JPH10220931A - Manufacture of air conditioner - Google Patents

Manufacture of air conditioner

Info

Publication number
JPH10220931A
JPH10220931A JP2232597A JP2232597A JPH10220931A JP H10220931 A JPH10220931 A JP H10220931A JP 2232597 A JP2232597 A JP 2232597A JP 2232597 A JP2232597 A JP 2232597A JP H10220931 A JPH10220931 A JP H10220931A
Authority
JP
Japan
Prior art keywords
compressor
heating
air conditioner
outdoor unit
evacuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232597A
Other languages
Japanese (ja)
Inventor
Hironao Numamoto
浩直 沼本
Toru Yasuda
透 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2232597A priority Critical patent/JPH10220931A/en
Publication of JPH10220931A publication Critical patent/JPH10220931A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the level of water mixed inside a compressor at the assembling of it to a level harmless for an ester or ether oil regarding to reliability by evacuating the compressor heated and held at predetermined temperature or higher. SOLUTION: After heating an outdoor unit, keeping the temperature of a compressor 1 at 50 deg.C or more at the evacuation in a process, performing the evacuation, for example, for a minute or longer in this state and confirming it reaching enough vacuum level, the refrigerant is injected and injecting hole is sealed. For example, after heating a compressor 1 injected with an ester oil containing the water of 1000ppm to, for example, 140 deg.C for 15 minutes by a band heater 2 for heating, performing the evacuation for one minute at ten minutes afterward the removal of the heater 2 for heating and decreasing the vacuum pressure to twenty Pa or less continuing the evacuation, the temperature of the outside surface of the upper part of the compressor 1 is 40 deg.C. Afterward, the water content inside the compressor is measured accurately and the water content is 200ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セパレート型空気
調和機の製造方法、特に水分管理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a separate type air conditioner, and more particularly to a method for controlling moisture.

【0002】[0002]

【従来の技術】従来、空気調和機の製造方法では、室外
機本体に冷媒を注入する前に、充分な真空排気を行って
真空度が充分な値に達すれば、サイクル内水分の除去お
よび配管漏れの確認が行われたこととなり、その後に冷
媒を注入して室外機完成としていた。
2. Description of the Related Art Conventionally, in a method of manufacturing an air conditioner, sufficient vacuum evacuation is performed before a refrigerant is injected into an outdoor unit main body, and if the degree of vacuum reaches a sufficient value, removal of water in a cycle and piping. The leak was confirmed, and the refrigerant was injected thereafter to complete the outdoor unit.

【0003】また、近年オゾン層の破壊、地球温暖化な
ど環境に対する規制の高揚により、塩素を含まないHF
C(Hydro Fluoro Carbon)を使用
した空気調和機の開発が急がれている。HFC冷媒は塩
素を含まないので従来のHCFC(Hydro Chl
oro Fluoro Carbon)のような潤滑性
は望めない。このため、密閉容器に封入するオイルは、
HFC冷媒と相溶性のあるものが特に要求される。密閉
容器に封入されるオイルは、圧縮機構から密閉容器内に
吐出されてくるHFC冷媒によって撹拌されるし、電動
機の回転子によっても撹拌される。この時、オイルは冷
媒と相溶性があることによって、密閉容器内に吐出され
る冷媒によく随伴し、各機械摺動部の細部にまでよく及
ぶので、オイルポンプによるオイルの供給と相まって、
潤滑性能が向上する。このようなオイルには特開平6−
235570号公報等で知られるようにエステル系ある
いはエーテル系と言った合成油が用いられようとしてい
る。
[0003] In recent years, due to rising regulations on the environment such as destruction of the ozone layer and global warming, HF containing no chlorine has been developed.
Development of an air conditioner using C (Hydro Fluoro Carbon) is urgent. Since HFC refrigerant does not contain chlorine, conventional HCFC (Hydro Chl
Lubricity like that of the Oro Fluoro Carbon cannot be expected. For this reason, the oil sealed in the closed container is
A material that is compatible with the HFC refrigerant is particularly required. The oil sealed in the closed container is stirred by the HFC refrigerant discharged from the compression mechanism into the closed container, and is also stirred by the rotor of the electric motor. At this time, since the oil is compatible with the refrigerant, it accompanies the refrigerant discharged into the closed container well, and extends to the details of the sliding parts of each machine.
Lubrication performance is improved. Such oils are disclosed in
As known from JP-A-235570 and the like, synthetic oils of ester type or ether type are being used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記エ
ステル系あるいはエーテル系オイルはともに吸湿し易
く、このようなオイルを使用した圧縮機に関しては従来
よりも充分な管理下のもとで空気調和機(室外機)を製
造することが要求される。
However, the above-mentioned ester-based or ether-based oils are both liable to absorb moisture, and a compressor using such an oil is more fully controlled than an air conditioner under conventional control. Outdoor units).

【0005】本発明は、上記従来の製造方法でHFC冷
媒対応空気調和機を製造した場合の問題点を鑑みて、圧
縮機内に混入した水分も組立工程の途中で排除できる製
造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of manufacturing an air conditioner compatible with HFC refrigerant by the conventional manufacturing method, and provides a manufacturing method capable of removing moisture mixed in a compressor during the assembly process. It is intended for.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明は、圧縮機を加熱し、所定の温度以上に保持さ
せた状態で真空排気を行う。このことによって、組立工
程の途中に圧縮機内に混入した水分をエステル系あるい
はエーテル系オイルに対しても信頼性で問題ないレベル
にまで低減することができる。
According to the present invention, in order to solve the above-mentioned problems, the compressor is heated and evacuated while maintaining the compressor at a predetermined temperature or higher. This makes it possible to reduce the amount of water mixed in the compressor during the assembly process to a level at which there is no problem with the reliability of the ester or ether oil.

【0007】圧縮機を所定の温度以上に加熱する方法と
して、三相モータのいずれかを欠相させて通電する。こ
の場合にはモータは回転しないで圧縮機が内部から加熱
される。
[0007] As a method of heating the compressor to a predetermined temperature or higher, one of the three-phase motors is disconnected and energized. In this case, the compressor is heated from the inside without rotating the motor.

【0008】また、別な加熱方法として三相すべてに通
電する。この場合には低Hzで回転し、オイルおよび混
入水分を撹拌させながら圧縮機が内部からより均一に加
熱される。
As another heating method, current is supplied to all three phases. In this case, the compressor is heated from the inside more uniformly while rotating at a low Hz and stirring the oil and mixed water.

【0009】真空排気を行う際にもモータを回転させな
がら行うことによって、混入水分のより積極的な低減が
可能となる。
[0009] By performing the vacuum evacuation while rotating the motor, it is possible to more positively reduce the amount of water contained.

【0010】[0010]

【発明の実施の形態】上記の課題を解決するための請求
項1記載の発明は、セパレート型空気調和機の室外機製
造工程において、前記室外機の圧縮機を加熱し、所定の
温度以上に保持させた状態で真空排気を行い、その後室
外機本体内部へ冷媒を注入する。
According to a first aspect of the present invention, there is provided an outdoor unit manufacturing process for a separate type air conditioner, wherein a compressor of the outdoor unit is heated to a predetermined temperature or higher. Vacuum evacuation is performed while holding the refrigerant, and then the refrigerant is injected into the outdoor unit main body.

【0011】請求項2に記載の発明は、圧縮機を加熱す
る時、三相のいずれかを欠相させて通電する。
According to the second aspect of the present invention, when the compressor is heated, one of the three phases is disconnected and the current is supplied.

【0012】請求項3に記載の発明は、圧縮機を加熱す
る時、三相に通電して周波数20Hz以下で駆動させ
る。
According to a third aspect of the present invention, when the compressor is heated, the compressor is driven at a frequency of 20 Hz or less by energizing three phases.

【0013】請求項4に記載の発明は、セパレート型空
気調和機の室外機製造工程において、前記室外機の圧縮
機を加熱し、所定の温度以上に保持した状態で、モータ
を回転させながら真空排気を行い、その後室外機本体内
部へ冷媒を注入する。
According to a fourth aspect of the present invention, in the step of manufacturing the outdoor unit of the separate type air conditioner, the compressor of the outdoor unit is heated and the vacuum is maintained while maintaining the predetermined temperature or higher while rotating the motor. The air is exhausted, and then the refrigerant is injected into the outdoor unit main body.

【0014】[0014]

【実施例】以下、本発明の一実施例について詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail.

【0015】(実施例1)図1は、第1の発明の実施例
を示す概略製造工程図である。室外機は、A工程の圧縮
機底板への取り付けから始まり、D工程のプロペラファ
ン取り付けまでで大体の冷凍サイクル経路および付随部
品の取り付け工程が完成する。圧縮機の加熱はA〜D工
程までのB工程中に加熱され、E工程の真空排気におい
ても圧縮機が約50℃に保たれていた。その状態で1分
間以上真空排気され、F工程で充分な真空レベル(20
Pa以下)に達していることを確認した上で、その後に
G工程で冷媒が注入され、H工程で注入孔の封印が行わ
れた。
Embodiment 1 FIG. 1 is a schematic manufacturing process diagram showing an embodiment of the first invention. For the outdoor unit, the process of mounting the refrigeration cycle and the attachment parts is almost completed from the installation on the compressor bottom plate in the process A to the installation of the propeller fan in the process D. The compressor was heated during the B step from the A step to the D step, and the compressor was kept at about 50 ° C. even during the evacuation in the E step. In that state, the chamber is evacuated for 1 minute or more, and a sufficient vacuum level (20
(Pa or less), the refrigerant was injected in the G step, and the injection hole was sealed in the H step.

【0016】図2は圧縮機の加熱方法を示す概略図(そ
の他の接続部品は図示せず)である。図中、1は圧縮
機、2は加熱用バンドヒータ、3はモータの入力ターミ
ナル、4は吐出側ポート、5は吸入側ポートである。本
実施例ではオイル中に1000ppmの水分が含まれる
エステル系オイルが注入された圧縮機を使用して、その
圧縮機を140℃の加熱用バンドヒータで15分間加熱
した後、加熱用ヒータを外して約10分後に1分間の真
空排気を行った。その結果到達真空度は25Paであっ
たので、さらに真空排気を継続して20Pa以下にし
た。この時、圧縮機の上部外側面は40℃であった。そ
の後本圧縮機内の水分を正確に測定した結果、水分は2
00ppmであった。
FIG. 2 is a schematic view showing a method of heating the compressor (other connecting parts are not shown). In the figure, 1 is a compressor, 2 is a heating band heater, 3 is a motor input terminal, 4 is a discharge port, and 5 is a suction port. In this embodiment, a compressor into which ester-based oil containing 1000 ppm of water is injected is used to heat the compressor with a heating band heater at 140 ° C. for 15 minutes, and then the heating heater is removed. After about 10 minutes, vacuum evacuation was performed for one minute. As a result, the ultimate degree of vacuum was 25 Pa, and the vacuum evacuation was continued to 20 Pa or less. At this time, the upper outer surface of the compressor was at 40 ° C. Then, as a result of accurate measurement of the water content in the compressor,
It was 00 ppm.

【0017】(実施例2)実施例1と同様に1000p
pmの水分が含まれるエステル系オイルが注入された圧
縮機を使用して、同様な組立工程で室外機を完成させ
た。ただし、真空排気した時の圧縮機の上部外側面は5
0℃であり、1分間の到達真空度は30Paであった。
その後本圧縮機内の水分を正確に測定した結果、水分は
120ppmであった。
(Embodiment 2) Similar to Embodiment 1, 1000p
An outdoor unit was completed by a similar assembly process using a compressor into which an ester-based oil containing pm of water was injected. However, the upper outer surface of the compressor when evacuated is 5
The temperature was 0 ° C., and the degree of vacuum reached for one minute was 30 Pa.
Thereafter, as a result of accurately measuring the water content in the compressor, the water content was 120 ppm.

【0018】(実施例3)実施例1と同様に1000p
pmの水分が含まれるエステル系オイルが注入された圧
縮機を使用して、同様な組立工程で室外機を完成させ
た。ただし、真空排気した時の圧縮機の上部外側面は6
0℃であり、1分間の到達真空度は40Paであった。
その後本圧縮機内の水分を正確に測定した結果、水分は
80ppmであった。
(Embodiment 3) The same as in Embodiment 1, 1000p
An outdoor unit was completed by a similar assembly process using a compressor into which an ester-based oil containing pm of water was injected. However, the upper outer surface of the compressor when evacuated is 6
The temperature was 0 ° C., and the degree of vacuum reached for one minute was 40 Pa.
Thereafter, the water content in the compressor was measured accurately, and as a result, the water content was 80 ppm.

【0019】(比較例1)実施例1と同様に1000p
pmの水分が含まれるエステル系オイルが注入された圧
縮機を使用して、従来方式(圧縮機を加熱せず)で室外
機を完成させた。ただし、真空排気した時の作業温度は
約15℃であり、1分間の到達真空度は10Paであっ
た。その後本圧縮機内の水分を正確に測定した結果、水
分は800ppmであった。
(Comparative Example 1) 1000 p in the same manner as in Example 1.
An outdoor unit was completed by a conventional method (without heating the compressor) using a compressor into which an ester-based oil containing pm of water was injected. However, the working temperature at the time of evacuation was about 15 ° C., and the ultimate degree of vacuum for one minute was 10 Pa. Thereafter, the water content in the compressor was accurately measured, and as a result, the water content was 800 ppm.

【0020】実施例1〜3および比較例1から明らかな
ように、圧縮機の温度が低い時には真空到達度が高くて
も、混入水分の追い出しはできておらず、残留水分の多
いことがわかった。したがって、製造工程の経路で混入
した水分を低減するためには圧縮機を高い温度に保持し
て真空排気することが好ましかった。しかし、あまり高
温にしすぎるとオイル中の添加剤が揮発したり、あるい
はオイルが変質に至る場合もあるので注意が必要であ
る。したがって、バンドヒータでの圧縮機加熱はオイル
への影響が心配ない限界温度(140℃付近)で加熱
し、加熱された圧縮機の外側面が徐々に内部へと伝熱し
ていくことで均一化させ、少なくとも40℃以上、好ま
しくは60℃以上の状態で真空排気することが好まし
い。
As is clear from Examples 1 to 3 and Comparative Example 1, when the temperature of the compressor is low, even if the degree of vacuum is high, the water contained therein has not been driven out and the residual water is large. Was. Therefore, in order to reduce the amount of water mixed in the manufacturing process, it was preferable to evacuate the compressor while maintaining the compressor at a high temperature. However, care must be taken because if the temperature is too high, the additives in the oil may volatilize or the oil may deteriorate. Therefore, the compressor heating by the band heater is heated at the limit temperature (around 140 ° C) where there is no concern about the effect on the oil, and the outer surface of the heated compressor gradually transfers heat to the inside to make it uniform. It is preferable to evacuate at least 40 ° C. or more, preferably 60 ° C. or more.

【0021】また、実施例1〜3ではB工程で圧縮機の
加熱を行ったが、圧縮機の加熱はA〜Dのいずれの工程
で行うことも可能である。注意すべき点はE工程時での
圧縮機温度であった。
In the first to third embodiments, the compressor is heated in the step B. However, the compressor can be heated in any of the steps A to D. A point to be noted was the compressor temperature in the E step.

【0022】(実施例4)本実施例でも実施例1と同様
な水分混入のエステル系オイルが注入された圧縮機を使
用した。図3は圧縮機の側面図であり、3はモータの入
力ターミナル、4は吐出側ポートであり、入力ターミナ
ル3は3個の端子を有し、それぞれ、6は端子A、7は
端子B、8は端子Cとした。それらターミナル端子の
6,7に通電してモータコイル温度を110℃まで上昇
させた。その後圧縮機の上部外側面が60℃まで降下し
た後に1分間の真空排気を行った。この時の真空到達度
は25Paであった。その後本圧縮機内の水分を正確に
測定した結果、水分は60ppmであった。
(Embodiment 4) In this embodiment, the same compressor as that of Embodiment 1 in which an ester-based oil mixed with water was injected was used. FIG. 3 is a side view of the compressor, 3 is an input terminal of the motor, 4 is a discharge port, and the input terminal 3 has three terminals, 6 is terminal A, 7 is terminal B, Reference numeral 8 denotes a terminal C. The terminals 6 and 7 were energized to raise the motor coil temperature to 110 ° C. Thereafter, after the upper outer side surface of the compressor had dropped to 60 ° C., vacuum evacuation was performed for one minute. At this time, the degree of vacuum reached was 25 Pa. Thereafter, the water content in the compressor was measured accurately, and as a result, the water content was 60 ppm.

【0023】実施例4ではターミナル端子6,7に通電
してモータコイル温度上昇させたが、通電加熱に使用す
るターミナル端子は6,8あるいは7,8に通電しても
ほぼ同様な結果が得られた。また、加熱に使用する入力
電圧はあまり大きいと局所的な加熱になってしまうの
で、10〜15V程度の入力とすることが好ましかっ
た。また、圧縮機内温度の均一化のためには10〜15
V程度の入力で通電加熱後に冷却時間を設けて全体の均
一化を図ることのほうが5〜10V程度の入力でゆっく
りと通電加熱するよりも効果的であった。
In the fourth embodiment, the terminal coils 6 and 7 are energized to increase the motor coil temperature. However, the terminal terminals used for energization and heating can obtain substantially the same result even when the terminals 6 and 8 or 7, 8 are energized. Was done. Further, if the input voltage used for heating is too high, local heating will occur. Therefore, it is preferable to set the input to about 10 to 15 V. In addition, in order to make the temperature inside the compressor uniform, 10 to 15
It was more effective to provide a cooling time after heating by applying an electric current of about V to make the whole uniform, than to carry out heating slowly by applying an input of about 5 to 10 V.

【0024】(実施例5)本実施例でも実施例1と同様
な水分混入のエステル系オイルが注入された圧縮機を使
用した。図3での3相モータの入力ターミナル6,7,
8に通電して10Hzで回転させると同時にモータコイ
ル温度を110℃まで上昇させた。その後圧縮機の上部
外側面が60℃まで降下した後に1分間の真空排気を行
った。この時の真空到達度は18Paであった。その後
本圧縮機内の水分を正確に測定した結果、水分は40p
pmであった。
(Embodiment 5) In this embodiment, the same compressor as that of Embodiment 1 was used, in which an ester-based oil mixed with water was injected. The input terminals 6, 7 of the three-phase motor in FIG.
8, the motor coil temperature was increased to 110 ° C. at the same time as rotating at 10 Hz. Thereafter, after the upper outer side surface of the compressor had dropped to 60 ° C., vacuum evacuation was performed for one minute. At this time, the degree of vacuum reached was 18 Pa. Then, as a result of accurately measuring the moisture in the compressor, the moisture was 40p
pm.

【0025】実施例5では最も低Hzの10Hzでモー
タを回転させたが、この回転数が大きいと徐々に圧縮機
内のオイルが外部のサイクル経路に流出するので好まし
くない。したがって、モータの回転数は20Hz以下、
さらに好ましくは15Hz以下にすることが好ましかっ
た。
In the fifth embodiment, the motor is rotated at the lowest frequency of 10 Hz. However, a high rotation speed is not preferable because oil in the compressor gradually flows out to an external cycle path. Therefore, the rotation speed of the motor is 20 Hz or less,
More preferably, the frequency was set to 15 Hz or less.

【0026】実施例4と5を比較すると、モータを回転
させることでオイルを対流させたほうが圧縮機内の温度
分布均一化となり、真空排気での混入水分低下に効果的
であった。
Comparing Examples 4 and 5, it was found that the convection of the oil by rotating the motor made the temperature distribution in the compressor uniform, and was more effective in reducing the amount of moisture mixed in the vacuum exhaust.

【0027】(実施例6)本実施例でも実施例1と同様
な水分混入のエステル系オイルが注入された圧縮機を使
用した。また、本実施例では実施例1と同様に加熱用バ
ンドヒータで15分間加熱した後、加熱用ヒータを外し
て冷却し、圧縮機の上部外側面が50℃となった時に、
3相モータの入力ターミナル6,7,8に通電して10
Hzで回転させると同時に1分間の真空排気を行った。
この時の真空到達度は35Paであった。その後本圧縮
機内の水分を正確に測定した結果、水分は50ppmで
あった。
(Embodiment 6) In this embodiment, the same compressor as that of Embodiment 1 was used in which an ester oil mixed with water was injected. Further, in the present embodiment, after heating for 15 minutes with the heating band heater in the same manner as in the first embodiment, the heating heater was removed and cooling was performed. When the upper outer surface of the compressor reached 50 ° C.,
Energize the input terminals 6, 7, and 8 of the three-phase motor and
The vacuum was evacuated for 1 minute at the same time as rotating at Hz.
At this time, the degree of vacuum reached was 35 Pa. Thereafter, the water content in the compressor was accurately measured, and as a result, the water content was 50 ppm.

【0028】(実施例7)本実施例でも実施例1と同様
な水分混入のエステル系オイルが注入された圧縮機を使
用した。また、本実施例では実施例5と同様に3相モー
タの入力ターミナル6,7,8に通電して10Hzで回
転させると同時にモータコイル温度を110℃まで上昇
させた。その後圧縮機の上部外側面が60℃まで降下し
た後に、再度3相モータの入力ターミナル6,7,8に
通電して10Hzで回転させると同時に1分間の真空排
気を行った。この時の真空到達度は15Paであった。
その後本圧縮機内の水分を正確に測定した結果、水分は
20ppmであった。
(Embodiment 7) In this embodiment, the same compressor as that of Embodiment 1 in which an ester-based oil mixed with water was injected was used. In the present embodiment, the input terminals 6, 7, and 8 of the three-phase motor were energized to rotate at 10 Hz and the motor coil temperature was raised to 110 ° C. at the same time as in the fifth embodiment. Then, after the upper outer surface of the compressor dropped to 60 ° C., the input terminals 6, 7, and 8 of the three-phase motor were again energized, rotated at 10 Hz, and simultaneously evacuated for one minute. At this time, the degree of vacuum reached was 15 Pa.
Thereafter, as a result of accurately measuring the water content in the compressor, the water content was 20 ppm.

【0029】実施例6,7から明らかなように、真空排
気時もモータを回転させながら行ったほうが、混入水分
の低減には効果的であることがわかった。
As is evident from Examples 6 and 7, it was found that performing vacuum evacuation while rotating the motor was more effective in reducing water contamination.

【0030】実施例1〜7では、エステル系オイルが注
入された圧縮機を使用して行ったが、エーテル系のオイ
ルを使用した場合にも同様な傾向が得られた。
In Examples 1 to 7, the operation was performed using a compressor into which an ester oil was injected. However, the same tendency was obtained when an ether oil was used.

【0031】[0031]

【発明の効果】上記実施例から明らかなように、請求項
1記載の発明は、セパレート型空気調和機の室外機製造
工程において、室外機の圧縮機を所定の温度に加熱した
後、真空排気を行い、その後冷媒を注入することによっ
て組立工程の途中で圧縮機内に混入した水分を効率的に
低減できた。
As is apparent from the above embodiment, the invention according to claim 1 is characterized in that, in the outdoor unit manufacturing process of the separate type air conditioner, the compressor of the outdoor unit is heated to a predetermined temperature and then evacuated. Then, by injecting the refrigerant, the water mixed in the compressor during the assembly process could be efficiently reduced.

【0032】また、請求項2記載の発明は、圧縮機を加
熱する方法として三相モータのいずれかを欠相させるこ
とによって圧縮機内部から均一に加熱することができ
た。
According to the second aspect of the present invention, the compressor can be uniformly heated from the inside by removing one of the three-phase motors as a method for heating the compressor.

【0033】また、請求項3記載の発明は、圧縮機を加
熱する方法として三相モータに低Hzで通電することに
よってオイルが撹拌され、圧縮機内部からより均一に加
熱することができた。
According to the third aspect of the present invention, as a method of heating the compressor, the oil is agitated by energizing the three-phase motor at a low Hz, so that the compressor can be more uniformly heated from the inside.

【0034】また、請求項4記載の発明は、室外機の圧
縮機を所定の温度に加熱した後、モータを回転させなが
ら真空排気を行うことで、より迅速に混入水分の低減が
可能であった。
According to the fourth aspect of the present invention, after the compressor of the outdoor unit is heated to a predetermined temperature and then evacuated while rotating the motor, the water content can be reduced more quickly. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によって行われる空気調和機
の室外機概略製造工程図
FIG. 1 is a schematic manufacturing process diagram of an outdoor unit of an air conditioner performed according to an embodiment of the present invention.

【図2】本発明の実施例1によって行われる圧縮機加熱
方法を示す概略図
FIG. 2 is a schematic diagram showing a compressor heating method performed according to Embodiment 1 of the present invention.

【図3】本発明で使用される圧縮機の側面図FIG. 3 is a side view of a compressor used in the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 加熱用バンドヒータ 3 モータの入力ターミナル 4 吐出側ポート 5 吸入側ポート 6 ターミナル端子A 7 ターミナル端子B 8 ターミナル端子C DESCRIPTION OF SYMBOLS 1 Compressor 2 Heating band heater 3 Motor input terminal 4 Discharge side port 5 Suction side port 6 Terminal terminal A 7 Terminal terminal B 8 Terminal terminal C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セパレート型空気調和機の室外機製造工
程において、前記室外機の圧縮機を加熱した後、所定の
温度以上を保持させた状態で真空排気を行い、その後冷
媒を前記室外機本体内部へ注入することを特徴とする空
気調和機の製造方法。
In a manufacturing process of an outdoor unit of a separate type air conditioner, after a compressor of the outdoor unit is heated, a vacuum is exhausted while maintaining a predetermined temperature or higher, and then a refrigerant is discharged to the outdoor unit main body. A method for producing an air conditioner, wherein the air is injected into the inside.
【請求項2】 圧縮機を加熱する時、三相モータのいず
れかを欠相させて通電することを特徴とする請求項1記
載の空気調和機の製造方法。
2. The method for manufacturing an air conditioner according to claim 1, wherein when heating the compressor, one of the three-phase motors is disconnected to energize.
【請求項3】 圧縮機を加熱する時、三相モータに通電
して周波数20Hz以下で駆動させることを特徴とする
請求項1記載の空気調和機の製造方法。
3. The method for manufacturing an air conditioner according to claim 1, wherein when heating the compressor, the three-phase motor is energized and driven at a frequency of 20 Hz or less.
【請求項4】 セパレート型空気調和機の室外機製造工
程において、前記室外機の圧縮機を所定の温度以上を保
持させた状態で、モータを回転させながら真空排気を行
い、その後冷媒を前記室外機本体内部へ注入することを
特徴とする空気調和機の製造方法。
4. In an outdoor unit manufacturing process of a separate type air conditioner, vacuum exhaust is performed while rotating a motor while a compressor of the outdoor unit is kept at a predetermined temperature or higher, and then refrigerant is removed from the outdoor unit. A method for manufacturing an air conditioner, wherein the air conditioner is injected into a main body of the air conditioner.
JP2232597A 1997-02-05 1997-02-05 Manufacture of air conditioner Pending JPH10220931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232597A JPH10220931A (en) 1997-02-05 1997-02-05 Manufacture of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232597A JPH10220931A (en) 1997-02-05 1997-02-05 Manufacture of air conditioner

Publications (1)

Publication Number Publication Date
JPH10220931A true JPH10220931A (en) 1998-08-21

Family

ID=12079567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232597A Pending JPH10220931A (en) 1997-02-05 1997-02-05 Manufacture of air conditioner

Country Status (1)

Country Link
JP (1) JPH10220931A (en)

Similar Documents

Publication Publication Date Title
US2341430A (en) Method of reconditioning refrigerating apparatus and reclaiming refrigerant
US2341429A (en) Method of reconditioning refrigerating apparatus and reclaiming refrigerant
CN1764812A (en) Refrigerant leakage detecting device and refrigerator using the same
JPH10220931A (en) Manufacture of air conditioner
US2557621A (en) Method of dehydrating refrigeration units
US1967770A (en) Method of manufacturing refrigerating apparatus
US2031080A (en) Motor pump and condensing unit
US2214699A (en) Refrigeration method
JPS575592A (en) Multivane compressor
JPS58152187A (en) Air conditioning apparatus
EP0245958B1 (en) Gas compressor
JPH09101071A (en) Method and apparatus for evacuating air conditioning unit
US6637218B2 (en) Gas heat pump-type air conditioner
JPH09256954A (en) Method and device for manufacturing compressor, and refrigerating device and its manufacture
JP3888215B2 (en) Method for manufacturing refrigeration cycle apparatus
JP3006772B2 (en) Exhaust method of gas laser
JPH06238656A (en) Rubber kneading method
JP5217175B2 (en) Centrifugal reservoir and method for producing rubidium lamp or rubidium gas cell
JPH09113074A (en) Vacuum evacuating method for air conditioner unit and heater used for the method
US2066334A (en) Refrigeration
JP2005033893A (en) Cooling medium compressor and its production method
JPH04134193A (en) Method for dehydrating sealed oil of compressor and method for cooling compressor
JP2001227830A (en) Half-closed-type screw refrigerating machine and its motor
JPH05141382A (en) Freezing device
JPH0494472A (en) Manufacture of compressor for refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040121

A02 Decision of refusal

Effective date: 20040217

Free format text: JAPANESE INTERMEDIATE CODE: A02