JPH10219517A - Production of polyvinyl alcohol-based fiber - Google Patents

Production of polyvinyl alcohol-based fiber

Info

Publication number
JPH10219517A
JPH10219517A JP2252597A JP2252597A JPH10219517A JP H10219517 A JPH10219517 A JP H10219517A JP 2252597 A JP2252597 A JP 2252597A JP 2252597 A JP2252597 A JP 2252597A JP H10219517 A JPH10219517 A JP H10219517A
Authority
JP
Japan
Prior art keywords
fiber
weight
polyvinyl alcohol
methanol
dimethyl sulfoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2252597A
Other languages
Japanese (ja)
Other versions
JP3544090B2 (en
Inventor
Shoichi Nishiyama
正一 西山
Yoichi Matsumoto
洋一 松本
Isao Sakuragi
功 桜木
Akio Omori
昭夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP02252597A priority Critical patent/JP3544090B2/en
Publication of JPH10219517A publication Critical patent/JPH10219517A/en
Application granted granted Critical
Publication of JP3544090B2 publication Critical patent/JP3544090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a polyvinyl alcohol fiber, capable of being finely and rapidly fibrillated and easily developable into the field for reinforcing nonwoven fabrics or rubbers by spinning a specific spinning solution into a solidification bath and manufacturing a yarn under specified conditions. SOLUTION: A solution prepared by dissolving 55-80wt.% polyvinyl alcohol having >=1,500 polymerization degree and >=99.5mol% saponification degree and a polymer selected from the group consisting of polyacrylontrile, polymethyl methacrylate and cellulose acetate in dimethyl sulfoxide is spun into a solidification bath consisting essentially of methanol. The dimethyl sulfoxide is then extracted from the fiber until the dimethyl sulfoxide content in the fiber attains <=2wt.%. Ketones having >=4 carbon atoms in an amount of >=5wt.% and water are then applied to the fiber and the resultant fiber is subsequently dried until the solvent content attains <=50wt.% in a gas containing mthanol at 2-10vol.% concentration and <=150 deg.C and then drawn to afford a polyvinyl alcohol fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は迅速に直径2〜3μ
以下にフィブリル化するポリビニルアルコール(以下P
VAと略記)系繊維の製造方法に関するものであり、更
に詳しくはゴムの補強用繊維あるいは不織布用繊維とし
て好ましい性能を有する繊維の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention
Polyvinyl alcohol to be fibrillated below (hereinafter P
More specifically, the present invention relates to a method for producing a fiber having preferable properties as a rubber reinforcing fiber or a nonwoven fabric fiber.

【0002】[0002]

【従来の技術】従来、フィブリル化繊維は主として2種
類以上のポリマーを混合あるいは複合して溶融紡糸し、
一方のポリマーを溶剤で抽出して製造されている。かか
る繊維は、概ね直径が2〜3μ以下と極細で風合いに優
れているため合成皮革や不織布として用いられている
が、強度が低く補強繊維としては効果が期待できず、ま
た、抽出工程が繁雑である。一方、溶融複合紡糸によ
り、2〜3デニールの繊維を10〜20に分割する繊維
も多くはフィラメントとして生産されているが、かかる
繊維は分割後でも直径3〜5μ(0.1〜0.3デニー
ル)と太いため、ゴムとの接着性が悪いばかりか強度が
せいぜい4g/dと低く、補強性に劣り、ゴム補強には
不向きである。また、不織布に加工する際にカード工程
で分割してしまい工程通過性が乏しいために、乾式不織
布の用途への展開も困難である。
2. Description of the Related Art Conventionally, fibrillated fibers are mainly melt-spun by mixing or compounding two or more polymers.
It is manufactured by extracting one polymer with a solvent. Such fibers are used as synthetic leather or non-woven fabrics because they have an extremely fine diameter of 2-3 μm or less and have an excellent texture, but their strength is low and their effects cannot be expected as reinforcing fibers, and the extraction process is complicated. It is. On the other hand, many fibers which split a 2-3 denier fiber into 10 to 20 fibers by melt composite spinning are also produced as filaments, but such fibers have a diameter of 3 to 5 μm (0.1 to 0.3 μm) even after splitting. (Denier), the adhesiveness to rubber is poor, and the strength is as low as 4 g / d at most. The reinforcing property is poor, and it is not suitable for rubber reinforcement. In addition, when processed into a nonwoven fabric, it is divided in the carding process and the process passability is poor, so that it is difficult to develop a dry nonwoven fabric for use.

【0003】ゴム補強繊維は通常、レゾルシン−ホルマ
リンラテックスなどの接着剤処理を施して、混練したゴ
ム中に埋設し使用されるが、本発明のフィブリル繊維
は、3mm以下にカットして上記接着剤処理をすること
なくゴムに添加し、混練中に繊維が直径1μm以下にフ
ィブリル化して表面積が増大し接着するものである。か
かる用途においては、繊維の強度が補強効果を発現させ
るため、ある程度の強度が必要であるが、フィブリル化
速度が速いことも必要である。混練によりフィブリル化
させるため、その速度が遅いと混練時間を長くする必要
が生じ、結果としてゴムの劣化を招いてしまうのであ
る。
[0003] The rubber reinforcing fiber is usually used after being subjected to an adhesive treatment such as resorcinol-formalin latex and embedded in the kneaded rubber. The fibril fiber of the present invention is cut into 3 mm or less and the above adhesive is used. The fibers are added to the rubber without any treatment, and the fibers fibrillate to a diameter of 1 μm or less during kneading, thereby increasing the surface area and bonding. In such applications, a certain degree of strength is required in order for the fiber strength to exert a reinforcing effect, but a high fibrillation rate is also required. Since the fibril is formed by kneading, if the speed is low, it is necessary to lengthen the kneading time, resulting in deterioration of the rubber.

【0004】一方、不織布の製造方法は、リファイナー
やビーターで繊維を叩解した後シート化する方法(叩解
法)と、湿式抄紙シートあるいはカードウェッブを水流
絡合でフィブリル化させる方法(水絡法)の2つに大別
される。叩解法においては、フィブリル化速度が遅いと
叩解に長時間を要し、繊維がもつれて地合いの良好な均
一なシートが得られない。また、水絡法においてもフィ
ブリル化速度が遅いと、水圧を高め、更にはライン速度
を大幅に低下させることが必要になる。
[0004] On the other hand, nonwoven fabrics are produced by beating fibers with a refiner or a beater and then forming a sheet (beating method), or by making a wet papermaking sheet or a card web into fibrillated water by water entanglement (water-jet method). It is roughly divided into two. In the beating method, if the fibrillation rate is low, the beating requires a long time, and the fibers are entangled and a uniform sheet having a good formation cannot be obtained. Also, in the case of the water junction method, if the fibrillation rate is low, it is necessary to increase the water pressure and further reduce the line speed significantly.

【0005】かかる要求に対し本発明者らは、ゴム補強
や不織布用途に好適なPVAを用いたフィブリル化繊維
を特願平8−119922号にて提案した。これは、非
相溶の2種類のポリマーを共通溶媒に溶解し、固化・抽
出後、アルコール、ケトン、水の混合液からなる浴で置
換し、乾燥する技術で、フィブリル化速度の高い繊維を
得ている。しかしながら、この方法は、実施例で用いら
れている紡糸ノズルのホール数からも明らかなように、
実験室的規模で行われたものであり、工業的規模で実施
したものではない。
In response to such demands, the present inventors have proposed a fibrillated fiber using PVA suitable for rubber reinforcement or nonwoven fabric in Japanese Patent Application No. 8-119922. This is a technique of dissolving two incompatible polymers in a common solvent, solidifying and extracting, replacing with a bath composed of a mixture of alcohol, ketone, and water, and drying. It has gained. However, as is apparent from the number of holes in the spinning nozzle used in the examples,
It was performed on a laboratory scale, not on an industrial scale.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ゴム補強及
び不織布用途に必要な強度とフィブリル化速度とを兼ね
備えた繊維を工業的に生産することを目的とするもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to industrially produce fibers having both the strength required for rubber reinforcement and nonwoven fabric applications and the fibrillation rate.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、重合
度1500以上、ケン化度99.5モル%以上のポリビ
ニルアルコール55〜80重量%と、ポリアクリロニト
リル、ポリメチルメタアクリレート、セルロースアセテ
ートからなる群から選ばれるポリマーをジメチルスルホ
キシドに溶解し、得られた溶液をメタノールを主体とす
る固化浴に紡糸し、得られた繊維中のジメチルスルホキ
シド含有量が2重量%以下となるまで繊維からジメチル
スルホキシドを抽出した後、繊維に炭素数が4以上のケ
トン類を繊維に対して5重量%以上及び水を付与し、引
き続いて溶剤含有率が50重量%以下となるまでメタノ
ール濃度が10容量%以下かつ150℃以下の気体中で
乾燥し、延伸を行うものである。
That is, the present invention comprises 55 to 80% by weight of polyvinyl alcohol having a polymerization degree of 1500 or more and a saponification degree of 99.5 mol% or more, polyacrylonitrile, polymethyl methacrylate, and cellulose acetate. A polymer selected from the group is dissolved in dimethyl sulfoxide, and the obtained solution is spun into a solidification bath mainly composed of methanol, and dimethyl sulfoxide is removed from the fiber until the content of dimethyl sulfoxide in the obtained fiber becomes 2% by weight or less. After extraction, ketones having 4 or more carbon atoms are added to the fiber by adding 5% by weight or more to the fiber and water, and then the methanol concentration is 10% by volume or less until the solvent content becomes 50% by weight or less. The film is dried in a gas at 150 ° C. or lower and stretched.

【0008】本発明方法で得られる繊維のフィブリル化
性の程度を表すフィブリル化指数は、以下の方法で測定
するものである。2mmにカットした繊維4gを400
ccの20℃水中で市販のミキサー(ナショナルMX−
X40)で11000rpmで5分間叩解し、水を切っ
た後乾燥することなく重量を測定し、その1/8の重量
(繊維分で0.5g)を採取してこれを再度400cc
の20℃の水中で刃を落としたミキサーで20秒間分散
させ、これに水を加えて全量を750ccにして試料と
する。これを底部に直径17mmの栓と350メッシュ
のフィルターを設けた内径63mmの円筒に移し、栓を
抜いてから750ccが濾過されるに要する時間を以て
フィブリル化指数とするもので、単に水だけを濾過させ
た時指数は2.1秒である。
The fibrillation index, which indicates the degree of fibrillability of the fiber obtained by the method of the present invention, is measured by the following method. 400 g of 4 g of fiber cut into 2 mm
A commercial mixer (National MX-
X40), beat at 11000 rpm for 5 minutes, drain the water, measure the weight without drying, collect 1/8 of the weight (0.5 g in terms of fiber), and re-weigh 400 cc.
And dispersed in water at 20 ° C. for 20 seconds using a mixer with a blade dropped, and water is added to make a total amount of 750 cc to obtain a sample. This is transferred to a cylinder having an inner diameter of 63 mm provided with a 17 mm diameter stopper and a 350 mesh filter at the bottom, and the time required for 750 cc to be filtered after removing the stopper is used as the fibrillation index. The time index is 2.1 seconds.

【0009】本発明方法を用いるとこの指数が50秒以
上のものが得られる。この指数が50秒とは、30m/
分のライン速度で100g/m2の目付けの不織布に対
し、80Kg/cm2の圧力で表裏両面から水絡をかけ
た場合にフィブリル化するか否か、または、天然ゴムに
2mmカットした繊維を20重量%添加して140℃、
200rpmで15分間混練してフィブリル化するか否
かの境界に相当するものである。水絡条件、混練条件を
更に強化すれば、フィブリル化指数が50秒未満であっ
ても十分にフィブリル化させることができるが、あらゆ
る装置に対応するためには50秒以上が好ましい。
When the method of the present invention is used, an index having an index of 50 seconds or more can be obtained. This index is 50 seconds, 30m /
Whether a fibril is formed when water is applied to both sides of a nonwoven fabric with a basis weight of 100 g / m 2 at a line speed of 80 kg / cm 2 at a pressure of 80 kg / cm 2 , or a fiber cut 2 mm into natural rubber 140 ° C after adding 20% by weight,
This corresponds to the boundary of whether or not to knead at 200 rpm for 15 minutes to fibrillate. By further strengthening the water-bridging conditions and kneading conditions, fibrillation can be sufficiently performed even if the fibrillation index is less than 50 seconds, but it is preferably 50 seconds or more in order to cope with any apparatus.

【0010】得られる繊維の強度は、不織布用途には一
般に工程通過性を満足すればよく概ね3g/d以上であ
ればよいが、ゴム補強用途には高い方が好ましく、7g
/d以上、さらに好ましくは9g/d以上の強度であ
る。かかる高強度を得ようとすれば、繊維のポリマー配
合は強力成分であるPVAが重要であり、55重量%以
上とすることが必要であり、しかもその重合度が150
0以上、ケン化度は99.5モル%以上でなければなら
ない。またPVAの共重合については10モル%以下で
あればエチレンやアクリル酸エステルなどの疎水性物の
共重合は差支えないが、特に共重合したPVAを用いる
ことに利点はない。
[0010] The strength of the obtained fiber is generally 3 g / d or more, as long as it generally satisfies the process passability for nonwoven fabric applications, but is preferably higher for rubber reinforcement applications, and is 7 g / d.
/ D, or more preferably, 9 g / d or more. In order to obtain such high strength, it is important that PVA, which is a strong component, is blended in the polymer of the fiber.
It must be 0 or more, and the degree of saponification must be 99.5 mol% or more. As for the copolymerization of PVA, copolymerization of a hydrophobic substance such as ethylene or an acrylate ester may be carried out as long as it is at most 10 mol%, but there is no advantage in using the copolymerized PVA.

【0011】PVAが55重量%未満では、強度を満足
することが困難であるばかりか、ノズル調子の悪化、固
化浴へのポリマー溶出の増大といった工程不良を来す。
また重合度やケン化度のいずれか一方が本発明の範囲を
逸脱する場合には、同様に強度不足や工程不良を来し、
さらには湿式叩解や水絡工程においてPVAが溶出し処
理に使用した液が泡立つというトラブルにつながる。逆
に、PVAが80重量%を越える場合は、フィブリル化
速度が低下し目的とする性能が得られない。
If the PVA content is less than 55% by weight, not only is it difficult to satisfy the strength, but also process defects such as deterioration of the nozzle condition and increase in elution of the polymer into the solidification bath are caused.
Further, if any one of the degree of polymerization and the degree of saponification deviates from the scope of the present invention, similarly insufficient strength and process failure,
Further, in a wet beating or water-bending step, PVA is eluted, which leads to a problem that the liquid used in the treatment foams. On the other hand, when the content of PVA exceeds 80% by weight, the fibrillation rate decreases, and the desired performance cannot be obtained.

【0012】一方、PVAと混合するポリマーは、溶媒
であるジメチルスルホキシド(以下DMSOと略記)に
溶解し、DMSO溶解原液中でPVAと相分離すること
が必要で、ポリアクリロニトリル(以下PANと略
記)、ポリメチルメタアクリレート(以下PMMAと略
記)、セルロースアセテート(以下CAと略記)などが
好ましく用いられる。これらのポリマーは原液でPVA
と相分離構造をなし、PVAが海、これらのポリマーは
島のいわゆる海島構造となることが必要である。さらに
は、紡糸の安定性から島の大きさは直径50μ程度以下
が好ましく、そのためにはこれらポリマーの分子量を適
性に選択する必要がある。PANやPMMAは分子量が
300〜2000の範囲であれば、酢酸ビニルや、メチ
ルメタアクリレートなどを20モル%以下で共重合した
ものであっても差支えない。またCAは、モノ、ジ、ト
リのいずれのアセテートも用いることができる。
On the other hand, the polymer to be mixed with PVA must be dissolved in dimethyl sulfoxide (hereinafter abbreviated as DMSO) as a solvent and phase-separated from PVA in a DMSO-dissolved stock solution, and polyacrylonitrile (hereinafter abbreviated as PAN) is required. , Polymethyl methacrylate (hereinafter abbreviated as PMMA), cellulose acetate (hereinafter abbreviated as CA) and the like are preferably used. These polymers are undiluted PVA
It is necessary that these polymers have a phase-separated structure, that is, PVA is a sea, and that these polymers have a so-called sea-island structure. Further, from the viewpoint of spinning stability, the size of the island is preferably about 50 μm or less in diameter. For this purpose, it is necessary to appropriately select the molecular weight of these polymers. As long as the molecular weight of PAN or PMMA is in the range of 300 to 2,000, vinyl acetate or methyl methacrylate may be copolymerized at 20 mol% or less. As CA, any of mono, di, and triacetate can be used.

【0013】本発明の繊維を工業的に生産するには、こ
れらのポリマーをDMSOに溶解し、メタノールを主体
とする固化浴に紡糸しDMSOを2重量%以下にまで抽
出した後、炭素数が4以上のケトン類を繊維に対して5
重量%以上及び水を付与し、引き続いて繊維の溶剤含有
率が50重量%以下となるまでメタノール濃度が2〜1
0容量%かつ150℃以下の気体中で乾燥し、延伸、熱
処理を行う方法を採用することが必要である。なお本発
明でいうところの上記重量%の数値は全てポリマーを基
準にしたものである。
In order to industrially produce the fiber of the present invention, these polymers are dissolved in DMSO, spun into a solidification bath mainly composed of methanol to extract DMSO to 2% by weight or less, and then the carbon number is reduced. 5 or more ketones per fiber
% Or more and water, and then the methanol concentration is reduced to 2-1 until the solvent content of the fiber becomes 50% by weight or less.
It is necessary to adopt a method of drying in a gas at 0% by volume and 150 ° C. or lower, and performing stretching and heat treatment. In the present invention, the above numerical values of weight% are all based on the polymer.

【0014】ポリマーの溶解方法は特に限定するもので
なく、2種類のポリマーをそれぞれ単独でDMSOに溶
解したものを適当な割合で混合しても良いし、一方のポ
リマーを溶解した溶液に他方のポリマーを添加して溶解
する方法や、2種のポリマーを同時に溶解する方法のい
ずれも採用することができ、紡糸原液にはポリマーの安
定化剤として酸類や酸化防止剤などを併用することはな
んら差支えなく行うことができる。原液中のポリマー濃
度としては10〜30重量%が好ましい。また紡糸原液
の温度としては50〜140℃が好ましい。
The method for dissolving the polymer is not particularly limited, and two types of polymers may be dissolved alone in DMSO and mixed at an appropriate ratio. Either a method of adding and dissolving a polymer and a method of dissolving two kinds of polymers at the same time can be adopted. It is not possible to use an acid or an antioxidant as a polymer stabilizer in the spinning dope. It can be done without any problem. The concentration of the polymer in the stock solution is preferably from 10 to 30% by weight. Further, the temperature of the spinning solution is preferably from 50 to 140 ° C.

【0015】紡糸は、紡糸原液をメタノールを主体とす
る固化浴で湿式または乾・湿式法で実施すればよい。一
般的に固化浴はメタノールとDMSOの混合浴が用いら
れ、その組成はメタノール/DMSO(重量比)=40
/60〜90/10であり、紡糸調子及び溶剤回収の点
から50/50〜70/30が好ましい。
The spinning may be carried out by a wet or dry / wet method in a solidifying bath mainly composed of methanol. Generally, a mixed bath of methanol and DMSO is used as a solidification bath, and its composition is methanol / DMSO (weight ratio) = 40.
/ 60 to 90/10, and preferably 50/50 to 70/30 from the viewpoint of spinning condition and solvent recovery.

【0016】DMSOの抽出はメタノールを用いて行う
ことができるが、水及び炭素数が4以上のケトン類を付
与するまでにDMSOをポリマーに対して2重量%以下
となるまで抽出しなければならない。DMSOが多く残
存するとフィブリル化性能が著しく低下し、したがって
2重量%以下、好ましくは1重量%以下、更に好ましく
は0.5重量%以下まで抽出をすすめるのが好ましい。
The extraction of DMSO can be carried out using methanol. However, it is necessary to extract DMSO to 2% by weight or less based on the polymer before adding water and ketones having 4 or more carbon atoms. . When a large amount of DMSO remains, the fibrillation performance is remarkably deteriorated. Therefore, it is preferable to perform extraction to 2% by weight or less, preferably 1% by weight or less, more preferably 0.5% by weight or less.

【0017】抽出の後に炭素数が4以上のケトン類をポ
リマーに対して5重量%以上、水と共に付与しなければ
ならない。ケトン類としては、メチルエチルケトン(M
EK)、メチルイソブチルケトン(MIBK)、メチル
イソプロピルケトン(MIPK)など炭素数が4以上の
ものであればよいが、乾燥のしやすさから比較的沸点の
低いMEKや、MIBKが好ましい。更にこれらを混合
して用いることも可能である。かかるケトン類の付与
は、抽出後の繊維をメタノール、水、ケトン類の混合液
で行ってもよいし、あらかじめメタノールと水の混合液
を付与したのち、先の3種混合液や、ケトンとメタノー
ル混合液を付与することも可能である。ケトン類の付与
量は5重量%以上が必要で、多いほどフィブリル化性能
が良好であるため8重量%以上付与するのが好ましい。
また水の付与量としては3重量%以上がフィブリル化性
能の点で好ましい。またケトンと水の外に、同時にメタ
ノールを含んでいるのがフィブリル性の点で好ましく、
繊維中のメタノールの含有量としては20重量%以上が
好ましい。
After extraction, ketones having 4 or more carbon atoms must be provided together with water in an amount of 5% by weight or more based on the weight of the polymer. Ketones include methyl ethyl ketone (M
EK), methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK) and the like having a carbon number of 4 or more may be used, but MEK or MIBK having a relatively low boiling point is preferable from the viewpoint of easy drying. Further, these can be used in combination. The application of such ketones may be carried out by using a mixed solution of methanol, water and ketones for the fiber after extraction, or after applying a mixed solution of methanol and water in advance, and mixing the above three kinds of liquids and ketones. It is also possible to apply a methanol mixture. The amount of ketones to be applied is required to be 5% by weight or more, and the larger the amount, the better the fibrillation performance.
The amount of water to be applied is preferably 3% by weight or more from the viewpoint of fibrillation performance. In addition, in addition to ketone and water, it is preferable to simultaneously contain methanol from the viewpoint of fibril properties,
The content of methanol in the fiber is preferably 20% by weight or more.

【0018】引続き繊維を乾燥するが、溶剤(メタノー
ルと水とケトン)の含有率が50重量%以下となるま
で、メタノール濃度が2〜10容量%かつ150℃以下
の気体中で乾燥乾燥しなければならない。先に述べたよ
うに乾燥器では、繊維からメタノール、水、ケトンを蒸
発させるため必然的に雰囲気内の溶剤ガス濃度が高くな
り、特にメタノール濃度が高い場合、あるいは乾燥温度
が高い場合には、フィブリル化性能が極度に阻害される
ためである。従って工業的に効率よく生産しようとすれ
ば乾燥雰囲気のメタノール濃度は2容量%以上とするこ
とが必要で、フィブリル化速度の点から10容量%以
下、好ましくは8容量%以下、さらに好ましくは5容量
%以下が好ましく、また乾燥温度としては100℃以下
が好ましい。反面、乾燥雰囲気中のケトンや水の濃度は
フィブリル化性能に殆ど影響しない。また繊維は通常1
00重量%程度の溶剤を含有した状態で乾燥雰囲気に入
るが、上記条件で残存溶剤量がポリマー(繊維)に対し
て50重量%以下になるまで乾燥すれば、続いてメタノ
ール濃度が高いあるいは温度が高い乾燥条件を採用して
も差支えない。
The fiber is subsequently dried, but must be dried and dried in a gas having a methanol concentration of 2 to 10% by volume and 150 ° C. or less until the content of the solvent (methanol, water and ketone) becomes 50% by weight or less. Must. As described above, in the dryer, methanol, water, and ketone are evaporated from the fiber, so that the solvent gas concentration in the atmosphere is inevitably high, especially when the methanol concentration is high, or when the drying temperature is high, This is because the fibrillation performance is extremely impaired. Therefore, for efficient industrial production, it is necessary that the methanol concentration in the dry atmosphere be 2% by volume or more, and from the viewpoint of the fibrillation rate, it is 10% by volume or less, preferably 8% by volume or less, and more preferably 5% by volume or less. % Or less, and the drying temperature is preferably 100 ° C. or less. On the other hand, the concentration of ketone or water in the dry atmosphere hardly affects the fibrillation performance. The fiber is usually 1
The drying atmosphere is entered in a state containing about 00% by weight of a solvent, but if the remaining solvent amount is reduced to 50% by weight or less with respect to the polymer (fiber) under the above conditions, then the methanol concentration is increased or the temperature is increased. However, there is no problem if high drying conditions are adopted.

【0019】乾燥後は、常法に従って220〜240℃
で全延伸倍率が6〜15倍となるよう乾熱延伸を行う。
延伸倍率は、用途に応じて要求される強度及び伸度が異
なるため適宜調整する。なお、ここで言う全延伸倍率と
は、湿延伸倍率と乾延伸倍率の積で表わされる値であ
る。さらに必要に応じて熱処理を行えばよいが、熱処理
時に収縮させないほうがフィブリル化性能を損なわない
ので好ましい。
After drying, 220-240 ° C. according to a conventional method.
Dry stretching is performed so that the total stretching ratio becomes 6 to 15 times.
The stretching ratio is appropriately adjusted since the required strength and elongation vary depending on the application. Here, the total stretching ratio is a value represented by the product of the wet stretching ratio and the dry stretching ratio. Further, heat treatment may be performed if necessary, but it is preferable not to shrink during the heat treatment because the fibrillation performance is not impaired.

【0020】本発明の方法は、先に述べたように抽出、
水およびケトン類の付与、乾燥方法が特異的であるが、
仮説を検証あるいは修正しつつ本発明にいたる過程で概
ね以下のように理論的に解釈している。DMSO溶液を
紡糸原液とする本発明の方法においては、原液をPVA
と異種ポリマーが相分離しているとはいえ、互いに相互
作用があるため単にノズルから押出し、繊維化しただけ
では溶融複合紡糸のように界面剥離によるフィブリル化
はおこらず、固化、抽出、乾燥工程を通じて相分離をす
すめ、界面接着力を低下させなければならない。
The method of the present invention comprises the steps of extracting,
The application of water and ketones, drying method is specific,
In the process leading up to the present invention while verifying or modifying the hypothesis, the following is theoretically interpreted as follows. In the method of the present invention using a DMSO solution as a spinning solution, the stock solution is PVA
Despite the phase separation between the polymer and the dissimilar polymer, they interact with each other, so simply extruding from the nozzle and fibrillating does not cause fibrillation due to interfacial peeling as in the case of melt composite spinning, but solidification, extraction, and drying processes To promote the phase separation and reduce the interfacial adhesion.

【0021】PVAはケトン類とは親和性がなく、特に
炭素数が4以上のケトン類により分子の凝集が起こりや
すくなることが知られている。またこのケトン類を水と
共に抽出後の繊維に付与すると、水により水素結合が緩
和されたPVA内をケトンが容易に移動して、島成分で
あるPANやPMMAなどの異種ポリマーに到達しやす
くなる。逆に水が存在しないとケトン類は島成分に到達
しにくい。次に乾燥工程で、このケトン類が海島の界面
でPVAに作用して、界面のPVA分子を凝集させ、こ
こに海島の相分離が完結する。しかし乾燥雰囲気のメタ
ノール濃度が高いと繊維からのメタノールの乾燥がおそ
くなり、界面でPVAがケトン類の作用により凝集する
際、このメタノールの存在のためその効果を阻害する。
また乾燥温度が150℃よりも高い場合は、メタノール
の乾燥は速いがケトン類の乾燥も速く、界面でPVAに
凝集作用を及ぼすことができない。海島相分離構造の発
現機構がこのような過程をたどるため、乾燥初期でケト
ン類がうまく作用する条件を整えておけばよく、その境
界が残存溶剤50%に相当し、それ以上乾燥をすすめる
にあたっては、特に条件的な制約はない。
It is known that PVA has no affinity for ketones, and particularly that ketones having 4 or more carbon atoms tend to cause aggregation of molecules. In addition, when the ketones are added to the fiber after extraction together with water, the ketone easily moves in the PVA in which the hydrogen bond is relaxed by the water, and easily reaches the heterogeneous polymer such as PAN or PMMA which is an island component. . Conversely, ketones hardly reach the island component without water. Next, in the drying step, the ketones act on the PVA at the sea-island interface to aggregate the PVA molecules at the interface, whereby the sea-island phase separation is completed. However, if the methanol concentration in the dry atmosphere is high, drying of the methanol from the fiber is slow, and when PVA aggregates at the interface due to the action of ketones, the effect is hindered by the presence of the methanol.
When the drying temperature is higher than 150 ° C., the drying of methanol is fast but the drying of ketones is also fast, so that the agglomeration of PVA cannot be exerted at the interface. In order for the mechanism of the formation of the sea-island phase separation structure to follow such a process, it is only necessary to prepare conditions for the ketones to work well in the initial stage of drying, and the boundary is equivalent to 50% of the remaining solvent. Has no particular restrictions.

【0022】[0022]

【実施例】以下実施例を以て本発明を説明するが、本発
明はこれら実施例に限定されるものではない。尚、例中
の強伸度及び溶剤含有量は以下の方法で測定した。 強伸度;JIS L−1013に準拠して測定した。 溶剤含有量;ガスクロマトグラフ(島津製作所GC7
A)、カラムHR−20M、検出器TCD DMSO分析;試料1.5gをトリグライム2重量%添
加した水100gに溶解して測定。PAN等水に溶解し
ないポリマーの未溶解物が残るがこれは無視する。 水、MIBK、メタノール分析;試料試料1.5gをト
リグライム2重量%添加したDMSO20gに溶解して
測定。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The elongation and solvent content in the examples were measured by the following methods. Strong elongation; measured in accordance with JIS L-1013. Solvent content; gas chromatograph (GC7, Shimadzu Corporation)
A), column HR-20M, detector TCD DMSO analysis: 1.5 g of a sample was dissolved in 100 g of water added with 2% by weight of triglyme and measured. An undissolved polymer insoluble in water such as PAN remains, but this is ignored. Analysis of water, MIBK, and methanol: 1.5 g of a sample was dissolved in 20 g of DMSO to which 2% by weight of triglyme was added to measure.

【0023】実施例1 酢酸ビニルを5重量%共重合した重合度1000のPA
N80KgをPANの安定剤である10%硫酸1Kgと
ともに800KgのDMSOに添加し100℃で溶解し
た。ついでこの溶液に重合度1700、ケン化度99.
8モル%のPVAを120Kg加えて100℃で溶解し
て、原液を調製した。(PVA60%、PAN40%) 該原液を、20000ホール、孔径0.08mmのノズ
ルを通して、メタノール/DMSOが7/3(重量比)
の組成で5℃の固化浴に紡糸ドラフト0.3倍で湿式紡
糸した。引き続き3倍の延伸をかけながら20℃のメタ
ノールでDMSOを残分0.1%まで抽出したのち、メ
タノール/MIBK/水=40/40/20(重量比)
の浴に浸漬し、MIBKを10重量%、水を15重量%
繊維に付与した(浸漬後の全溶剤量は90重量%)。つ
いで80℃の熱風(吹出し時のメタノール濃度3容量
%)で残存溶剤量が20重量%となるまで乾燥(第1乾
燥)した後、180℃で絶乾(第2乾燥)した。さらに
230℃で全延伸倍率が14倍となるよう延伸して巻き
取った。得られた繊維は、2デニール、強度10.6g
/d、伸度7.2%でフィブリル化指数150秒と優れ
たものであった。また、乾燥機のメタノール濃度を1容
量%にしようとすると、ホール数を6000以下にする
必要があり、かかる低濃度では工業的に生産することが
困難であった。
Example 1 PA having a polymerization degree of 1000 obtained by copolymerizing 5% by weight of vinyl acetate.
80 kg of N was added to 800 kg of DMSO together with 1 kg of 10% sulfuric acid as a stabilizer of PAN, and dissolved at 100 ° C. Then, the polymerization degree was 1700 and the saponification degree was 99.
120 kg of 8 mol% of PVA was added and dissolved at 100 ° C. to prepare a stock solution. (PVA 60%, PAN 40%) The undiluted solution was passed through a nozzle having 20,000 holes and a hole diameter of 0.08 mm, and methanol / DMSO was 7/3 (weight ratio).
Was wet-spun into a solidification bath at 5 ° C. with a spinning draft of 0.3 times. Subsequently, the DMSO was extracted with methanol at 20 ° C. to the remaining 0.1% while stretching by 3 times, and then methanol / MIBK / water = 40/40/20 (weight ratio).
10% by weight of MIBK and 15% by weight of water
It was applied to the fibers (total solvent content after immersion was 90% by weight). Next, the resultant was dried (first drying) with hot air at 80 ° C. (3% by volume of methanol at the time of blowing) until the residual solvent amount became 20% by weight, and then dried at 180 ° C. (second drying). The film was further stretched and wound at 230 ° C. so that the total stretching ratio became 14 times. The obtained fiber has a denier of 2 and a strength of 10.6 g.
/ D, elongation 7.2% and a fibrillation index of 150 seconds, which was excellent. Further, if the methanol concentration in the dryer is to be 1% by volume, the number of holes must be 6000 or less, and it is difficult to produce industrially at such a low concentration.

【0024】実施例2、比較例1 実施例1で抽出時間を変更することにより抽出後の残存
DMSO量を変更した以外は実施例1と同様の方法によ
り繊維を製造した。その場合の結果を表1に示す。
Example 2, Comparative Example 1 Fibers were produced in the same manner as in Example 1, except that the amount of residual DMSO after extraction was changed by changing the extraction time. Table 1 shows the results in that case.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、フィブリル化指
数はMIBK及び水を付与する時点でのDMSO残存量
に大きく影響され、2重量%以下の残存量としなければ
本発明の目的とする繊維は得られない。
As is clear from Table 1, the fibrillation index is greatly affected by the residual amount of DMSO at the time of adding MIBK and water. I can't get it.

【0027】実施例3〜5、比較例2、3 実施例1におけるMIBKに関し、その付与量及びケト
ンの種類を変更した。各条件とフィブリル化指数を実施
例2も合わせて表1に示す。
Examples 3 to 5, Comparative Examples 2 and 3 With respect to MIBK in Example 1, the amount applied and the type of ketone were changed. Table 1 shows the respective conditions and the fibrillation index together with Example 2.

【0028】[0028]

【表2】 [Table 2]

【0029】以上の結果、用いるケトン類の炭素数が4
未満、あるいは、付与量が5重量%未満の場合は著しく
フィブリル化性能が低下し、本発明の目的とする繊維は
得られないことが分かる。
As a result, the ketones used have 4 carbon atoms.
When the amount is less than 5% by weight, or when the amount is less than 5% by weight, the fibrillation performance is remarkably reduced, and it is found that the fiber targeted by the present invention cannot be obtained.

【0030】比較例4 実施例1においてMIBKを付与するに際し水を用い
ず、メタノール/MIBK=50/50(重量比)なる
浴に繊維を浸漬した。得られた繊維の強度、伸度は実施
例1と同等であったが、フィブリル化指数は7秒で殆ど
フィブリル化しないものであった。
Comparative Example 4 In Example 1, the fibers were immersed in a bath of methanol / MIBK = 50/50 (weight ratio) without using water when MIBK was applied. The strength and elongation of the obtained fiber were the same as in Example 1, but the fibrillation index was 7 seconds and hardly fibrillated.

【0031】実施例6〜8、比較例5〜7 実施例1において第1乾燥条件を種々変更する以外は同
様の方法で繊維を製造した。その結果を表3に示す。
Examples 6 to 8 and Comparative Examples 5 to 7 Fibers were produced in the same manner as in Example 1, except that the first drying conditions were variously changed. Table 3 shows the results.

【0032】[0032]

【表3】 [Table 3]

【0033】表3より、初期(第1)乾燥の条件が、フ
ィブリル化に大きく影響し、本発明で規定する範囲を逸
脱する乾燥条件下では、本発明の繊維が得られない。な
お強度、伸度は実施例1のそれとは殆ど差がなかった。
From Table 3, it can be seen that the initial (first) drying conditions greatly affect the fibrillation, and the fibers of the present invention cannot be obtained under the drying conditions outside the range specified in the present invention. The strength and elongation were almost the same as those of Example 1.

【0034】実施例9、比較例8、9 実施例1において、PVAの割合を変更した。得られた
繊維の物性と工程通過性を表4に示す。
Example 9, Comparative Examples 8 and 9 In Example 1, the proportion of PVA was changed. Table 4 shows the physical properties and process passability of the obtained fiber.

【0035】[0035]

【表4】 [Table 4]

【0036】比較例8、即ちPVA比率が50重量%で
はフィブリル化性能は良好であるが、固化浴へのポリマ
ー溶出が多く工程通過性が不良である。一方、PVA比
率が80重量%を越えると強度は高くなるが、フィブリ
ル化指数が50秒以上の繊維が得られない。
Comparative Example 8, that is, when the PVA ratio was 50% by weight, the fibrillation performance was good, but the polymer eluted into the solidification bath was large and the processability was poor. On the other hand, if the PVA ratio exceeds 80% by weight, the strength is increased, but fibers having a fibrillation index of 50 seconds or more cannot be obtained.

【0037】実施例10 酢酸ビニルを5重量%共重合した重合度1200のPM
MAを20重量%の濃度でDMSOに溶解した溶液と、
実施例1で用いたPVAを20重量%で溶解した溶液と
を45/55(重量比)の割合で混合攪拌して原液を調
製した。(PVA/PMMA=55/45) これを実施例1と同様に紡糸して、得た繊維は強度1
1.0g/d、7.0%、フィブリル化指数170秒と
良好な物性を有しており、また、工程通過性も問題なく
良好であった。
Example 10 PM of polymerization degree 1200 obtained by copolymerizing 5% by weight of vinyl acetate
A solution of MA in DMSO at a concentration of 20% by weight;
A solution in which PVA used in Example 1 was dissolved at 20% by weight was mixed and stirred at a ratio of 45/55 (weight ratio) to prepare a stock solution. (PVA / PMMA = 55/45) This was spun in the same manner as in Example 1 to obtain a fiber having a strength of 1
It had good physical properties of 1.0 g / d, 7.0% and a fibrillation index of 170 seconds, and also had good processability without any problem.

【0038】比較例10、11 PVAの重合度を1000(比較例10)、及びケン化
度を98.2モル%(比較例11)とした以外は実施例
10と同様の条件を紡糸した。本発明の範囲より重合度
の低い比較例10では、固化不良でノズル面での糸切れ
が多く、また固化浴へのポリマー溶出が激しく紡糸が不
能であった。一方、ケン化度の低い比較例11にあって
は、工程通過性は特に問題ないもののPVAの結晶化が
不十分であるため、フィブリル化指数におけるミキサー
叩解でPVAが溶解、発泡した。
Comparative Examples 10 and 11 Spinning was carried out under the same conditions as in Example 10 except that the degree of polymerization of PVA was changed to 1000 (Comparative Example 10) and the degree of saponification was changed to 98.2 mol% (Comparative Example 11). In Comparative Example 10 in which the degree of polymerization was lower than the range of the present invention, poor solidification caused many yarn breakage on the nozzle surface, and the polymer was eluted into the solidification bath so that spinning was impossible. On the other hand, in Comparative Example 11 having a low degree of saponification, although there was no particular problem in the processability, PVA was insufficiently crystallized, so that PVA was dissolved and foamed by mixer beating in the fibrillation index.

【0039】[0039]

【発明の効果】本発明により、極細かつ迅速にフィブリ
ル化するPVA系フィブリル繊維を提供することが可能
となり、不織布やゴムの補強分野への展開が容易になっ
た。
According to the present invention, it has become possible to provide a PVA-based fibril fiber which can be ultrafinely and quickly fibrillated, and the development of nonwoven fabric and rubber in the field of reinforcement has been facilitated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 昭夫 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akio Omori 1621 Sazu, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重合度1500以上でケン化度99.5
モル%以上のポリビニルアルコールを55〜80重量%
と、ポリアクリロニトリル、ポリメチルメタアクリレー
ト、セルロースアセテートからなる群から選ばれるポリ
マーをジメチルスルホキシドに溶解し、得られた溶液を
メタノールを主体とする固化浴に紡糸し、得られた繊維
中のジメチルスルホキシド含有量が2重量%以下となる
まで繊維からジメチルスルホキシドを抽出した後、繊維
に炭素数4以上のケトン類を5重量%以上及び水を付与
し、引き続いて溶剤含有率が50重量%以下となるまで
メタノール濃度が2〜10容量%かつ150℃以下の気
体中で乾燥し、延伸することを特徴とするポリビニルア
ルコール繊維の製造方法。
1. A polymerization degree of 1500 or more and a saponification degree of 99.5.
55% to 80% by weight of polyvinyl alcohol of at least mol%
And a polymer selected from the group consisting of polyacrylonitrile, polymethyl methacrylate, and cellulose acetate dissolved in dimethyl sulfoxide, and the resulting solution is spun into a solidification bath mainly composed of methanol, and the dimethyl sulfoxide in the obtained fiber is dissolved. After extracting dimethyl sulfoxide from the fiber until the content becomes 2% by weight or less, the fiber is provided with 5% by weight or more of ketones having 4 or more carbon atoms and water, and subsequently, the solvent content is reduced to 50% by weight or less. A method for producing a polyvinyl alcohol fiber, comprising drying in a gas having a methanol concentration of 2 to 10% by volume and a temperature of 150 ° C. or lower until drawing, and stretching.
JP02252597A 1997-02-05 1997-02-05 Method for producing polyvinyl alcohol fiber Expired - Fee Related JP3544090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02252597A JP3544090B2 (en) 1997-02-05 1997-02-05 Method for producing polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02252597A JP3544090B2 (en) 1997-02-05 1997-02-05 Method for producing polyvinyl alcohol fiber

Publications (2)

Publication Number Publication Date
JPH10219517A true JPH10219517A (en) 1998-08-18
JP3544090B2 JP3544090B2 (en) 2004-07-21

Family

ID=12085214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02252597A Expired - Fee Related JP3544090B2 (en) 1997-02-05 1997-02-05 Method for producing polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JP3544090B2 (en)

Also Published As

Publication number Publication date
JP3544090B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US20040180597A1 (en) Polyvinyl alcohol fibers, and nonwoven fabric comprising them
US5861213A (en) Fibrillatable fiber of a sea-islands structure
JPH049204B2 (en)
US4997610A (en) Process for producing filaments and fibers of acrylic polymers which contain carboxyl groups
JP3544090B2 (en) Method for producing polyvinyl alcohol fiber
JP3828550B2 (en) Polyvinyl alcohol fiber and non-woven fabric using the same
JPH10219515A (en) Polyvinyl alcohol-based fiber and its production
JPH107811A (en) Staple fiber for reinforcing rubber
JP2000328352A (en) Polyvinyl alcohol-based water-soluble fiber and paper and method for discriminating solidified state
JPH10310931A (en) Production of easily fibrillable polyvinyl alcohol-based fiber
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JPH09170115A (en) Easily fibrillating fiber and its production
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JPH09302525A (en) Readily fibrillating fiber and its production
JPH10158924A (en) Modified cross-section regenerated cellulose yarn and its production
JPH09302520A (en) Production of readily fibrillating fiber
JP2000080521A (en) Slittable acrylic fiber, slit acrylic fiber and sheetlike material
JP4591281B2 (en) Umijima fiber, method for producing the same, and method for producing ultrafine acrylic fiber
JP2001123329A (en) Easily fibril-forming polyvinyl alcohol-based fiber and method for producing the same
JP4943368B2 (en) Process for producing easily splittable acrylic composite fiber
JP2007126794A (en) Method for producing porous acrylic fiber
JPH10131013A (en) Flexible fabric
JPH09268426A (en) Production of fiber
JPH11189654A (en) Rubber composition and dispersion of reinforcing fiber
JPH03130411A (en) Ultrafine fiber and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees