JPH10218998A - Production of polycondensation polymer - Google Patents

Production of polycondensation polymer

Info

Publication number
JPH10218998A
JPH10218998A JP2026197A JP2026197A JPH10218998A JP H10218998 A JPH10218998 A JP H10218998A JP 2026197 A JP2026197 A JP 2026197A JP 2026197 A JP2026197 A JP 2026197A JP H10218998 A JPH10218998 A JP H10218998A
Authority
JP
Japan
Prior art keywords
polycondensation
polymer
reactor
stage
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2026197A
Other languages
Japanese (ja)
Inventor
Setsuo Omoto
節男 大本
Keiji Fujikawa
圭司 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2026197A priority Critical patent/JPH10218998A/en
Publication of JPH10218998A publication Critical patent/JPH10218998A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00168Controlling or regulating processes controlling the viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical

Abstract

PROBLEM TO BE SOLVED: To produce a polycondensation polymer having a high degree of polymn. at a low equipment cost. SOLUTION: The vessel 1a of a polycondensation reactor 1 is equipped with an inlet port 2 for raw materials near at the one end and an outlet port 3 for polymn. products and an outlet port 4 for volatile substances near at the other end. Blades 10 are installed between arrow-wheel-like arm rotators 5, 6 installed at both ends of the vessel 1a. Blade pieces 10a have widths (lengths in the peripheral direction of the vessel 1a) decreasing gradually from the side of the inlet port 2 toward the side of the outlet port 3. A plurality of doughnut- like circular boards 13 having the same outer edges as those of the blades 10 are installed between the blades 10, and the installation distances and inner diameters of the circular boards 13 are gradually increased from the side of the inlet port 2 toward the side of the outlet port 3. The blade piece has slits 9 formed therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、重合段階において
超高粘度化する重縮合系ポリマー、例えばポリエチレン
テレフタレート、ポリエチレンナフタレート、ポリブチ
レンテレフタレート、ポリカーボネート、その他のポリ
エステル類の製造方法及び超高粘度化した溶融流体中か
らの揮発成分等の脱挿方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a polycondensation-based polymer which increases the viscosity in the polymerization step, for example, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polycarbonate, and other polyesters, and the method for increasing the viscosity. The present invention relates to a method for detaching volatile components and the like from a molten fluid.

【0002】[0002]

【従来の技術】従来、重縮合系ポリマー、例えばポリエ
チレンテレフタレート(以下PETと略す)を高重合度
まで重合しようとした場合、重縮合反応器としては特願
昭52−147692号に示されているような装置の組
合せとなっている。その1つは第1段反応器として1軸
円板式重合器(容器内に中心軸を有するもの)、第2段
反応器として、2軸円板式重合器、第3段反応器として
2軸8字式重合器(商品名:メガネ型攪拌翼)と、反応
器を3段連結することで対応している。もう1つは、第
1段反応器の操作許容粘度の向上をねらい、容器内壁に
スクレーパ等を設け、攪拌翼及び中心軸の表面に付着す
る重合物の停滞を防止する仕組みを提案している。これ
により、第1段反応器の出口重合度を増加し、後段の2
軸8字式重合器とあわせて、高重合度のPETを製造し
ている。
2. Description of the Related Art Conventionally, when a polycondensation polymer such as polyethylene terephthalate (hereinafter abbreviated as PET) is to be polymerized to a high degree of polymerization, a polycondensation reactor is disclosed in Japanese Patent Application No. 52-14769. It is a combination of such devices. One is a single-shaft disc-type polymerization reactor (having a central axis in a vessel) as a first-stage reactor, a two-shaft disc-type polymerization reactor as a second-stage reactor, and a two-shaft 8 as a third-stage reactor. This is achieved by connecting a three-stage polymerization reactor (trade name: glasses-type stirring blade) and a reactor. The other is to improve the permissible operating viscosity of the first-stage reactor, propose a mechanism to provide a scraper or the like on the inner wall of the vessel, and prevent stagnation of the polymer adhering to the surface of the stirring blade and the central shaft. . As a result, the degree of polymerization at the outlet of the first stage reactor is increased, and
We manufacture PET with a high degree of polymerization in combination with an 8-shaft polymerizer.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術に示した
前者の場合、第1段反応器の1軸円板式重合器は、中心
軸を設けその中心軸に開孔部を設けた円板状の攪拌体を
多数備えた形状のものであるため、重合物の粘度が約1
000ポイズにもなると攪拌翼に付着した重合物は、攪
拌翼と共まわりして翼表面や中心軸表面に重合物の停滞
部が生ずることより、最大操作粘度も約1000ポイズ
以下となる。例えば、タイヤコード用ポリエステルの如
く、さらに重合度を高めようとすると(粘度は約20,
000ポイズ)、後段に2軸式の反応器が2段以上も必
要となってしまうことにより、設備費が膨大となってし
まうという欠点を有する。
In the former case shown in the prior art, the single-shaft disk-type polymerization reactor of the first-stage reactor has a disk-shape in which a central shaft is provided and an opening is provided in the central shaft. Of a polymer having a viscosity of about 1
When the water pressure reaches 000 poise, the polymer adhering to the stirring blade rotates around the stirring blade to form a stagnant portion of the polymer on the surface of the blade or on the surface of the central axis, so that the maximum operating viscosity becomes about 1,000 poise or less. For example, if the degree of polymerization is to be further increased as in polyester for tire cords (viscosity is about 20,
2,000 poises), and two or more twin-screw reactors are required in the subsequent stage.

【0004】後者では、スクレーパを設けることで、攪
拌翼及び中心軸表面の重合物を掻き取り、その部分での
重合物の停滞は緩和され共まわり現象は防止されるよう
になるが、逆にスクレーパの背面等に停滞部が生じるこ
とになってしまい、その効果は小さい。また、このよう
な攪拌翼表面や中心軸表面を対象としたスクレーパを設
けたとしても、最大許容操作粘度はおよそ4000ポイ
ズまでしか増加できず、後段重合器の容量が大きなもの
となってしまい(一軸式に比べて、2軸式は同一容量で
もコストは非常に高い)、やはりコスト的には不利とな
る欠点を有している。
In the latter, by providing a scraper, the polymer on the surface of the stirring blade and the central shaft is scraped, and the stagnation of the polymer at that portion is alleviated, and the co-rotation phenomenon is prevented. A stagnation portion will be formed on the back surface of the scraper, and the effect is small. Further, even if such a scraper is provided for the surface of the stirring blade or the surface of the central shaft, the maximum allowable operating viscosity can be increased only up to about 4000 poise, and the capacity of the post-stage polymerization vessel becomes large ( Compared with the single-shaft type, the two-shaft type has a very high cost even with the same capacity), but also has the disadvantage of being disadvantageous in cost.

【0005】[0005]

【課題を解決するための手段】本発明は、重縮合反応器
を2段連結し、安価な設備費でしかも高重合度の重縮合
系ポリマーを製造するための方法を提供するものであ
る。本発明は、重縮合反応工程により高粘度ポリマーを
連続的に溶融重縮合して製造する方法において、上記重
縮合工程が、前段重縮合反応器と後段重縮合反応器から
なり、該前段重縮合反応器は円筒容器の内径をD、容器
の軸方向長さをLで表したL/Dが2〜10、好ましく
は4〜6である実質的に水平に置かれた円筒状容器と、
この円筒状容器の両端軸心位置を軸支点とし、前記円筒
状容器の軸心とほぼ平行に該容器の内周壁と0.005
D〜0.03Dの間隙をおいて、該円筒状容器の長手方
向に回転可能に設けられると共に、回転方向に対して軸
心側が先行するように傾斜して取付けられ、かつ回転方
向に対して後部側をわずかに軸心方向に折り曲げてあ
り、さらに軸心側の位置を前記容器の内径に対して0.
75Dよりも外側に位置させた複数の翼板片、該翼板片
にほぼ直交するように該翼板片に固定された複数枚のド
ーナッツ状の円板で格子組状に構成した実質的に円筒状
容器内には、中心軸を有さない液攪拌混合用の回転体を
備えてなり、前記翼板片の幅を処理物の入口から出口へ
向って段階的に減少させて構成し、前記ドーナッツ状の
円板の取付け間隔及び内径を処理物の入口から出口に向
って段階的に増加させて構成した構造であり、前記前段
重縮合反応器出口の溶融ポリマー粘度を5000〜15
000ポイズまで反応を進行せしめ、その抜出し液を前
記後段重縮合反応器に連続供給して、さらに反応を進行
させることを特徴とする重縮合系ポリマーの製造方法を
採用する。
SUMMARY OF THE INVENTION The present invention provides a method for producing a polycondensation polymer having a high degree of polymerization at a low cost by connecting two stages of polycondensation reactors. The present invention relates to a method for producing a high-viscosity polymer by continuous melt polycondensation by a polycondensation reaction step, wherein the polycondensation step comprises a pre-stage polycondensation reactor and a post-stage polycondensation reactor. The reactor is a substantially horizontally placed cylindrical container having an L / D of 2 to 10, preferably 4 to 6, wherein the internal diameter of the cylindrical container is D, and the axial length of the container is L,
The positions of the axial centers of both ends of the cylindrical container are set as pivot points, and the inner peripheral wall of the cylindrical container and the inner peripheral wall of the cylindrical container are 0.005 substantially parallel to the axis of the cylindrical container.
D to 0.03D, with a gap provided so as to be rotatable in the longitudinal direction of the cylindrical container, attached at an angle so that the axial center side precedes the rotational direction, and attached to the rotational direction. The rear side is slightly bent in the axial direction, and the position of the axial side is set at 0. 0 relative to the inner diameter of the container.
A plurality of wing plate pieces positioned outside of 75D, and a plurality of donut-shaped disks fixed to the wing plate pieces so as to be substantially orthogonal to the wing plate pieces, substantially in a lattice set. Inside the cylindrical container, a rotating body for liquid stirring and mixing having no central axis is provided, and the width of the wing plate piece is configured to decrease stepwise from the inlet to the outlet of the processed material, The donut-shaped disk has a structure in which the mounting interval and the inner diameter of the donut-shaped disk are gradually increased from the inlet to the outlet of the processed product, and the melt polymer viscosity at the outlet of the pre-stage polycondensation reactor is 5,000 to 15,
A method for producing a polycondensation polymer is adopted, in which the reaction is allowed to proceed to 000 poise, and the discharged liquid is continuously supplied to the latter-stage polycondensation reactor to further promote the reaction.

【0006】これによって、従来技術の欠点が解消さ
れ、安価な設備費で、超高粘度のポリマーを高品質で製
造し得ることができる。本発明による重縮合系ポリマー
の製造方法の特徴は、前段重縮合反応器の攪拌翼形状を
容器内における中心軸を無くし、容器内で長手方向に複
数本の翼板を設けて、この翼板にドーナッツ状の円板を
複数枚固定すると共に、翼板の軸心側の位置を0.75
Dよりも外側に位置させた非常にシンプルな構造とし、
高粘度化したポリマーの停滞部を無くし、従来の一軸重
合器に比べて著しく許容操作粘度を高めた点である。ま
た、これにより一軸式に比べて高価な後段の二軸式反応
器の容量を大幅に縮小することが可能となり設備費とし
て大幅なコストダウンが可能となる点である。
[0006] Thus, the disadvantages of the prior art can be solved, and a very high-viscosity polymer can be produced with high quality at low equipment cost. The feature of the method for producing a polycondensation polymer according to the present invention is that the agitating blade shape of the pre-stage polycondensation reactor eliminates the central axis in the vessel, and a plurality of blades are provided in the vessel in the longitudinal direction. And a plurality of donut-shaped disks are fixed on the
With a very simple structure located outside of D,
The point is that the stagnation portion of the polymer having increased viscosity is eliminated, and the allowable operation viscosity is remarkably increased as compared with the conventional uniaxial polymerization vessel. In addition, this makes it possible to greatly reduce the capacity of the later twin-screw reactor, which is more expensive than the single-screw reactor, and to greatly reduce equipment costs.

【0007】[0007]

【発明の実施の形態】本発明による重縮合系ポリマーの
製造方法における構成について、添付図面を用いて説明
する。図1は本発明の製造方法の一実施態様におけるフ
ローを示し30,31は、エステル化反応槽、1は前段
重縮合反応器であり、図2〜図10にその詳細を示す。
21は後段重縮合反応器を示すものであり、特願昭62
−064113号等に示される二軸式反応器である。3
2,33,34は重合物を順次、次の反応器へ輸送する
ポンプ等の輸送手段である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the method for producing a polycondensation polymer according to the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a flow in one embodiment of the production method of the present invention, where 30 and 31 are esterification reactors, 1 is a pre-stage polycondensation reactor, and the details thereof are shown in FIGS.
Reference numeral 21 denotes a second-stage polycondensation reactor.
No. 064113 and the like. 3
Reference numerals 2, 33, and 34 denote transportation means such as a pump for sequentially transporting the polymer to the next reactor.

【0008】前段重縮合反応器1の構造及び作用を図2
〜図10を用いて詳細に説明する。図2において、1a
は実質的に水平に置かれた円筒状容器で、この容器1a
は、一端近くに原料の入口2、他端近くに重合物の出口
3、及び揮発物質の出口4を備えている。容器1a内の
両端に設けられた矢車状のアーム回転体5,6は、容器
1aの外部から容器1aの軸心に設けられた孔に挿入さ
れた回転軸7,8に、それぞれ固定されている。回転軸
7,8は軸受け12によって各々が支持されており、図
示されない駆動装置により適切な回転数で回転される。
FIG. 2 shows the structure and operation of the first-stage polycondensation reactor 1.
This will be described in detail with reference to FIGS. In FIG. 2, 1a
Is a cylindrical container placed substantially horizontally, and this container 1a
Has an inlet 2 for the raw material near one end, an outlet 3 for the polymer near the other end, and an outlet 4 for volatiles. The rotator-shaped arm rotating bodies 5 and 6 provided at both ends in the container 1a are respectively fixed to rotating shafts 7 and 8 inserted from outside the container 1a into holes provided in the axis of the container 1a. I have. Each of the rotating shafts 7, 8 is supported by a bearing 12, and is rotated at an appropriate rotation speed by a driving device (not shown).

【0009】矢車状のアーム回転体5,6の間には、翼
板10が配設されている。翼板10は、スリット9を設
け、図3〜図10に示すように、片側の端を僅かに折曲
げた平らな翼板片10aを、容器1aの周方向に複数
個、配設したものである。翼板片10aは、回転方向に
対して先行する前端が軸心側へ約45°下げた姿勢で傾
斜して配設されている。回転方向に対して後端側の端が
容器1aと僅かな隙間を保つ位置に複数枚固定され、こ
の翼板片10は、図4、6、8に示すように、容器1a
の入口2側から反応物の出口3側へ向かって、段階的に
板幅(容器1aの周方向長さ)を減少させて設けてい
る。すなわち図2の例では、入口2側の領域14a、中
央領域14b及び出口側の領域14cとで3段階に分
け、翼板10の幅を減少させている。翼板10に設けた
スリット9は、本例では2列としているが、スリット9
の数、大きさは反応液の粘度に応じて適宜に調整して設
ける。
A wing plate 10 is disposed between the wheel rotating bodies 5 and 6 in the shape of a wheel. The wing plate 10 is provided with a slit 9 and, as shown in FIGS. 3 to 10, a plurality of flat wing plate pieces 10 a with one end slightly bent and arranged in the circumferential direction of the container 1 a. It is. The blade piece 10a is disposed so as to be inclined such that the front end preceding the rotation direction is lowered by about 45 ° toward the axis. A plurality of blades 10 are fixed at a position where the rear end side in the rotation direction keeps a slight gap with the container 1a, as shown in FIGS.
The plate width (the length in the circumferential direction of the container 1a) is gradually reduced from the inlet 2 side to the reactant outlet 3 side. That is, in the example of FIG. 2, the width of the blade 10 is reduced by dividing the region into the entrance 2 side region 14a, the central region 14b, and the exit side region 14c in three stages. Although the slits 9 provided in the wing plate 10 have two rows in this example, the slits 9
The number and size of are adjusted appropriately according to the viscosity of the reaction solution.

【0010】また、翼板10の間には、容器1a内に滞
溜する重合物の容器1a長手方向の混合を抑制する目的
で外径が翼板10の外端と一致するドーナッツ状の円板
13が複数個、互いに間隔をおいて取付けられており、
このドーナッツ状の円板13の取付け間隔と内径は、容
器1aの入口2側から反応物の出口3側へ向かって段階
的に増加されている。このようにして、アーム回転体
5、6の間に固定した翼板10とドーナッツ状の円板1
3からなる格子組は、入口2側を容器1aの中心近くま
で密に、出口3側を粗に配列している。
A donut-shaped circle whose outer diameter matches the outer end of the blade 10 is provided between the blades 10 in order to suppress mixing of the polymer remaining in the container 1a in the longitudinal direction of the container 1a. A plurality of plates 13 are mounted at intervals from each other;
The mounting interval and the inner diameter of the donut-shaped disc 13 are gradually increased from the inlet 2 side of the container 1a to the reactant outlet 3 side. In this manner, the wing plate 10 fixed between the arm rotating bodies 5 and 6 and the donut-shaped disk 1
In the lattice set composed of 3, the inlet 2 side is densely arranged near the center of the container 1a, and the outlet 3 side is coarsely arranged.

【0011】前段重縮合反応器1の具体的なサイズは、
円筒状容器の内径をD、容器の軸方向長さをLで表した
L/Dが2〜10、好ましくは4〜6である。また、翼
板片10aが配設される範囲は、この円筒状容器の両端
軸心位置を軸支点とし、円筒状容器1aの内周壁と翼板
片10aの後端側端部とが、0.005D〜0.03D
の間隙をおくと共に、軸心側の位置を容器1aの内径D
に対して0.75Dよりも外側に位置させている。
The specific size of the first-stage polycondensation reactor 1 is as follows:
L / D, where D represents the inner diameter of the cylindrical container and L represents the axial length of the container, is 2 to 10, preferably 4 to 6. The range in which the wing plate pieces 10a are disposed is set such that the axial center positions of both ends of the cylindrical container are used as pivot points, and the inner peripheral wall of the cylindrical container 1a and the rear end of the wing plate pieces 10a are 0 0.005D to 0.03D
And the position on the axis side is set to the inner diameter D of the container 1a.
Is located outside of 0.75D.

【0012】次に、本実施の形態による重縮合系ポリマ
ーの製造方法の操作、作用について説明する。上述した
構成の重合反応装置において、原料の入口2より供給さ
れた中間重合体は容器1aの内部において、スリット9
付きの翼板10によって容器1aの内壁面沿いを持ち上
げられる。翼板片10aによって持ち上げられた原料は
翼板片10aが気相部に位置するところで、スリット9
及び翼板片10a面上及び翼板片10aの後部側に設け
た折曲げ部よりフィルム状となって流下し、高粘度化し
た重合物を流下途中で邪魔する部材もないことにより気
相に効率良くさらす作用、すなわち表面更新作用が大き
く、また重合物の攪拌作用が優れている。
Next, the operation and operation of the method for producing a polycondensation polymer according to the present embodiment will be described. In the polymerization reactor having the above-described structure, the intermediate polymer supplied from the inlet 2 of the raw material is supplied to the slit 9 inside the container 1a.
Along the inner wall surface of the container 1a can be lifted by the attached wing plate 10. The raw material lifted by the blade piece 10a is supplied to the slit 9 where the blade piece 10a is located in the gas phase.
And into the gaseous phase because there is no member that hinders the high-viscosity polymer from flowing down from the bent portion provided on the surface of the wing plate piece 10a and on the rear side of the wing plate piece 10a. The effect of exposing efficiently, that is, the surface renewal effect is large, and the effect of stirring the polymer is excellent.

【0013】また、このとき原料の入口2側の領域14
aでは、入口2から供給された中間重合体の粘度は低
く、ここでは、密に配置したスリット9付きの翼板10
と、ドーナッツ状の円板13との格子組によって、中心
に近い位置まで中間重合体の表面更新作用が行われて揮
発性ガスの分離と重合化が密に促進され、容器1aの中
央領域14bでは表面更新作用がやや円周側にかたよっ
て緩やかになる。一方、重合物の出口3側の領域14c
の重合体の粘度が5000ポイズ以上と非常に高くなっ
た個所では、円周部近くに粗に配置した格子組によっ
て、容器1aの内壁面沿いだけの緩やかな表面更新作用
が行われ、容器1aの中心部の重合物の共廻り現象が解
消し、重合物質の出口3への流れがスムーズになり、良
好な滞溜時間分布(ピストンフロー性)を得ることがで
きる。
At this time, the region 14 on the inlet 2 side of the raw material is
a, the viscosity of the intermediate polymer supplied from the inlet 2 is low, and here, the vanes 10 with slits 9 are closely arranged.
And the lattice set of the donut-shaped disks 13 perform a surface renewal action of the intermediate polymer to a position close to the center, thereby promoting the separation and polymerization of volatile gas densely, and the central region 14b of the container 1a. In this case, the surface renewal effect is slightly moderate on the circumferential side. On the other hand, the region 14c on the polymer exit 3 side
In places where the viscosity of the polymer becomes extremely high at 5,000 poises or more, a gradual surface renewing action only along the inner wall surface of the container 1a is performed by a lattice group roughly arranged near the circumference, and the container 1a The co-rotation phenomenon of the polymer in the central portion of the polymer is eliminated, the flow of the polymer substance to the outlet 3 becomes smooth, and a good residence time distribution (piston flow property) can be obtained.

【0014】このため、重縮合系のポリマーの重合にお
いて、5000ポイズ以上と、非常に高粘度に達したポ
リマーであっても、効率良く揮発性ガスを除去できるよ
うになる。このように前段重縮合反応器により粘度50
00〜15000ポイズまで重合されたポリマーは、さ
らに高重度化するために、送液用ポンプ34により後段
重縮合反応器21に送られ、ここで所定の重合度まで重
合された後、最終重合物として取出される。後段重縮合
反応器21には、超高粘度液用攪拌処理装置として、特
願昭62−064113号等の二軸式反応器が適用され
る。
For this reason, in the polymerization of the polycondensation polymer, even if the viscosity of the polymer reaches a very high value of 5,000 poise or more, the volatile gas can be efficiently removed. As described above, the viscosity was 50
The polymer that has been polymerized to 00 to 15000 poises is sent to the second-stage polycondensation reactor 21 by the liquid sending pump 34 in order to further increase the weight, and after being polymerized to a predetermined polymerization degree, the final polymer Is taken out as As the second-stage polycondensation reactor 21, a twin-screw reactor such as Japanese Patent Application No. 62-064113 is used as an agitation device for an ultra-high viscosity liquid.

【0015】[0015]

【実施例】以下、本発明による重縮合系ポリマーの製造
方法の実施例をポリエチレンテレフタレートの重合例を
用いて具体的に説明する。
EXAMPLES Hereinafter, examples of the method for producing a polycondensation polymer according to the present invention will be specifically described using polymerization examples of polyethylene terephthalate.

【0016】(実施例1)図1に示したフローの装置を
使いテレフタル酸1.0モル、エチレングリコール1.
5モルの割合で混合された原料スラリーを毎時27kg
の割合で、連続的に第1段目のエステル化反応槽30に
供給した。このスラリー中には触媒としての三酸化アン
チモン、安定剤としてのリン酸トリフェニルが原料スラ
リー中に各々350ppm、300ppmの割合で添加
されている。エステル化反応は第1段、第2段のエステ
ル化反応槽30,31で反応率約95%まで行った。こ
の時の第1段、第2段エステル化反応槽30,31の条
件は、温度は共に260℃であり、滞溜時間は各々4.
5時間、2時間であった。
(Embodiment 1) 1.0 mol of terephthalic acid, ethylene glycol 1.
27 kg / hour of raw material slurry mixed at a ratio of 5 mol
, And was continuously supplied to the first-stage esterification reaction tank 30. In this slurry, antimony trioxide as a catalyst and triphenyl phosphate as a stabilizer were added at a ratio of 350 ppm and 300 ppm, respectively, to the raw material slurry. The esterification reaction was carried out in the first and second stage esterification reaction tanks 30 and 31 to a conversion of about 95%. At this time, the conditions of the first-stage and second-stage esterification reaction tanks 30 and 31 are such that the temperature is both 260 ° C. and the residence time is 4.
5 hours and 2 hours.

【0017】次に、このプレポリマーを温度270℃、
圧力1Torrにコントロールされた。図2に示した一軸式
前段重縮合反応器(容器内径300mm、L/D=4、
攪拌翼回転直径296mm、内容積85リットル、攪拌
回転数5rpm)に、第2段エステル化反応槽31の出
口に接続したギヤポンプ33で押込み、滞溜時間約1.
5時間で重合させた。得られたポリマーの極限粘度
(η)は、0.76dl/gであった。得られたポリマ
ーの溶融粘度は、約5800ポイズであった。
Next, the prepolymer was heated at a temperature of 270 ° C.
The pressure was controlled at 1 Torr. The single-shaft pre-stage polycondensation reactor shown in FIG. 2 (vessel inner diameter 300 mm, L / D = 4,
It is pushed into a stirring blade rotation diameter of 296 mm, an internal volume of 85 liters, and a stirring rotation number of 5 rpm by a gear pump 33 connected to an outlet of the second-stage esterification reaction tank 31.
The polymerization was carried out in 5 hours. The intrinsic viscosity (η) of the obtained polymer was 0.76 dl / g. The melt viscosity of the obtained polymer was about 5800 poise.

【0018】次に、このポリマーを、温度285℃、圧
力0.3Torrにコントロールされた特願昭62−064
113号に示したセルフクリーニング機能を有する二軸
横型攪拌式後段重合器(L/D=6、攪拌翼回転直径2
40mm、内容積60リットル、攪拌回転数8rpm)
に、前記前段重合器出口のギヤポンプ34で押込み、滞
溜時間40分で重合させた。得られたポリマーの極限粘
度(η)は、1.12dl/gであった。試験結果を表
1に示す。
Next, this polymer was subjected to a temperature control of 285 ° C. and a pressure of 0.3 Torr, as disclosed in Japanese Patent Application No. 62-064.
No. 113, a two-shaft horizontal stirring type post-polymerizer having a self-cleaning function (L / D = 6, stirring blade rotation diameter 2)
(40 mm, internal volume 60 liters, stirring speed 8 rpm)
Then, the mixture was pushed by the gear pump 34 at the outlet of the pre-stage polymerization vessel, and was polymerized for a residence time of 40 minutes. The intrinsic viscosity (η) of the obtained polymer was 1.12 dl / g. Table 1 shows the test results.

【0019】(実施例2)実施例1における前段重縮合
反応器1において、温度を285℃とした以外は実施例
1と同様な重合を行って、得られたポリマーについて同
様な分析を行った。試験結果を表1に示す。
(Example 2) In the first-stage polycondensation reactor 1 in Example 1, the same polymerization as in Example 1 was carried out except that the temperature was changed to 285 ° C, and the obtained polymer was analyzed in the same manner. . Table 1 shows the test results.

【0020】(実施例3)実施例1において、後段重縮
合反応器21の回転数を15rpmとした以外は実施例
1と同様な重合を行って得られたポリマーについて同様
な分析を行った。試験結果を表1に示す。
Example 3 A polymer obtained by performing the same polymerization as in Example 1 except that the rotation speed of the post-stage polycondensation reactor 21 was changed to 15 rpm, was analyzed in the same manner. Table 1 shows the test results.

【0021】(実施例4)実施例1において、第2段エ
ステル化槽31の出口に接続したギヤポンプ33から前
段重縮合反応器1に送るポリマーを、一部連続的に系外
に抜出し、前段重縮合反応器1へ送るポリマーを少なく
し、前段重縮合反応器1の滞溜時間を2時間、後段重縮
合反応器21の滞溜時間を約53分とした以外は、実施
例1と同様な重合を行って得られたポリマーについて同
様な分析を行った。試験結果を表1に示す。
(Example 4) In Example 1, the polymer to be sent to the first-stage polycondensation reactor 1 from the gear pump 33 connected to the outlet of the second-stage esterification tank 31 was partially and continuously extracted out of the system. Same as Example 1 except that the amount of polymer to be sent to the polycondensation reactor 1 was reduced, the residence time of the pre-stage polycondensation reactor 1 was set to 2 hours, and the retention time of the post-stage polycondensation reactor 21 was set to about 53 minutes. The same analysis was performed on the polymer obtained by performing the various polymerizations. Table 1 shows the test results.

【0022】[0022]

【表1】 [Table 1]

【0023】なお、表1における極限粘度と溶融粘度の
測定方法は次のとおりである。 (1) 極限粘度 フェノールと1、1、2、2
テトラクロロエタンの重量比が4対6である20℃の混
合溶媒を用いてウベローテ粘度計を用いて測定した。 (2) 溶融粘度 固定容器内径23.1mm内
に、外径20.2mm、長さ61.4mmの回転円筒を
有する二重円筒式回転粘度計(独:HAAKE 社製)を用
い、各重縮合反応器1,21の操作温度条件下にて測定
した。
The methods for measuring the intrinsic viscosity and the melt viscosity in Table 1 are as follows. (1) Intrinsic viscosity phenol and 1, 1, 2, 2
The measurement was performed using an Ubbelohte viscometer using a mixed solvent at 20 ° C. in which the weight ratio of tetrachloroethane was 4 to 6. (2) Melt viscosity Each polycondensation was conducted using a double-cylindrical rotary viscometer (HAAKE, Germany) having a rotating cylinder with an outer diameter of 20.2 mm and a length of 61.4 mm within a fixed container inner diameter of 23.1 mm. The measurement was performed under the operating temperature conditions of the reactors 1 and 21.

【0024】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく、本発
明の技術的思想に基づいて種々の変形が可能である。例
えば、前記実施例はポリエチレンテレフタレート(PE
T)を例にあげて説明したが、本発明は当然のことなが
らPET以外の重縮合系ポリマーに対しても有効であ
る。
Although the embodiments of the present invention have been described above, the present invention is, of course, not limited thereto, and various modifications can be made based on the technical concept of the present invention. For example, in the above embodiment, polyethylene terephthalate (PE
Although T) has been described as an example, the present invention is, of course, also effective for polycondensation polymers other than PET.

【0025】[0025]

【発明の効果】本発明によれば、安価な一軸式前段重縮
合反応器により、ポリマー粘度を従来の一軸式反応器で
は操作不能であった高粘度域(粘度5000〜1500
0ポイズ)まで操作可能としたことより、その後段に設
けられる例えば二軸式重縮合反応器への容量を大幅に小
さくすることが可能となる。後段重縮合反応器では、さ
らに超高粘度化するポリマーを処理することが必要とな
るため高価な設備となるため安価な前段反応器により、
極力高粘度域まで重合することにより、後段反応器をコ
ンパクト化することによりトータルコストの大幅な低減
が可能となる。また、最終重合度の要求が低いものであ
れば(例えば、最終ポリマー粘度が15000ポイズ以
下のもの)、本発明による前段重縮合反応器までで処理
可能であり、後段重縮合反応器を設ける必要はなくな
り、大幅なコストダウンが可能となる。
According to the present invention, an inexpensive single-shaft pre-stage polycondensation reactor is used to adjust the polymer viscosity to a high viscosity range (viscosity of 5,000 to 1500, which cannot be operated with a conventional single-shaft reactor).
Since the operation can be performed up to 0 poise), the capacity of, for example, a biaxial polycondensation reactor provided in the subsequent stage can be significantly reduced. In the latter-stage polycondensation reactor, it is necessary to treat a polymer that further increases the viscosity, so it becomes an expensive facility.
By polymerizing to as high a viscosity range as possible, the total cost can be significantly reduced by making the subsequent reactor compact. If the requirement for the final degree of polymerization is low (for example, the final polymer viscosity is 15,000 poise or less), it can be processed up to the pre-stage polycondensation reactor according to the present invention, and it is necessary to provide a post-stage polycondensation reactor. And cost can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態例による重縮合系ポリマー
の製造のフローを示す工程図である。
FIG. 1 is a process chart showing a flow of production of a polycondensation polymer according to an embodiment of the present invention.

【図2】図2は、前段重縮合反応器の縦断面図である。FIG. 2 is a longitudinal sectional view of a pre-stage polycondensation reactor.

【図3】図3は、図2におけるS−S矢視方向の断面図
である。
FIG. 3 is a cross-sectional view taken along a line SS in FIG. 2;

【図4】図4は、図2におけるT−T矢視方向の断面図
である。
FIG. 4 is a cross-sectional view taken along a line TT in FIG. 2;

【図5】図5は、図4のU部の拡大断面図である。FIG. 5 is an enlarged sectional view of a portion U in FIG. 4;

【図6】図6は、図2におけるV−V矢視方向の断面図
である。
FIG. 6 is a sectional view taken along the line VV in FIG. 2;

【図7】図7は、図6のW部の拡大断面図である。FIG. 7 is an enlarged sectional view of a portion W in FIG. 6;

【図8】図8は、図2におけるX−X矢視方向の断面図
である。
FIG. 8 is a cross-sectional view taken along a line XX in FIG. 2;

【図9】図9は、図8のY部の拡大断面図である。FIG. 9 is an enlarged sectional view of a portion Y in FIG. 8;

【図10】図10は、図2のZ−Z矢視の断面図であ
る。
FIG. 10 is a sectional view taken along the line ZZ in FIG. 2;

【符号の説明】[Explanation of symbols]

1 前段重縮合反応器 1a 容器 2 入口 3,4 出口 5,6 アーム回転体 7,8 回転軸 10 翼板 10a 翼板片 13 円板 21 後段重縮合反応器 DESCRIPTION OF SYMBOLS 1 Pre-stage polycondensation reactor 1a Vessel 2 Inlet 3,4 Exit 5,6 Arm rotating body 7,8 Rotation axis 10 Blade plate 10a Blade plate piece 13 Disk 21 Post-stage polycondensation reactor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高粘度ポリマーを連続的に重縮合反応工
程により溶融重縮合して製造する方法において、 上記重縮合反応工程が、前段重縮合反応器と後段重縮合
反応器によって行われ、 該前段重縮合反応器は、円筒状容器の内径をD、容器の
軸方向長さをLで表したL/Dが2〜10、好ましくは
4〜6であり、実質的に水平に置かれ、一端に処理物を
供給する入口、他端に出口を設けた円筒状容器内に、該
円筒状容器の両端軸心位置を軸支点とし、円筒状容器の
内周壁と0.005D〜0.03Dの間隙をおいて回転
可能に設けられた実質的に中心軸を有さない中空の液攪
拌混合用の回転体を備え、 該回転体内に、上記円筒状容器の内径に対して0.75
Dよりも外側に位置させ、かつ、回転方向に対して、前
端側を円筒状容器の内方に傾けた姿勢で配設され、後端
側をわずかに回転方向に対して反対側内方に折り曲げた
翼板片を周方向に複数配設した翼板を設け、該翼板の間
にドーナッツ状の円板を固定して併設してなり、 上記翼板片の周方向長さを処理物の上記入口から出口へ
向って段階的に減少させて構成し、上記ドーナッツ状の
円板の取付け間隔及び内径を処理物の入口から出口に向
って段階的に増加させて構成した構造であり、 上記前段重縮合反応器出口の溶融ポリマー粘度を500
0〜15000ポイズまで反応を進行せしめ、その抜出
し液を前記後段重縮合反応器に連続供給して、さらに反
応を進行させることを特徴とする重縮合系ポリマーの製
造方法。
1. A method for producing a high-viscosity polymer by continuous melt polycondensation in a polycondensation reaction step, wherein the polycondensation reaction step is performed by a first-stage polycondensation reactor and a second-stage polycondensation reactor. The first-stage polycondensation reactor has an L / D of 2 to 10, preferably 4 to 6, where D represents the inner diameter of the cylindrical vessel and L represents the axial length of the vessel, and is placed substantially horizontally. In a cylindrical container provided with an inlet for supplying a processed material at one end and an outlet at the other end, the axial center positions of both ends of the cylindrical container are used as pivot points, and the inner peripheral wall of the cylindrical container and 0.005D to 0.03D. And a rotatable rotatable rotatable mixing and stirring liquid having substantially no center axis and having a gap of 0.75 with respect to the inner diameter of the cylindrical container.
D, and is disposed with the front end side inclined inward of the cylindrical container with respect to the rotation direction, and the rear end side slightly inward with respect to the rotation direction. A blade is provided in which a plurality of bent blades are arranged in the circumferential direction, and a donut-shaped disk is fixedly provided between the blades, and the circumferential length of the blade is set to the above-mentioned length of the processed material. The donut-shaped disk is configured to be gradually reduced from the inlet to the outlet, and the mounting interval and the inner diameter of the donut-shaped disc are gradually increased from the inlet to the outlet of the processed material. The melt polymer viscosity at the outlet of the polycondensation reactor is 500
A method for producing a polycondensation-based polymer, which comprises allowing the reaction to proceed to 0 to 15,000 poises, continuously supplying the discharged liquid to the second-stage polycondensation reactor, and further promoting the reaction.
JP2026197A 1997-02-03 1997-02-03 Production of polycondensation polymer Withdrawn JPH10218998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2026197A JPH10218998A (en) 1997-02-03 1997-02-03 Production of polycondensation polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026197A JPH10218998A (en) 1997-02-03 1997-02-03 Production of polycondensation polymer

Publications (1)

Publication Number Publication Date
JPH10218998A true JPH10218998A (en) 1998-08-18

Family

ID=12022267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026197A Withdrawn JPH10218998A (en) 1997-02-03 1997-02-03 Production of polycondensation polymer

Country Status (1)

Country Link
JP (1) JPH10218998A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083780A1 (en) 2006-01-23 2007-07-26 Teijin Limited Production apparatus, and production process, for polylactic acid
EP2055730A2 (en) 2007-10-29 2009-05-06 Hitachi Plant Technologies, Ltd. Polymer producing method and apparatus and polymer degassing method and apparatus
ITTO20130168A1 (en) * 2013-03-01 2014-09-02 Lucio Sanasi MACHINE OF PARTICULAR DRAWING FOR THE THERMAL PRESSURE TREATMENT OF MIXED MATERIALS WITH THE PURPOSE OF PREPARATION, USING THE ACTION OF THE BIPHASIC WATER-STEAM VECTOR AND OF THE DYNAMIC ACTION OF RE-SCROLLING, AT THE SEPARATION OF THE INDIVIDUAL ELEMENTS
JP2016521794A (en) * 2013-06-12 2016-07-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Apparatus comprising a reaction chamber having at least one cylindrical section for synthesizing polymers while separating gaseous substances
WO2019074051A1 (en) * 2017-10-12 2019-04-18 株式会社クレハ Continuous production device and continuous production method for polymer
CN111777755A (en) * 2020-07-03 2020-10-16 利华益维远化学股份有限公司 Final polycondensation reactor for preparing polycarbonate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083780A1 (en) 2006-01-23 2007-07-26 Teijin Limited Production apparatus, and production process, for polylactic acid
EP2009040A1 (en) * 2006-01-23 2008-12-31 Teijin Limited Production apparatus, and production process, for polylactic acid
EP2009040A4 (en) * 2006-01-23 2011-11-23 Teijin Ltd Production apparatus, and production process, for polylactic acid
EP2055730A2 (en) 2007-10-29 2009-05-06 Hitachi Plant Technologies, Ltd. Polymer producing method and apparatus and polymer degassing method and apparatus
US8198392B2 (en) 2007-10-29 2012-06-12 Hitachi Plant Technologies, Ltd. Polymer producing method and apparatus and polymer degassing method and apparatus
ITTO20130168A1 (en) * 2013-03-01 2014-09-02 Lucio Sanasi MACHINE OF PARTICULAR DRAWING FOR THE THERMAL PRESSURE TREATMENT OF MIXED MATERIALS WITH THE PURPOSE OF PREPARATION, USING THE ACTION OF THE BIPHASIC WATER-STEAM VECTOR AND OF THE DYNAMIC ACTION OF RE-SCROLLING, AT THE SEPARATION OF THE INDIVIDUAL ELEMENTS
JP2016521794A (en) * 2013-06-12 2016-07-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Apparatus comprising a reaction chamber having at least one cylindrical section for synthesizing polymers while separating gaseous substances
WO2019074051A1 (en) * 2017-10-12 2019-04-18 株式会社クレハ Continuous production device and continuous production method for polymer
KR20190041969A (en) * 2017-10-12 2019-04-23 가부시끼가이샤 구레하 Continuous production apparatus of polymer and continuous production method
CN109952340A (en) * 2017-10-12 2019-06-28 株式会社吴羽 The apparatus for continuously production and method for continuous production of polymer
CN109952340B (en) * 2017-10-12 2024-02-23 株式会社吴羽 Continuous production apparatus and continuous production method for polymer
CN111777755A (en) * 2020-07-03 2020-10-16 利华益维远化学股份有限公司 Final polycondensation reactor for preparing polycarbonate

Similar Documents

Publication Publication Date Title
US6846103B2 (en) Apparatus for continuous stirring and process for continuous polycondensation of polymer resin
US6265525B1 (en) Method and device for manufacturing polycarbonate
KR0140525B1 (en) Method for producing high viscosity materials
US5055273A (en) Apparatus for processing high viscosity materials
US2758915A (en) Apparatus for continuous polymerization
EP0182352B1 (en) Process for the production of polyester
JPH10218998A (en) Production of polycondensation polymer
US20050014922A1 (en) Apparatus and process for batchwise polycondensation
CN111560116B (en) Method for continuously producing high-viscosity polymer
US3728083A (en) Polymer finisher
US3524730A (en) Apparatus for carrying out a polycondensation reaction continuously
US3987021A (en) Process utilizing a stirring reactor
JPH03188936A (en) Method and device for producing high-viscosity material
EP1369169B1 (en) Apparatus for continuous stirring and use for continuous polycondensation of polymer resin
KR100426421B1 (en) Polymerization apparatus
US3046099A (en) Improved polymer finisher apparatus
JP2816158B2 (en) Vertical stirrer and operating method thereof
CN111672443B (en) High-viscosity polymer polycondensation reactor based on combined stirring mechanism
US5091503A (en) Continuous polymerization device and continuous polymerization method
JP3602958B2 (en) Horizontal reaction tank
JP3297274B2 (en) Polymerization reactor
JPH083301A (en) Production of polyethylene terephthalate having high polymerization degree
US6350848B1 (en) Process and apparatus for producing polycarbonate
JP4144967B2 (en) Horizontal reactor
JPH0987392A (en) Continuous production apparatus for polycondensation polymer and production process therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406