JPH10220251A - Method of eliminating dust stuck to turbine - Google Patents

Method of eliminating dust stuck to turbine

Info

Publication number
JPH10220251A
JPH10220251A JP2021697A JP2021697A JPH10220251A JP H10220251 A JPH10220251 A JP H10220251A JP 2021697 A JP2021697 A JP 2021697A JP 2021697 A JP2021697 A JP 2021697A JP H10220251 A JPH10220251 A JP H10220251A
Authority
JP
Japan
Prior art keywords
turbine
dry ice
dust
pressure
stationary blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021697A
Other languages
Japanese (ja)
Inventor
Koichi Nakayama
功一 仲山
Hitoshi Narita
斉 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2021697A priority Critical patent/JPH10220251A/en
Publication of JPH10220251A publication Critical patent/JPH10220251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate not only soft stuck dust but also fast-stuck dust by injecting dry ice grains from a plurality of nozzles arranged in an inlet side casing of a turbine toward a first stage stationary blade whole operating the turbine. SOLUTION: When a pressure difference between turbine inlet pressure and pressure after a first stage stationary blade is a control value or more, or a taken gas quantity of a turbine 4 or a power generator output is reduced to constant % while operating the turbine 4, a dry ice injection facility is operated, and dry ice grains are injected from a plurality of nozzles 25 toward a first stage stationary blade 14. The pressure difference between turbine inlet pressure and pressure after first stage stationary blade is recovered within the control value. When the taken gas quantity of the turbine 4 of the power generator output are recovered to near a constant value, operation or the dry ice injection facility is stopped. Such operation is repeated to a next opening inspection. Since stuck dust can be eliminated, it is possible to suppress reduction of the power generating output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉ガス等から
その保有するエネルギーを回収するタービンの静翼等に
付着したダストを除去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing dust adhering to a stationary blade of a turbine for recovering energy stored in blast furnace gas or the like.

【0002】[0002]

【従来の技術】従来より、高圧操業する高炉設備におい
ては、高炉から排出する高温、高圧の高炉ガスからエネ
ルギーを回収するために、炉頂圧タービンを設置してお
り、この炉頂圧タービンにより発電機を回転させて、高
炉ガスの保有するエネルギーを電力として回収してい
る。
2. Description of the Related Art Conventionally, in a blast furnace facility operating at a high pressure, a furnace top pressure turbine is installed in order to recover energy from a high temperature, high pressure blast furnace gas discharged from the blast furnace. By rotating the generator, the energy held by the blast furnace gas is recovered as electricity.

【0003】図2は、高炉ガスの保有するエネルギーを
炉頂圧タービンにより回収する系統図の一例を示すもの
である。高炉1の炉頂より排出された高温、高圧のガス
は、ダストキャッチャー2で一次除塵され、次にベンチ
ュリースクラバー3により2次除塵される。2次除塵さ
れた高炉ガスは、炉頂圧タービン4と発電機5を回転さ
せた後、電気集塵機7で最終除塵されてガスホルダー8
に入る。なお、高炉ガス量が、炉頂圧タービン4の呑込
みガス量を上回るときは、圧力調整弁6が開き、呑込み
ガス量を上回る分の高炉ガスは、タービンをバイパスし
て電気集塵機7に流れる。
FIG. 2 shows an example of a system diagram for recovering energy stored in a blast furnace gas by a furnace top pressure turbine. The high-temperature, high-pressure gas discharged from the furnace top of the blast furnace 1 is subjected to primary dust removal by a dust catcher 2 and then secondary dust removal by a venturi scrubber 3. The blast furnace gas from which the secondary dust has been removed is rotated by the furnace top pressure turbine 4 and the generator 5, and then subjected to final dust removal by the electric dust collector 7, and the gas holder 8.
to go into. When the blast furnace gas amount exceeds the intake gas amount of the furnace top pressure turbine 4, the pressure regulating valve 6 opens, and the blast furnace gas amount exceeding the intake gas amount passes through the turbine to the electric precipitator 7. Flows.

【0004】炉頂圧タービン4に流入する高炉ガスは、
2次除塵された後でも約20mg/Nm3 のダストと水
分を含有している。このため、タービンの静翼および動
翼にダストが付着し、運転日数の経過とともに成長して
ゆく。ダストの付着量は、第1段の静翼に、特に多いこ
とが分かっている。このダストの付着は、タービンの呑
込みガス量を低下させ、発電量を低下させるために、一
定期間毎にタービンを停止し、静翼および動翼の付着ダ
ストを清掃しなければならなかった。このような問題を
改善するために、タービンの静翼および動翼内に形成さ
せた流路に加熱流体を通し、翼表面の温度を、通過する
ガス中の凝縮した水分が再気化する温度以上に上昇させ
てダストの付着を防止する方法(特開昭62−1572
09号:技術1という)が提案されている。また、ター
ビンの入口側ケーシング内に設けた複数の水噴射ノズル
から第1段静翼に向けて水を噴射して、付着ダストを除
去する方法(技術2という)が実施されている。
The blast furnace gas flowing into the furnace top pressure turbine 4 is:
Even after secondary dust removal, it contains about 20 mg / Nm 3 of dust and moisture. For this reason, dust adheres to the stationary blades and the moving blades of the turbine, and grows as the number of operating days elapses. It has been found that the amount of dust attached to the first stage stationary blade is particularly large. In order to reduce the amount of gas swallowed by the turbine and reduce the amount of power generation, the adhesion of dust has to stop the turbine at regular intervals and clean the dust attached to the stationary blades and the moving blades. In order to solve such a problem, a heating fluid is passed through a flow path formed in the stationary blades and moving blades of the turbine, and the temperature of the blade surface is set to a temperature equal to or higher than a temperature at which condensed moisture in gas passing therethrough re-vaporizes. (Japanese Patent Laid-Open No. 62-1572)
09: Technology 1) has been proposed. In addition, a method of injecting water toward a first stage stationary blade from a plurality of water injection nozzles provided in an inlet side casing of a turbine to remove adhering dust (referred to as technology 2) has been implemented.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、技術1
は、静翼および動翼に加熱流体を通す流路を加工しなけ
ればならず、改造費用が高価である。また、技術2は、
水噴射により軟らかい付着ダスト除去できるが、硬い付
着ダストを除去することができず、噴射水が静翼および
動翼の表面を濡らし、ダストを付き易くするという問題
がある。
However, the technology 1
In such a method, the flow path for passing the heating fluid through the stationary blade and the moving blade must be processed, and the cost for remodeling is high. In addition, technology 2
Although the soft adhered dust can be removed by water jetting, the hard adhered dust cannot be removed, and there is a problem that the jetted water wets the surfaces of the stationary blades and the moving blades, and the dust is easily attached.

【0006】[0006]

【課題を解決するための手段】本発明は上記の問題を、
タービンを運転中、タービンの入口側ケーシング内に設
けた複数のノズルから第1段静翼に向かってドライアイ
ス粒を噴射して翼の付着ダストを除去するタービンの付
着ダスト除去方法によって解決する。
The present invention solves the above problems.
The problem is solved by a method for removing adhering dust from a turbine, in which dry ice particles are ejected from a plurality of nozzles provided in a casing on the inlet side of the turbine toward a first stage stationary blade during operation of the turbine to remove adhering dust on the blade.

【0007】「作用」タービンを運転中に、複数のノズ
ルからドライアイス粒を第1段静翼に噴射すると、ドラ
イアイス粒は、最初に第1段静翼に衝突し、その後、車
室を流れるガス流とともに高速で移動して後段の動翼お
よび静翼に次々に衝突する。この衝突により、硬いドラ
イアイス粒は、サンドブラストのように静翼および動翼
の軟らかい付着ダストのみならず、硬い付着ダストをも
除去する。
[Operation] When dry ice particles are injected from a plurality of nozzles into the first stage stationary blades while the turbine is operating, the dry ice particles first collide with the first stage stationary blades, and then, together with the gas flow flowing through the vehicle compartment, It moves at a high speed and collides one after another with the moving blades and stationary blades at the subsequent stage. Due to this collision, the hard dry ice particles remove not only soft adhering dust on the stationary blades and moving blades but also hard adhering dust as in sandblasting.

【0008】ドライアイスは、車室内を移動する間に昇
華するが、水噴射のように翼の表面を濡らすことはない
から、ダスト除去後、ダストが翼に付着し難い。
[0008] Dry ice sublimes while moving in the cabin, but does not wet the surface of the wing unlike water jet, so that dust is less likely to adhere to the wing after dust removal.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて以下に説明する。図1は、本発明方法の説明図であ
る。10はタービンのケーシング、11はローター、1
2はタービン軸、13は動翼、14は静翼である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of the method of the present invention. 10 is a turbine casing, 11 is a rotor, 1
2 is a turbine shaft, 13 is a moving blade, and 14 is a stationary blade.

【0010】25は、入口側ケーシング15内に設けら
れたドライアイス粒を噴射するノズルである。このノズ
ル25は、タービン軸12の周りに複数本設けられ、ド
ライアイス粒を第1段の静翼14に向かって噴射するよ
うに取付けられている。
Reference numeral 25 denotes a nozzle provided in the inlet side casing 15 for spraying dry ice particles. A plurality of nozzles 25 are provided around the turbine shaft 12 and are attached so as to spray dry ice particles toward the first stage stationary blades 14.

【0011】20は、ドライアイス粒の製造装置で、こ
の装置で0.5〜3mmのサイズのドライアス粒が製造
される。21は、ドライアス粒を貯蔵するホッパーであ
る。22は、圧縮空気源で、その圧力は10〜20kg
/cm2 である。23は、フィーダーである。フィーダ
ー23において、ホッパー21のドライアイス粒が、圧
縮空気中に混入し、圧縮空気により配管24中を移送さ
れ、ノズル25から噴射される。
Reference numeral 20 denotes an apparatus for producing dry ice grains, which produces dry ass particles having a size of 0.5 to 3 mm. 21 is a hopper for storing dry ass particles. 22 is a compressed air source, the pressure of which is 10 to 20 kg
/ Cm 2 . 23 is a feeder. In the feeder 23, the dry ice particles in the hopper 21 are mixed into the compressed air, transferred through the pipe 24 by the compressed air, and ejected from the nozzle 25.

【0012】上記のドライアイス製造装置20、圧縮空
気源22、ホッパー21、フィーダー23、配管24お
よびノズル25が、ドライアイス噴射装置を構成する。
The dry ice producing device 20, the compressed air source 22, the hopper 21, the feeder 23, the pipe 24, and the nozzle 25 constitute a dry ice injection device.

【0013】このドライアイス噴射装置を使用して、本
発明方法は次のように行われる。 (1)タービンを運転中、タービン入口圧力と第1段静
翼後の圧力の差圧が管理値以上か、タービンの呑込みガ
ス量または、発電機出力が一定%(例えば、10%)低
下したら、ドライアイス噴射設備を運転して、ドライア
イス粒を複数のノズル25から第1段静翼14に向けて
噴射する。 (2)タービン入口圧力と第1段静翼後の圧力の差圧が
管理値内に回復し、タービンの呑込みガス量または、発
電機出力が、定格値近くまで回復したらドライアイス噴
射設備の運転を停止する。 (3)(1)〜(2)を、次の開放点検まで、繰り返
す。
Using this dry ice injection device, the method of the present invention is performed as follows. (1) During operation of the turbine, if the pressure difference between the turbine inlet pressure and the pressure after the first stage stationary blade is equal to or greater than the control value, or if the amount of gas taken in by the turbine or the generator output decreases by a certain percentage (for example, 10%), The dry ice injection equipment is operated to inject dry ice particles from the plurality of nozzles 25 toward the first stage stationary blade 14. (2) When the pressure difference between the turbine inlet pressure and the pressure after the first stage stationary blade recovers to within the control value, and the amount of gas swallowed by the turbine or the output of the generator recovers to near the rated value, the operation of the dry ice injection equipment is started. Stop. (3) Repeat (1) and (2) until the next open inspection.

【0014】本発明方法は、高炉の炉頂圧タービンだけ
でなく、ダストを含有する気体を通過させる軸流圧縮機
や軸流タービンにも適用することができる。
The method of the present invention can be applied not only to a top pressure turbine of a blast furnace but also to an axial compressor or an axial turbine through which gas containing dust passes.

【0015】[0015]

【発明の効果】本発明は、ドライアイス粒を噴射してダ
スト除去を行うものであるから、次のような効果が得ら
れる。 (1)固体粒子を使用するので、軟らかい付着ダストの
みならず、固く付着したダストを除去できる。 (2)ドライアイス粒は、昇華して炭酸ガスになり、噴
射水のように翼表面を濡らすことがないから、翼面にダ
ストが付着し難い。 (3)タービン運転中に、付着したダストを除去できる
から、発電出力の低下を抑制することができる。
According to the present invention, since dust is removed by injecting dry ice particles, the following effects can be obtained. (1) Since solid particles are used, not only softly attached dust but also hardly attached dust can be removed. (2) The dry ice particles are sublimated into carbon dioxide gas and do not wet the wing surface unlike spray water, so that dust hardly adheres to the wing surface. (3) Since the attached dust can be removed during the operation of the turbine, a decrease in the power generation output can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の説明図である。FIG. 1 is an explanatory diagram of the method of the present invention.

【図2】高炉ガスの保有するエネルギーをタービンによ
り回収する系統図である。
FIG. 2 is a system diagram in which energy held by blast furnace gas is recovered by a turbine.

【符号の説明】[Explanation of symbols]

4 タービン 5 発電機 10 タービンケーシング 11 ローター 12 タービン軸 13 動翼 14 静翼 15 入口側ケーシング 20 ドライアイス粒製造装置 21 ホッパー 22 圧縮空気源 23 フィーダー 24 配管 25 ノズル Reference Signs List 4 Turbine 5 Generator 10 Turbine casing 11 Rotor 12 Turbine shaft 13 Moving blade 14 Stationary blade 15 Inlet-side casing 20 Dry ice grain production device 21 Hopper 22 Compressed air source 23 Feeder 24 Pipe 25 Nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービンを運転中、タービンの入口側ケ
ーシング内に設けた複数のノズルから第1段静翼に向か
ってドライアイス粒を噴射することを特徴とするタービ
ンの付着ダスト除去方法。
1. A method for removing adhering dust on a turbine, comprising injecting dry ice particles from a plurality of nozzles provided in a casing on an inlet side of the turbine toward a first stage stationary blade during operation of the turbine.
JP2021697A 1997-02-03 1997-02-03 Method of eliminating dust stuck to turbine Pending JPH10220251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021697A JPH10220251A (en) 1997-02-03 1997-02-03 Method of eliminating dust stuck to turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021697A JPH10220251A (en) 1997-02-03 1997-02-03 Method of eliminating dust stuck to turbine

Publications (1)

Publication Number Publication Date
JPH10220251A true JPH10220251A (en) 1998-08-18

Family

ID=12020978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021697A Pending JPH10220251A (en) 1997-02-03 1997-02-03 Method of eliminating dust stuck to turbine

Country Status (1)

Country Link
JP (1) JPH10220251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348940A (en) * 2005-06-18 2006-12-28 Man Diesel Sa Exhaust-driven supercharger of internal combustion engine
JP2009019578A (en) * 2007-07-12 2009-01-29 Jfe Steel Kk On-line cleaning method for gas compressor of gas turbine
JP2014169698A (en) * 2013-03-04 2014-09-18 General Electric Co <Ge> Dry ice cleaning apparatus for gas turbine compressor
JP2019081144A (en) * 2017-10-31 2019-05-30 昭和電工株式会社 Sulfur compound-containing substance removal method
JP2020180614A (en) * 2019-04-24 2020-11-05 ゼネラル・エレクトリック・カンパニイ Methods for cleaning flow path components of power systems and sump purge kits

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348940A (en) * 2005-06-18 2006-12-28 Man Diesel Sa Exhaust-driven supercharger of internal combustion engine
JP2009019578A (en) * 2007-07-12 2009-01-29 Jfe Steel Kk On-line cleaning method for gas compressor of gas turbine
JP2014169698A (en) * 2013-03-04 2014-09-18 General Electric Co <Ge> Dry ice cleaning apparatus for gas turbine compressor
JP2019081144A (en) * 2017-10-31 2019-05-30 昭和電工株式会社 Sulfur compound-containing substance removal method
JP2020180614A (en) * 2019-04-24 2020-11-05 ゼネラル・エレクトリック・カンパニイ Methods for cleaning flow path components of power systems and sump purge kits

Similar Documents

Publication Publication Date Title
US3490204A (en) Gas cleaning scrubber
JP5868328B2 (en) How to operate a turbocharger piston engine
KR101561228B1 (en) Method for feeding a burden to a blast furnace
JP2018524505A (en) Method and apparatus for cleaning a jet engine
JP2008202071A (en) Method for operating blast furnace gas cleaning facility
JPH10220251A (en) Method of eliminating dust stuck to turbine
CN108700004A (en) Egr system
JP2007056316A (en) Powder collection method and device, and film deposition apparatus having powder collection device
US4270343A (en) Method and apparatus for recovery of energy from blast furnace exhaust gas
JP4423983B2 (en) Blast furnace top pressure power generation facility and turbine blade cleaning method in blast furnace top pressure power generation facility
CN106363542A (en) Removing device for diamond wire cutting damage layer on surface of multicrystalline wafer
KR101557776B1 (en) Method for feeding a burden to a blast furnace
US11371425B2 (en) System and method for cleaning deposit from a component of an assembled, on-wing gas turbine engine
JP2016108594A (en) Pressure regulator of furnace-top charging apparatus in blast furnace
JP2004202485A (en) Highly efficient method for cleaning plant equipment
CN103831263A (en) Method for washing technical cavity component
JP3712554B2 (en) Gas turbine equipment
US11555413B2 (en) System and method for treating an installed and assembled gas turbine engine
JPH10300296A (en) Ice particle generating/ejecting system
JPH07292405A (en) Dust removing device of dirty gas leaked from wet-type dust collecting system at the time of operating wet-type dust collector
CN219965830U (en) Ion dust collector
JP2004115355A (en) Method and apparatus for recovering and reusing carbon dioxide
KR102307704B1 (en) Apparuatus for removing dust in blast furnace gas
JPH0688113A (en) Dry type dust collecting device for blast furnace and method for starting the same
JP2002071119A (en) Carrier device for fly ash produced in incinerator or the like