
分や不純物(脂質、細胞由来成分等)が含まれており、
吸着カラムを使用する際に目詰まりが生じ、急激な圧損
上昇が起こって装置圧を越えてしまうことが問題とな
る。特に、高流速で操作すると目詰まりが生じやすく、
原料液の負荷量が減少し処理効率が下がる。最終的に
は、蛋白分取装置の限界圧を越えて吸着カラムが使用不
能になる。
However, in reality, the raw material liquid contains medium components and impurities (lipids, cell-derived components, etc.),
When the adsorption column is used, clogging occurs and a sudden increase in pressure loss occurs, which causes a problem that the pressure exceeds the device pressure. In particular, when operated at high flow rates, clogging tends to occur,
The load of the raw material liquid is reduced, and the processing efficiency is reduced. Eventually, the adsorption column becomes unusable beyond the limit pressure of the protein fractionator.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、高流速で操作した場合にも圧損上昇
を抑制し、高い処理効率を維持することができる吸着カ
ラムの連続使用方法及び装置を提供するためになされた
ものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and continuously uses an adsorption column capable of suppressing an increase in pressure loss and maintaining high processing efficiency even when operated at a high flow rate. It has been made to provide methods and apparatus.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた請求項1の発明は、細胞培養上清等の被処
理液を吸着カラムに通液し、有用物質の精製処理を繰り
返し行う吸着カラムの連続使用方法において、吸着カラ
ムの平衡化、被処理液負荷、洗浄、溶離回収の一連の各
操作終了後に、(1) 酢酸とエタノールの混合液、(2) 水
酸化ナトリウムとエタノールの混合液、(3) 塩酸等の酸
性溶液の順序で吸着カラムを再生洗浄することを特徴と
するものである。この場合、吸着カラムの平衡化、被処
理液負荷までの通液方向と、以降の洗浄、溶離回収、再
生洗浄とを逆方向で行うことが好ましい。
Means for Solving the Problems According to the first aspect of the present invention, which has been made to solve the above-mentioned problems, a liquid to be treated such as a cell culture supernatant is passed through an adsorption column, and a purification process of a useful substance is repeated. In the continuous operation of the adsorption column, after a series of operations such as equilibration of the adsorption column, loading of the liquid to be treated, washing, and elution recovery, (1) a mixture of acetic acid and ethanol, (2) sodium hydroxide and ethanol And (3) regenerating and washing the adsorption column in the order of an acidic solution such as hydrochloric acid. In this case, it is preferable to perform the equilibration of the adsorption column, the flow direction to the load of the liquid to be treated, and the subsequent washing, elution recovery, and regeneration washing in the opposite directions.

【0006】また請求項3の発明は、細胞培養上清等の
サンプルを吸着カラムに通液し、有用物質の精製処理を
行う吸着カラムの連続使用において、吸着カラム内に10
0 μm 以下の粒子径を有する吸着担体の吸着層とこの吸
着担体よりも粗い粒子径を有するゲルろ過担体等の不活
性な未吸着担体層を少なくとも1層以上設置し、その吸
着カラムの不活性担体層側から吸着担体層側の方向に被
処理液を通液することを特徴とするものであり、請求項
4の発明は、細胞培養上清等のサンプルを吸着カラムに
通液し、有用物質の精製処理を行う吸着カラムの連続使
用において、100 μm 以下の粒子径を有する吸着担体の
吸着層を設置した吸着カラムと、この吸着担体よりも粗
い粒子径を有するゲルろ過担体等の不活性な未吸着担体
層を設置した吸着カラムとを連結し、それらの吸着カラ
ムの不活性担体層側から吸着担体層側の方向に被処理液
を通液することを特徴とするものである。これらの請求
項3、4の発明においては、未吸着担体層の厚みが3cm
以上で、吸着担体層の厚み/未吸着担体層の厚みの値が
3以下であることが好ましい。未吸着担体層が2層以上
の場合、未吸着担体層の厚みとは、未吸着担体層の厚み
を足し合わせた合計の厚みをいう。さらに請求項6の発
明は、吸着カラムの上下部に切替えバルブを設置し、被
処理液通液方向と逆方向に再生洗浄液を通液する送液ラ
インを設け、請求項1〜5のいずれかに記載された方法
で吸着カラムを連続使用することを特徴とするものであ
る。
The invention of claim 3 is directed to a method of continuously using an adsorption column for purifying useful substances by passing a sample such as a cell culture supernatant through the adsorption column.
At least one layer of an adsorption carrier having a particle size of 0 μm or less and an inert non-adsorption carrier layer such as a gel filtration carrier having a particle size coarser than the adsorption carrier is installed. The liquid to be treated is passed in the direction from the carrier layer side to the adsorption carrier layer side. The invention of claim 4 is to pass a sample such as a cell culture supernatant through an adsorption column, In continuous use of an adsorption column for purifying substances, an adsorption column equipped with an adsorption layer of an adsorption carrier having a particle size of 100 μm or less, and an inert filter such as a gel filtration carrier with a particle size coarser than this adsorption carrier And an adsorption column provided with such an unadsorbed carrier layer, and the liquid to be treated is passed from the side of the inert carrier layer to the side of the adsorption carrier layer of the adsorption column. According to the third and fourth aspects of the present invention, the thickness of the unadsorbed carrier layer is 3 cm.
As described above, the value of the thickness of the adsorbed carrier layer / the thickness of the non-adsorbed carrier layer is preferably 3 or less. When the number of the non-adsorbed carrier layers is two or more, the thickness of the non-adsorbed carrier layer refers to a total thickness obtained by adding the thicknesses of the non-adsorbed carrier layers. Further, the invention according to claim 6 is characterized in that a switching valve is provided at the upper and lower portions of the adsorption column, and a liquid sending line for passing the regenerating cleaning solution in a direction opposite to the direction of the liquid to be treated is provided. Characterized in that the adsorption column is continuously used by the method described in (1).

【0007】[0007]

【発明の実施の形態】以下に、各発明の好ましい実施の
形態を説明する。 (請求項1の発明)図1は請求項1の発明を実施するた
めの装置構成を示す図であり、1は吸着カラム、2は細
胞培養上清等のサンプルが収納された容器である。吸着
カラム1の内部にはアフィニティ充填材3が充填されて
いる。4は通液用のポンプであり、溶媒切り換えバルブ
5、脱気装置6を介して平衡化液、溶離液、再生洗浄液
等を吸着カラム1に通液することができる。また7は吸
着カラム1からの流出液中の目的物質の濃度を紫外線を
利用して測定するためのUV計である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of each invention will be described below. (Invention of Claim 1) FIG. 1 is a view showing the structure of an apparatus for carrying out the invention of claim 1, wherein 1 is an adsorption column, and 2 is a container containing a sample such as a cell culture supernatant. The inside of the adsorption column 1 is filled with an affinity packing material 3. Reference numeral 4 denotes a pump for passing liquid, which can pass an equilibration liquid, an eluent, a regenerating washing liquid and the like to the adsorption column 1 via a solvent switching valve 5 and a deaerator 6. Reference numeral 7 denotes a UV meter for measuring the concentration of the target substance in the effluent from the adsorption column 1 using ultraviolet rays.

【0008】請求項1の発明では、従来と同様の吸着カ
ラム1の平衡化、被処理液(サンプル)負荷、洗浄、溶
離回収の一連の各操作終了後に、(1) 酢酸とエタノール
の混合液、(2) 水酸化ナトリウムとエタノールの混合
液、(3) 塩酸等の酸性溶液をこの順序で吸着カラム1に
通液し、吸着カラム1を再生洗浄する。本発明におい
て、これらの3液をこの順序で通液する理由は次の通り
である。
According to the first aspect of the invention, after a series of operations of equilibration of the adsorption column 1, loading of the liquid to be treated (sample), washing, and elution and recovery, which are the same as in the prior art, (1) a mixed solution of acetic acid and ethanol (2) A mixed solution of sodium hydroxide and ethanol and (3) an acidic solution such as hydrochloric acid are passed through the adsorption column 1 in this order, and the adsorption column 1 is regenerated and washed. In the present invention, the reason why these three liquids are passed in this order is as follows.

【0009】本発明者はまず、一般的な再生液である6
M塩酸グアニジン等の蛋白変性剤を用いて圧損の上昇し
た吸着カラム1の再生を試みたが、一旦上昇した吸着カ
ラム1の圧損は回復しなかった。しかし、酢酸とエタノ
ールの混合液で酸性側にした後、NaOHとエタノールの混
合液でアルカリ側に変化させたときに脂質除去作用が大
きく、さらに再度酸性バッファーを流し中和したことで
初期圧まで回復することが判明した。すなわち、吸着カ
ラム1の圧損が初期圧0.35kgf/cm2からサンプル負荷後
に0.5kgf/cm2まで上昇した際、(1) 酢酸とエタノールの
混合液、(2) 水酸化ナトリウムとエタノールの混合液の
組合せによる再生洗浄を実施したところ、0.4kgf/cm2
で圧損が回復した。しかしながら、吸着カラムを繰り返
し使用するには初期圧まで回復させることが必要であ
り、(1) 酢酸とエタノールの混合液、(2) 水酸化ナトリ
ウムとエタノールの混合液、(3) 塩酸等の酸性溶液をこ
の順番で逆洗フローにて通液することにより初期圧の0.
35kgf/cm2 まで回復させることができた。
The inventor of the present invention has firstly obtained a general regenerating solution, 6
An attempt was made to regenerate the adsorption column 1 in which the pressure loss was increased using a protein denaturant such as M guanidine hydrochloride, but the pressure loss of the adsorption column 1 which was once increased was not recovered. However, when the mixture was made acidic with a mixture of acetic acid and ethanol, and then changed to the alkali side with a mixture of NaOH and ethanol, the lipid removal effect was large. It was found to recover. That is, when the pressure loss of the adsorption column 1 is increased from the initial pressure 0.35kgf / cm 2 after sample loading up to 0.5 kgf / cm 2, (1) a mixture of acetic acid and ethanol, (2) a mixture of sodium hydroxide and ethanol When the regeneration washing was performed by the combination of the above, the pressure loss recovered to 0.4 kgf / cm 2 . However, it is necessary to restore the initial pressure to use the adsorption column repeatedly. (1) A mixture of acetic acid and ethanol, (2) A mixture of sodium hydroxide and ethanol, and (3) An acid such as hydrochloric acid The solution is passed through the backwash flow in this order to reduce the initial pressure to 0.
It was able to recover to 35 kgf / cm 2 .

【0010】またこの場合、吸着カラム1の平衡化、被
処理液負荷までを図2に示すように下向流で行い、以降
の洗浄、溶離回収、再生洗浄を図3に示すように上向流
で行うことが好ましい。その理由は、吸着カラム1の目
詰まりの原因物質はカラム上部から蓄積している可能性
が高く、従ってサンプル負荷以降の工程から逆洗フロー
にすることにより、圧損上昇を抑える効果が得られるた
めである。
In this case, the equilibration of the adsorption column 1 and the loading of the liquid to be treated are performed in a downward flow as shown in FIG. 2, and the subsequent washing, elution recovery and regeneration washing are performed in an upward direction as shown in FIG. It is preferred to carry out the flow. The reason is that there is a high possibility that the substance causing the clogging of the adsorption column 1 is accumulated from the upper part of the column. Therefore, by performing the backwashing flow from the step after loading the sample, the effect of suppressing the increase in pressure drop can be obtained. It is.

【0011】(請求項3の発明)図4は請求項3の発明
の実施形態を示す図であり、吸着カラム1内に100 μm
以下の粒子径を有する吸着担体の吸着層8と、この吸着
担体よりも粗い粒子径を有するゲルろ過担体等の不活性
な未吸着担体層9が設置されている。吸着層8を構成す
る吸着担体としては、例えば、近年開発された高速高吸
着容量の吸着担体である硬質のポリマー系、シリカ系の
ものを使用することができる。
(Invention of Claim 3) FIG. 4 is a view showing an embodiment of the invention of Claim 3, wherein 100 μm
An adsorbing layer 8 of an adsorbing carrier having the following particle diameter and an inert non-adsorbing carrier layer 9 such as a gel filtration carrier having a coarser particle diameter than the adsorbing carrier are provided. As the adsorption carrier constituting the adsorption layer 8, for example, a hard polymer-based or silica-based adsorption carrier that has been developed in recent years and has a high speed and high adsorption capacity can be used.

【0012】このように吸着担体の吸着層8と不活性な
未吸着担体層9とを吸着カラム1内に設置し、その不活
性担体層側から吸着担体層側の方向に被処理液を通液す
れば、サンプル液中に含まれる培地成分や不純物は不活
性な未吸着担体層9によってろ過され、後記する実施例
に示すように吸着担体の吸着層8の目詰まりを防止する
ことができる。なお、未吸着担体層9の厚みが3cm以上
で、吸着担体層8の厚み/未吸着担体層9の厚みの値が
3以下であることが好ましい。これは未吸着担体層9の
厚みが3cm未満であったり、その比が3を越えると目詰
まり防止効果が少ないためである。
Thus, the adsorbing layer 8 of the adsorbing carrier and the inert non-adsorbing carrier layer 9 are placed in the adsorption column 1, and the liquid to be treated is passed from the inert carrier layer side to the adsorbing carrier layer side. If liquefied, the medium components and impurities contained in the sample solution are filtered by the inert non-adsorbed carrier layer 9, thereby preventing the adsorption layer 8 of the adsorbed carrier from being clogged as shown in Examples described later. . Preferably, the thickness of the non-adsorbed carrier layer 9 is 3 cm or more, and the value of (thickness of the adsorbed carrier layer 8 / thickness of the non-adsorbed carrier layer 9) is 3 or less. This is because if the thickness of the non-adsorbed carrier layer 9 is less than 3 cm, or if the ratio exceeds 3, the effect of preventing clogging is small.

【0013】(請求項4の発明)なお、図4のように単
一の吸着カラム1内に吸着担体の吸着層8と不活性な未
吸着担体層9とを設置するほか、吸着担体の吸着層8の
みを充填した吸着カラム1と、不活性な未吸着担体層9
を充填した吸着カラムとを直列に接続し、その不活性担
体層9側から吸着担体層8側の方向に被処理液を通液し
ても同様の効果を得ることができる。以下に各発明の実
施例を示す。
(Invention of Claim 4) In addition, as shown in FIG. 4, a single adsorption column 1 is provided with an adsorbing carrier adsorption layer 8 and an inert non-adsorbing carrier layer 9, and the adsorbing carrier is adsorbed. Adsorption column 1 packed only with layer 8 and inert unadsorbed carrier layer 9
The same effect can be obtained by connecting in series an adsorption column filled with, and passing the liquid to be treated in a direction from the inert carrier layer 9 side to the adsorption carrier layer 8 side. Examples of each invention will be described below.

【0014】[0014]

【実施例】(実施例1・・請求項1の発明) 動物細胞培養上清(ヒトモノクローナルIgG 含有)に、
塩化ナトリウムを0.5モル/Lとなるように加えて溶解し
た後、1ミクロンフィルターでろ過して 吸着カラムに
通液するサンプルとした。サンプル中のヒトIgG と特異
的に吸着するプロテインAを固定相(リガンド)とした
アフィニティ充填剤(バイオセプラ社製、商品名Hyper
D)を、内径10mmのガラス製カラムへ60mmの高さになる
まで充填した。吸着担体としては、高速・高吸着容量の
特性を有するイオン交換、アフィニティ、疎水等のクロ
マト充填剤が処理量が大きい点で適している。例えば、
近年開発された高速高吸着容量の吸着担体は、硬質のポ
リマー系、シリカ系を素材とし、担体の平均粒子径も10
0 μm 以下のものが多く使用されている。図5に実施例
1の吸着カラムを示す。
[Example] (Example 1) The invention of claim 1 is applied to an animal cell culture supernatant (containing human monoclonal IgG).
Sodium chloride was added and dissolved at a concentration of 0.5 mol / L, and then filtered through a 1-micron filter to obtain a sample that was passed through an adsorption column. Affinity packing (Biosepra, trade name Hyper) using protein A, which adsorbs specifically to human IgG in the sample, as the stationary phase (ligand)
D) was packed into a glass column with an inner diameter of 10 mm to a height of 60 mm. As an adsorption carrier, a chromatographic filler having characteristics of high speed and high adsorption capacity, such as ion exchange, affinity, and hydrophobicity, is suitable in terms of a large throughput. For example,
The recently developed high-speed, high-adsorption capacity adsorption carrier is made of a hard polymer-based or silica-based material and has an average particle diameter of 10
Thicknesses below 0 μm are often used. FIG. 5 shows the adsorption column of Example 1.

【0015】実施例1の実験では、平均粒子径50μm の
吸着担体を用いた。また、カラム内ゲル層の上下部に
は、充填剤の漏出が無い最大の孔径を有するフィルター
を使用するのが好ましく、厚み1mm以下のシート状の20
ミクロンメッシュ(ポリプロピレン製メッシュ等) を用
いた。このような吸着カラムを図1に示す分取装置に装
着してあらかじめ平衡化した後、培養上清サンプルを高
流速600 cm/hr(=100C.V./hr,7.85ml/min.) で下向き
に通液した。その後の工程のカラム洗浄からバルブを切
換えて上向きで行い、カラム出口のUV吸収値がベースラ
インと平行になるまで洗浄した。次に溶離液でヒトIgG
を回収した後、再生工程では再生液1:0.5 M酢酸/60
%エタノール、再生液2:0.2 M NaOH/20%エタノー
ル、再生液3:0.1 N HClをこの順番に各々17カラム容
積、4カラム容積、17カラム容積だけカラム内へ逆洗フ
ローで流した。各段階でのカラム圧損を系内に設けた圧
力計で測定した。
In the experiment of Example 1, an adsorbent having an average particle diameter of 50 μm was used. In addition, it is preferable to use a filter having a maximum pore diameter with no leakage of the filler in the upper and lower portions of the gel layer in the column.
A micron mesh (such as a polypropylene mesh) was used. After such an adsorption column was mounted on the fractionation apparatus shown in FIG. 1 and equilibrated in advance, the culture supernatant sample was collected at a high flow rate of 600 cm / hr (= 100 CV / hr, 7.85 ml / min.). The liquid was passed downward. The column was washed upward until the UV absorption value at the outlet of the column became parallel to the baseline by switching the valve from the subsequent column washing. Next, the human IgG
After the recovery, in the regeneration step, a regenerating solution 1: 0.5 M acetic acid / 60
% Ethanol, regenerating solution 2: 0.2 M NaOH / 20% ethanol, and regenerating solution 3: 0.1 N HCl were flowed through the column in the stated order by 17 column volumes, 4 column volumes, and 17 column volumes in a backwash flow. The column pressure loss at each stage was measured with a pressure gauge provided in the system.

【0016】図6にその結果を示すが、従来方法では繰
り返し使用することによるカラム圧損上昇が顕著である
のに対して、本発明ではカラム容積の300 倍(1413ml,3
00C.V.)の大量サンプルを負荷し、繰り返し精製処理を
行ってもカラム圧損上昇を抑えて安定に操作することが
できた。なお、この実施例1の実験条件及び実験方法を
以下の表にまとめて記載する。
FIG. 6 shows the results. In the conventional method, the column pressure loss rises remarkably due to repeated use, whereas in the present invention, it is 300 times the column volume (1413 ml, 3
00C.V.) and repeated purification treatments, the column pressure loss rise was suppressed and stable operation was possible. The experimental conditions and methods of Example 1 are summarized in the following table.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】(実施例2・・請求項3の発明)この実施
例2の実験では、平均粒子径35μm の吸着担体(HyperD
プロテインAゲル)を用いた。それ以外は実施例1と同
様の実験条件を用いた。吸着担体の平均粒子径が35μm
であるとき、実施例1で用いた平均粒子径50μm の場合
よりも高流速600cm/hrでのサンプル負荷量に制約を受け
た。すなわち、図7に示すようにサンプルを70カラム容
積分流した時点から急激な圧損上昇がみられた。圧損が
上昇した時点で一旦吸着平衡化液によりカラム内を洗浄
したところ圧損を一時的に下げることはできたが、再び
サンプルを流すと圧損上昇が生じた。それゆえ、この場
合にはカラム吸着容量は余裕があるにもかかわらず、処
理量が少なくなり繰り返しの連続処理もできないという
結果となった。
Example 2 Inventive Example 3 In the experiment of Example 2, an adsorbent (HyperD) having an average particle diameter of 35 μm was used.
Protein A gel) was used. Otherwise, the same experimental conditions as in Example 1 were used. The average particle size of the adsorption carrier is 35μm
When, the sample load at a higher flow rate of 600 cm / hr was restricted than in the case of the average particle diameter of 50 μm used in Example 1. That is, as shown in FIG. 7, a sharp increase in pressure loss was observed from the time when the sample was flowed for 70 column volumes. When the pressure drop increased, the inside of the column was once washed with the adsorption equilibrium solution, and the pressure drop could be temporarily reduced. However, when the sample was flown again, the pressure drop increased. Therefore, in this case, although the column adsorption capacity has a margin, the processing amount is reduced and the result is that repeated continuous processing cannot be performed.

【0021】そこでこの課題を克服するために、吸着カ
ラム内の吸着担体層の上部に吸着担体よりも粗い粒子径
(100μm)を有するゲルろ過担体(商品名セファデックス
G25 、ファルマシア製)を未吸着担体層として設置し
た。その効果を図8に示すが、高速流600cm/hrでも300
カラム容積分通過しても圧力上昇はみられず、吸着担体
の処理性能を最大限に引き出せた。この方法でも実施例
1の精製処理方法と組み合わせることにより、吸着カラ
ムの安定な連続使用が可能であった。また、未吸着担体
層を別のカラムとして設け、連結して使用した場合にも
同様の効果が得られた。この場合、ゲルをカラムへ充填
する方法として、ゲルスラリーをカラムに注ぎ込み、ゲ
ルを自然沈降させることにより、下層は粒径が大きく上
層は粒径が小さいという粒度分布のある充填を行い、被
処理液を上向流で通液することが望ましい。なお、この
実施例2の実験条件及び実験方法を以下の表にまとめて
記載する。
Therefore, in order to overcome this problem, the upper part of the adsorption carrier layer in the adsorption column has a coarser particle size than the adsorption carrier.
(100μm) gel filtration carrier (trade name Sephadex
G25, manufactured by Pharmacia) as an unadsorbed carrier layer. The effect is shown in FIG.
No pressure increase was observed even after passing through the column volume, and the treatment performance of the adsorbent carrier was maximized. Also in this method, stable continuous use of the adsorption column was possible by combining with the purification treatment method of Example 1. The same effect was obtained when the unadsorbed carrier layer was provided as a separate column and used in connection. In this case, as a method of filling the gel into the column, the gel slurry is poured into the column and the gel is allowed to settle naturally, so that the lower layer has a large particle size and the upper layer has a small particle size distribution. Is desirably passed in upward flow. The experimental conditions and methods of Example 2 are described in the following table.

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】(実験方法) [Table 6] (Experimental method)

【0025】(実施例3・・請求項5の発明)この実施
例3の実験では表7、8に示すように吸着担体層の厚み
と未吸着担体層の厚みを変えて実験した。それ以外の条
件は実施例2と同様の実験条件を用いた。まず、吸着担
体層の厚みを固定し、未吸着担体層の厚みを変えて実験
したところ、図9のグラフに示すように未吸着担体層の
厚み3cm以上で目詰まり防止効果が高くなった。また未
吸着担体層の厚みを固定し、吸着担体層の厚みを変えて
実験したところ、図10のグラフに示すように吸着担体
層の厚み/未吸着担体層の厚みの値が4になると、未吸
着担体層が目詰まりをし始めることにより圧力が上昇し
た。つまり、未吸着担体層の厚み3cm以上で吸着担体層
の厚み/未吸着担体層の厚みの値を3以下とすること
で、カラムの圧力上昇を抑えて安定に操作することが可
能となった。
Example 3 In the experiment of Example 3, the thickness of the adsorbed carrier layer and the thickness of the non-adsorbed carrier layer were changed as shown in Tables 7 and 8. Other conditions were the same as those in Example 2. First, an experiment was conducted with the thickness of the adsorbed carrier layer fixed and the thickness of the non-adsorbed carrier layer changed, and as shown in the graph of FIG. 9, the effect of preventing clogging was enhanced when the thickness of the non-adsorbed carrier layer was 3 cm or more. When the thickness of the non-adsorbed carrier layer was fixed and the experiment was performed while changing the thickness of the adsorbed carrier layer, when the value of the thickness of the adsorbed carrier layer / the thickness of the non-adsorbed carrier layer became 4 as shown in the graph of FIG. The pressure increased as the unadsorbed carrier layer began to clog. In other words, when the thickness of the non-adsorbed carrier layer is 3 cm or more and the value of the thickness of the adsorbed carrier layer / thickness of the non-adsorbed carrier layer is 3 or less, it is possible to suppress the pressure increase of the column and to operate stably. .

【0026】[0026]

【表7】 [Table 7]

【0027】[0027]

【表8】 [Table 8]

【0028】(実施例4・・請求項6の発明)請求項6
の分取用液体クロマトグラフィ装置のカラム周辺のフロ
ー図を図11に示す。図11では直列な3個の吸着カラ
ム10a 、10b 、10c の上部と下部にそれぞれ切替えバル
ブ11a 、11b 、11c と12a 、12b 、12c とを設置してあ
る。また再生洗浄液の供給ライン13、14が設けられてい
る。図11は被処理液を吸着カラム10a 、10b 、10c に
通液し、有用物質の精製処理を行う状態を示している。
(Embodiment 4-Invention of Claim 6) Claim 6
FIG. 11 shows a flow chart around the column of the preparative liquid chromatography device. In FIG. 11, switching valves 11a, 11b, 11c and 12a, 12b, 12c are installed at upper and lower portions of three adsorption columns 10a, 10b, 10c in series, respectively. Further, supply lines 13 and 14 for the regeneration cleaning liquid are provided. FIG. 11 shows a state in which the liquid to be treated is passed through the adsorption columns 10a, 10b, and 10c to purify useful substances.

【0029】図12は、吸着カラム10c の再生洗浄を行
う状態を示している。この場合には切替えバルブ15を切
替えて再生洗浄液を供給ライン13に流し、切替えバルブ
12c を経由して吸着カラム10c に被処理液通液方向と逆
方向に再生洗浄液を通液する。吸着カラム10c から流出
した再生洗浄液は切替えバルブ11c 、排出ライン16を経
由して排出される。
FIG. 12 shows a state in which the adsorption column 10c is regenerated and washed. In this case, the switching valve 15 is switched so that the regenerated cleaning liquid flows into the supply line 13, and the switching valve
The regenerating washing liquid is passed through the adsorption column 10c in the direction opposite to the flowing direction of the liquid to be treated via 12c. The regenerating washing liquid flowing out of the adsorption column 10c is discharged via the switching valve 11c and the discharge line 16.

【0030】図13は、吸着カラム10a 、10b の再生洗
浄を行う状態を示している。この場合にはポンプ17から
再生洗浄液が供給され、供給ライン14、切替えバルブ12
b を経由して吸着カラム10b を被処理液通液方向と逆方
向に流れ、更に切替えバルブ11b 、12a を経由して吸着
カラム10a を被処理液通液方向と逆方向に流れたうえ、
排出ライン18を経由して排出される。何れの吸着カラム
の洗浄も請求項1〜5のいずれかに記載された方法で行
われ、吸着カラムの連続使用が可能となる。なお、この
例では直列な3個の吸着カラム10a 、10b 、10c を示し
たが、吸着カラムは単一であってもよい。
FIG. 13 shows a state where the regeneration of the adsorption columns 10a and 10b is performed. In this case, the regenerating cleaning liquid is supplied from the pump 17, and the supply line 14, the switching valve 12
b, flows through the adsorption column 10b in the direction opposite to the liquid flow direction of the liquid to be treated, and further flows through the switching columns 11b, 12a through the adsorption column 10a in the direction opposite to the liquid flow direction of the liquid to be treated.
It is discharged via a discharge line 18. Washing of any adsorption column is performed by the method described in any one of claims 1 to 5, and continuous use of the adsorption column becomes possible. In this example, three adsorption columns 10a, 10b, and 10c are shown in series, but a single adsorption column may be used.

【0031】[0031]

【発明の効果】以上に説明したように、本願の各発明に
よれば、吸着カラムを高流速で操作した場合にも目詰ま
りによる圧損上昇を抑制し、高い処理効率を維持するこ
とができる。このため本願各発明は、多量の培養上清を
1回に処理する必要があるバイオ医薬品の製造等におい
て用いられる吸着カラムの連続使用方法及び装置とし
て、優れた効果がある。
As described above, according to each invention of the present application, even when the adsorption column is operated at a high flow rate, an increase in pressure loss due to clogging can be suppressed, and high processing efficiency can be maintained. For this reason, each invention of the present application has an excellent effect as a method and an apparatus for continuously using an adsorption column used in the production of biopharmaceuticals or the like that requires a large amount of culture supernatant to be treated at one time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明を実施するための装置構成図で
ある。
FIG. 1 is a configuration diagram of an apparatus for carrying out the invention of claim 1;

【図2】吸着カラムへの通液を下向流で行う状態を示す
図である。
FIG. 2 is a diagram showing a state in which a liquid is passed through an adsorption column in a downward flow.

【図3】吸着カラムへの通液を上向流で行う状態を示す
図である。
FIG. 3 is a diagram showing a state in which liquid is passed through an adsorption column in an upward flow.

【図4】請求項3の発明の実施形態を示す吸着カラムの
断面図である。
FIG. 4 is a sectional view of an adsorption column showing an embodiment of the third invention.

【図5】実施例1の吸着カラムを示す断面図である。FIG. 5 is a sectional view showing the adsorption column of Example 1.

【図6】実施例1の結果を示すグラフである。FIG. 6 is a graph showing the results of Example 1.

【図7】実施例2において未吸着担体層を設置しない場
合のサンプル負荷と圧損との関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a sample load and a pressure loss when no unadsorbed carrier layer is provided in Example 2.

【図8】実施例2において未吸着担体層を設置した場合
のサンプル負荷と圧損との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between sample load and pressure loss when a non-adsorbed carrier layer is provided in Example 2.

【図9】実施例3において未吸着担体層の厚みを変えた
場合のサンプル負荷と圧損との関係を示すグラフであ
る。
FIG. 9 is a graph showing the relationship between sample load and pressure loss when the thickness of an unadsorbed carrier layer is changed in Example 3.

【図10】実施例3において吸着担体層の厚みを変えた
場合のサンプル負荷と圧損との関係を示すグラフであ
る。
FIG. 10 is a graph showing the relationship between sample load and pressure loss when the thickness of the adsorption carrier layer is changed in Example 3.

【図11】請求項6の発明の実施例を示す配管系統図で
ある。
FIG. 11 is a piping system diagram showing an embodiment of the invention according to claim 6;

【図12】請求項6の発明の実施例を示す配管系統図で
ある。
FIG. 12 is a piping system diagram showing an embodiment of the invention of claim 6;

【図13】請求項6の発明の実施例を示す配管系統図で
ある。
FIG. 13 is a piping diagram showing an embodiment of the invention according to claim 6;

【符号の説明】[Explanation of symbols]

1 吸着カラム、2 サンプルの容器、3 アフィニテ
ィ充填材、4 通液用のポンプ、5 溶媒切り換えバル
ブ、6 脱気装置、7 UV計、8 吸着担体の吸着
層、9 不活性な未吸着担体層、10 吸着カラム、11
切替えバルブ、12切替えバルブ、13 再生洗浄液の供給
ライン、14 再生洗浄液の供給ライン、15 切替えバル
ブ、16 排出ライン、17 ポンプ、18 排出ライン
1 adsorption column, 2 sample containers, 3 affinity packing material, 4 liquid pump, 5 solvent switching valve, 6 deaerator, 7 UV meter, 8 adsorption carrier adsorption layer, 9 inert non-adsorption carrier layer , 10 adsorption column, 11
Switching valve, 12 Switching valve, 13 Regeneration cleaning liquid supply line, 14 Regeneration cleaning liquid supply line, 15 Switching valve, 16 discharge line, 17 pump, 18 discharge line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬島 剛 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 (72)発明者 山田 佐一 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 (72)発明者 竹内 英樹 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsuyoshi Majima 2-56 Sudacho, Mizuho-ku, Nagoya, Aichi Prefecture Inside Nihon Insulators Co., Ltd. (72) Inventor Saichi Yamada 2nd Sudacho, Mizuho-ku, Nagoya Aichi, Japan No. 56 Nippon Insulators Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 細胞培養上清等の被処理液を吸着カラム
に通液し、有用物質の精製処理を繰り返し行う吸着カラ
ムの連続使用方法において、吸着カラムの平衡化、被処
理液負荷、洗浄、溶離回収の一連の各操作終了後に、
(1) 酢酸とエタノールの混合液、(2) 水酸化ナトリウム
とエタノールの混合液、(3) 塩酸等の酸性溶液の順序で
吸着カラムを再生洗浄することを特徴とする吸着カラム
の連続使用方法。
1. A method for continuously using an adsorption column, in which a liquid to be treated such as a cell culture supernatant is passed through an adsorption column and a purification process of a useful substance is repeated, the equilibration of the adsorption column, loading of the liquid to be treated, and washing. After the end of each series of elution and recovery operations,
(1) A mixture of acetic acid and ethanol; (2) A mixture of sodium hydroxide and ethanol; and (3) A continuous use of the adsorption column, wherein the adsorption column is regenerated and washed in the order of an acidic solution such as hydrochloric acid. .
【請求項2】 吸着カラムの平衡化、被処理液負荷まで
の通液方向と、以降の洗浄、溶離回収、再生洗浄とを逆
方向で行う請求項1に記載の吸着カラムの連続使用方
法。
2. The continuous use method of the adsorption column according to claim 1, wherein the equilibration of the adsorption column, the flow direction up to the load of the liquid to be treated, and the subsequent washing, elution recovery, and regeneration washing are performed in opposite directions.
【請求項3】 細胞培養上清等のサンプルを吸着カラム
に通液し、有用物質の精製処理を行う吸着カラムの連続
使用において、吸着カラム内に100 μm 以下の粒子径を
有する吸着担体の吸着層とこの吸着担体よりも粗い粒子
径を有するゲルろ過担体等の不活性な未吸着担体層を少
なくとも1層以上設置し、その吸着カラムの不活性担体
層側から吸着担体層側の方向に被処理液を通液すること
を特徴とする吸着カラムの連続使用方法。
3. A continuous use of an adsorption column for purifying a useful substance by passing a sample such as a cell culture supernatant through an adsorption column and adsorbing an adsorption carrier having a particle diameter of 100 μm or less in the adsorption column. A layer and at least one inert non-adsorbed carrier layer such as a gel filtration carrier having a particle size coarser than the adsorbent carrier are provided, and the layer is covered in the direction from the inert carrier layer side to the adsorbent carrier layer side of the adsorption column. A method for continuously using an adsorption column, wherein a treatment liquid is passed.
【請求項4】 細胞培養上清等のサンプルを吸着カラム
に通液し、有用物質の精製処理を行う吸着カラムの連続
使用において、100 μm 以下の粒子径を有する吸着担体
の吸着層を設置した吸着カラムと、この吸着担体よりも
粗い粒子径を有するゲルろ過担体等の不活性な未吸着担
体層を設置した吸着カラムとを連結し、それらの吸着カ
ラムの不活性担体層側から吸着担体層側の方向に被処理
液を通液することを特徴とする吸着カラムの連続使用方
法。
4. An adsorption layer of an adsorption carrier having a particle diameter of 100 μm or less is provided for continuous use of an adsorption column for purifying a useful substance by passing a sample such as a cell culture supernatant through an adsorption column. The adsorption column is connected to an adsorption column provided with an inert non-adsorbed carrier layer such as a gel filtration carrier having a particle size coarser than the adsorption carrier, and the adsorbed carrier layer is placed from the inert carrier layer side of those adsorption columns. Continuous flow of the liquid to be treated in the direction of the side.
【請求項5】 未吸着担体層の厚みが3cm以上で、吸着
担体層の厚み/未吸着担体層の厚みの値が3以下である
請求項3または4に記載の吸着カラムの連続使用方法。
5. The method according to claim 3, wherein the thickness of the non-adsorbed carrier layer is 3 cm or more, and the value of (thickness of the adsorbed carrier layer / thickness of the non-adsorbed carrier layer) is 3 or less.
【請求項6】 吸着カラムの上下部に切替えバルブを設
置し、被処理液通液方向と逆方向に再生洗浄液を通液す
る送液ラインを設け、請求項1〜5のいずれかに記載さ
れた方法で吸着カラムを連続使用することを特徴とする
吸着カラムの連続使用装置。
6. The liquid supply line according to claim 1, wherein a switching valve is provided at the upper and lower portions of the adsorption column, and a liquid feed line is provided for passing the regenerating washing liquid in a direction opposite to a liquid flowing direction of the liquid to be treated. Continuous use of an adsorption column by a continuous method.
JP2632897A 1997-02-10 1997-02-10 Continuously using method and device of adsorption column Withdrawn JPH10221323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2632897A JPH10221323A (en) 1997-02-10 1997-02-10 Continuously using method and device of adsorption column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2632897A JPH10221323A (en) 1997-02-10 1997-02-10 Continuously using method and device of adsorption column

Publications (1)

Publication Number Publication Date
JPH10221323A true JPH10221323A (en) 1998-08-21

Family

ID=12190362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2632897A Withdrawn JPH10221323A (en) 1997-02-10 1997-02-10 Continuously using method and device of adsorption column

Country Status (1)

Country Link
JP (1) JPH10221323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089504A1 (en) * 2003-04-08 2004-10-21 Novo Nordisk A/S Regeneration of chromatographic stationary phases
KR101198346B1 (en) * 2003-04-08 2012-11-06 노보 노르디스크 에이/에스 Regeneration of chromatographic stationary phases

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089504A1 (en) * 2003-04-08 2004-10-21 Novo Nordisk A/S Regeneration of chromatographic stationary phases
JP2006525496A (en) * 2003-04-08 2006-11-09 ノボ ノルディスク アクティーゼルスカブ Chromatographic stationary phase regeneration
AU2004228890B2 (en) * 2003-04-08 2010-04-01 Novo Nordisk A/S Regeneration of chromatographic stationary phases
KR101198346B1 (en) * 2003-04-08 2012-11-06 노보 노르디스크 에이/에스 Regeneration of chromatographic stationary phases
US9364772B2 (en) 2003-04-08 2016-06-14 Novo Nordisk A/S Regeneration of chromatographic stationary phases

Similar Documents

Publication Publication Date Title
EP1885488B1 (en) Regeneration of a chromatography matrix
EP2160227B1 (en) Chromatography method
US2564717A (en) Continuous adsorption process
JP5414664B2 (en) Technology to separate olefin from olefin / paraffin mixed gas
US7488422B2 (en) Method and apparatus for separating a target molecule from a liquid mixture
EP2931400B1 (en) Method for cleaning of packed bed chromatography columns
US8956535B2 (en) Single pass method and apparatus for separating a target molecule from a liquid mixture
EP3495376A1 (en) Improved chromatographic process for cell culture harvest
EP3484599B1 (en) Purification method and uses thereof
Shirataki et al. Evaluation of an anion-exchange hollow-fiber membrane adsorber containing γ-ray grafted glycidyl methacrylate chains
JPH1066819A (en) Separation of isoalkane and normal-alkane by adsorption in gaseous phase using pressure change and four adsorbers
CA2187090A1 (en) Process for separating material from mixture using displacement chromatography
JPH10221323A (en) Continuously using method and device of adsorption column
CN107556161A (en) Chromatographic Pure Methanol and preparation method thereof, production system
US4085042A (en) Solid-fluid contacting process
JP2001515405A (en) Method and apparatus for adsorptive separation of substances
He et al. Purification of lysozyme by multistage affinity filtration
JPH07103151B2 (en) Method for purifying antibody by affinity chromatography
JP2607544B2 (en) Ion exchange tower used for upflow regeneration
WO2018042448A1 (en) Hybrid gas purification
JP3093885B2 (en) Column washing method
JP3093886B2 (en) Antibody mass purification equipment
JP2001070704A (en) Method and apparatus for separating a plurality of components contained in liquid
CN113840651A (en) Method for drying propylene oxide
Levine High performance adsorption separations

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511