JPH10218636A - Optical quartz glass member - Google Patents

Optical quartz glass member

Info

Publication number
JPH10218636A
JPH10218636A JP9225414A JP22541497A JPH10218636A JP H10218636 A JPH10218636 A JP H10218636A JP 9225414 A JP9225414 A JP 9225414A JP 22541497 A JP22541497 A JP 22541497A JP H10218636 A JPH10218636 A JP H10218636A
Authority
JP
Japan
Prior art keywords
fluorine
quartz glass
slm
sulfur
glass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9225414A
Other languages
Japanese (ja)
Inventor
Masashi Fujiwara
誠志 藤原
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9225414A priority Critical patent/JPH10218636A/en
Publication of JPH10218636A publication Critical patent/JPH10218636A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine

Abstract

PROBLEM TO BE SOLVED: To obtain a glass member good in initial transmittance for ultraviolet rays in a specific wavelength region by specifying the weight ratio of the fluorine to the sulfur (fluorine content/sulfur content) contained in an optical quartz glass member. SOLUTION: A raw material such as silicon tetrachloride is hydrolyzed with an oxyhydrogen flame to provide a preform rod, which is then reacted with a dopant gas such as sulfur hexafluoride in an electric furnace and subsequently transparentized in an inert gas to afford an optical quartz glass member having >=100 weight ratio of fluorine to sulfur, >=100ppm fluorine concentration contained in the glass, used for ultraviolet rays at <=250nm wavelength and having >=99.9% transmittance at 193nm wavelength. Thereby, a large-caliber synthetic quartz glass optical body, doped with fluorine and usable in a vacuum ultraviolet region without any absorption in the vacuum ultraviolet region at 160-250nm wavelength is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空紫外域に波長
を持つ紫外線全般の光学系に使用される合成石英ガラス
光学体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz glass optical body used in an optical system for general ultraviolet light having a wavelength in a vacuum ultraviolet region.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィ技術に
おいては、ステッパと呼ばれる露光装置が用いられてい
る。このステッパの光源は、近年の LSIの高集積化にと
もなって g線( 436nm)から i線( 365nm)、さらには KrF
( 248nm)や ArF( 193nm)エキシマレーザへと短波長化が
進められている。
2. Description of the Related Art Conventionally, in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon, an exposure apparatus called a stepper is used. The light source of this stepper has been changed from g-line (436nm) to i-line (365nm) and KrF
(248 nm) and ArF (193 nm) excimer lasers are being shortened.

【0003】一般に、ステッパの照明系あるいは投影レ
ンズとして用いられる光学ガラスは、 i線よりも短い波
長領域では光透過率が低下するため、従来の光学ガラス
にかえて合成石英ガラスやフッ化カルシウム(蛍石)等
のフッ化物単結晶を用いることが提案されている。ステ
ッパに搭載される光学系は多数のレンズの組み合わせに
より構成されており、たとえレンズ一枚当たりの透過率
低下量が小さくとも、それが使用レンズ枚数分だけ積算
されてしまい、照射面での光量の低下につながるため、
光学素材に対して高透過率化が要求されている。これに
加えて、紫外線は短くなればなるほどその持っているエ
ネルギーが大きくなるため、素材に対してダメージを生
じさせ、ひいては使用時の透過率低下をさせ易くなる。
In general, optical glass used as an illumination system or a projection lens of a stepper has a low light transmittance in a wavelength region shorter than the i-line, so that synthetic quartz glass or calcium fluoride (calcium fluoride) is used instead of the conventional optical glass. It has been proposed to use a single crystal of fluoride such as fluorite. The optical system mounted on the stepper is composed of a combination of many lenses, and even if the transmittance reduction per lens is small, it is integrated by the number of lenses used, and the light amount on the irradiation surface To reduce
High transmittance is required for optical materials. In addition to this, the shorter the ultraviolet ray, the greater the energy it has, so that the material is damaged and the transmittance during use is easily reduced.

【0004】このように、紫外領域の光リソグラフィー
用光学体として用いられる石英ガラスには、紫外線の高
透過性及び高い耐紫外線性が要求されている。照射面で
の光量の低下につながるため、光学素材に対して高透過
率化が要求されている。しかしながら従来から用いられ
ているフッ素をドープされた石英ガラスでは、品質、特
に 250nm以下での初期透過率が不十分であり、 250nm以
下のいわゆる真空紫外領域で使用される精密光学機器に
組み込むことができなかった。
As described above, quartz glass used as an optical body for photolithography in the ultraviolet region is required to have high transmittance and high resistance to ultraviolet light. To reduce the amount of light on the irradiation surface, the optical material is required to have high transmittance. However, the quality of the conventionally used fluorine-doped quartz glass, especially the initial transmittance at 250 nm or less, is insufficient, and it can be incorporated into precision optical equipment used in the so-called vacuum ultraviolet region of 250 nm or less. could not.

【0005】[0005]

【発明が解決しようとする課題】通常、フッ素を石英ガ
ラス中にドープする方法には、いわゆる VAD法と呼ばれ
る方法を用いている。この方法では、 163nmに吸収を生
じるSi−Siの酸素欠乏型欠陥をSi-Fに転化させることが
できるが、その吸収を完全には消去することは非常に困
難である。Si-Fは結合エネルギーが大きいため耐紫外線
性の向上が期待されるが、若干量存在するSi−Siは結合
エネルギーがそれに比べ小さいために、紫外線で簡単に
解離し、E'センターと呼ばれる欠陥が生成してしまい、
紫外領域での透過率の低下につながってしまう。このた
め、 250nm以下の紫外光用の光学体としては光透過率の
面で十分なものとは言えなかった。更に、一旦スート体
と呼ばれるSiO2微粒子の大きな堆積物を生成させた
後、電気炉中でのドープ処理・透明化を行わねばなら
ず、大きなバルク体を得にくいという問題があった。ま
た、本発明者らは特願平6-156302において、フッ素濃度
を100ppm以上含まれているものが真空紫外用光学部材と
して有用であるということを見い出しているが、この条
件を満たしているものの中には紫外レーザ光を照射した
際に 585nmにピーク波長を持つ発光帯の生成が見られ、
250nm以下の波長における初期透過率が低下しているも
のもあった。
Usually, as a method of doping fluorine into quartz glass, a method called a so-called VAD method is used. With this method, oxygen-deficient defects of Si—Si that cause absorption at 163 nm can be converted into Si—F, but it is very difficult to completely eliminate the absorption. Although Si-F has high binding energy, it is expected to improve UV resistance.Since a small amount of Si-Si has a small binding energy, it easily dissociates with ultraviolet light and has a defect called E 'center. Generates
This leads to a decrease in transmittance in the ultraviolet region. For this reason, it could not be said that the optical body for ultraviolet light of 250 nm or less was sufficient in terms of light transmittance. Furthermore, after a large deposit of SiO2 fine particles called a soot body is once generated, doping treatment and transparency in an electric furnace must be performed, and there is a problem that it is difficult to obtain a large bulk body. In addition, the present inventors have found in Japanese Patent Application No. 6-156302 that a substance containing a fluorine concentration of 100 ppm or more is useful as an optical member for vacuum ultraviolet irradiation. Some of the emission bands with a peak wavelength at 585 nm were generated when irradiated with ultraviolet laser light.
In some cases, the initial transmittance at a wavelength of 250 nm or less was reduced.

【0006】本発明は、160nm〜250nmの真空紫外領域で
の吸収がなく、真空紫外領域で使用可能なフッ素をドー
プした大口径合成石英ガラス光学体を提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fluorine-doped large-diameter synthetic quartz glass optical body which has no absorption in the vacuum ultraviolet region of 160 nm to 250 nm and can be used in the vacuum ultraviolet region.

【0007】[0007]

【課題を解決する為の手段】本発明者らは、フッ素をド
ープされた石英ガラスにおける 250nm以下の紫外線に対
する初期透過率を付加させるための条件について鋭意研
究を行った結果、石英ガラス部材中に含有されるフッ素
と硫黄の重量比を規定することが必要であるということ
を見い出した。
Means for Solving the Problems The present inventors have conducted intensive studies on the conditions for adding an initial transmittance to ultraviolet rays of 250 nm or less in fluorine-doped quartz glass, and as a result, have found that the quartz glass member contains It has been found that it is necessary to define the weight ratio of fluorine to sulfur contained.

【0008】そこで、本発明の特徴としては、石英ガラ
ス部材中に含有されるフッ素と硫黄の重量比を 100以上
にするという点である。これにより、従来の石英ガラス
より250nm以下の紫外線に対する初期透過率の良好なフ
ッ素をドープされた石英ガラスを合成できるようになっ
た。
Therefore, a feature of the present invention is that the weight ratio of fluorine to sulfur contained in the quartz glass member is set to 100 or more. As a result, it has become possible to synthesize fluorine-doped quartz glass having a better initial transmittance for ultraviolet rays of 250 nm or less than conventional quartz glass.

【0009】[0009]

【発明の実施の形態】一般的に石英ガラスへのフッ素ド
ープは前述のように VAD法と呼ばれる方法で行われてい
る。この方法は、酸水素火炎により原料(例えば四塩化
ケイ素)を加水分解してプリフォームロッド(スート)
を得、電気炉中でドーパントガス(例えば六フッ化硫黄
や四フッ化ケイ素)と反応させた後に不活性ガス雰囲気
中で透明化する方法あるいはドーパントガスと反応させ
ながら透明化する方法である。ランニングコスト等を考
え合わせると、フッ素含有ガスとしては六フッ化硫黄を
用いることが望ましい。六フッ化硫黄の分子中には発光
素子として用いることの多い硫黄原子が含まれているた
め、通常の石英ガラスからは考えられない発光が観測さ
れることも予想される。実際、請求項1に記載のように
フッ素をドープされた石英ガラス中に含有されるフッ素
と硫黄の重量比を 100以下にしてしまうと、 585nmをピ
ーク波長とした黄色の強い発光帯が観測され、初期透過
率も低下してしまう。この理由は定かではないが、ガラ
ス中に含有される硫黄は、ナトリウム等のアルカリ金属
と同じような挙動を示して非架橋酸素を生成させるもの
と推測される。ここで生成した非架橋酸素が周囲に存在
するフッ素により終端されるため、フッ素含有量が少な
いと生成していた非架橋酸素が残留し、多いと非架橋酸
素が消滅すると考えられる。この非架橋酸素は 185nm前
後に吸収を持つため初期透過率が悪くなるのである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, fluorine doping of quartz glass is performed by a method called a VAD method as described above. In this method, a raw material (for example, silicon tetrachloride) is hydrolyzed by an oxyhydrogen flame and a preform rod (soot) is formed.
Is obtained by reacting with a dopant gas (for example, sulfur hexafluoride or silicon tetrafluoride) in an electric furnace and then making the mixture transparent in an inert gas atmosphere, or making it transparent while reacting with the dopant gas. Considering the running cost and the like, it is desirable to use sulfur hexafluoride as the fluorine-containing gas. Since the sulfur hexafluoride molecule contains a sulfur atom often used as a light-emitting element, it is expected that light emission that cannot be expected from ordinary quartz glass is observed. In fact, if the weight ratio of fluorine and sulfur contained in the fluorine-doped quartz glass is reduced to 100 or less as in claim 1, a strong yellow emission band with a peak wavelength of 585 nm is observed. In addition, the initial transmittance also decreases. The reason for this is not clear, but it is assumed that the sulfur contained in the glass behaves similarly to an alkali metal such as sodium and generates non-crosslinked oxygen. Since the non-crosslinked oxygen generated here is terminated by fluorine present in the surroundings, it is considered that the generated non-crosslinked oxygen remains when the fluorine content is small, and disappears when the fluorine content is large. This non-crosslinked oxygen has an absorption around 185 nm, so that the initial transmittance is deteriorated.

【0010】このようにすることにより、ステッパ等の
精密光学機器に用いることのできる、 250nm以下の紫外
域で高透過率を持ち、なおかつ高い耐紫外線性を持つ石
英ガラスが得られる。
By doing so, a quartz glass which has a high transmittance in the ultraviolet region of 250 nm or less and has a high ultraviolet resistance, which can be used for precision optical equipment such as a stepper, is obtained.

【0011】[0011]

【実施例】【Example】

〔実施例1〕四塩化ケイ素を以下に示す条件にて、五重
管構造のバーナを用いることにより、酸水素火炎中で加
水分解を行った。 四塩化ケイ素 10g/min+Heキャリア1slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径180×長さ5
00mmの多孔質ガラス体を得た。これを、塩素1sl
m+ヘリウム20slmの雰囲気中,1100℃,20
時間、脱水処理を行った後、四フッ化ケイ素2slm+
ヘリウム20slm雰囲気中,1300℃,20時間、
フッ素ドープを行った。また、透明化の際には六フッ化
硫黄1slm+He20slm雰囲気中,1650℃で
透明化処理を行い、径90mmのフッ素をドープした石
英ガラスを得た。このサンプルについて、193nmの
透過率を測定したところ、99.9%以上であった。こ
のサンプル中の硫黄及びフッ素濃度をイオンクロマトグ
ラフにより定量したところ、硫黄が30ppm,フッ素
が10000ppmであった(重量比333)。
Example 1 Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame by using a burner having a five-tube structure under the following conditions. Silicon tetrachloride 10 g / min + He carrier 1 slm Double line oxygen 5 slm Triple line hydrogen 10 slm Quadruple line oxygen 15 slm Five line hydrogen 40 slm By carrying out under these conditions for 20 hours, the diameter 180 × length 5
A 00 mm porous glass body was obtained. This is chlorine 1 sl
In an atmosphere of m + helium 20 slm, 1100 ° C., 20
Time, after dehydration treatment, silicon tetrafluoride 2slm +
In a helium 20slm atmosphere, 1300 ° C, 20 hours,
Fluorine doping was performed. Further, at the time of transparency, a transparency treatment was performed at 1650 ° C. in an atmosphere of sulfur hexafluoride 1 slm + He 20 slm to obtain quartz glass doped with fluorine having a diameter of 90 mm. When the transmittance of this sample at 193 nm was measured, it was 99.9% or more. When the sulfur and fluorine concentrations in this sample were quantified by ion chromatography, sulfur was 30 ppm and fluorine was 10,000 ppm (weight ratio: 333).

【0012】〔比較例1〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行った。 四塩化ケイ素 10g/min+Heキャリア1slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径180×長さ5
00mmの多孔質ガラス体を得た。これを、塩素1sl
m+ヘリウム20slmの雰囲気中,1100℃,20
時間、脱水処理を行った後、六フッ化硫黄2slm+ヘ
リウム20slm雰囲気中,1300℃,20時間、フ
ッ素ドープを行った。また、透明化の際には六フッ化硫
黄1slm+He20slm雰囲気中,1650℃で透
明化処理を行い、径90mmのフッ素をドープした石英
ガラスを得た。このサンプルについて、193nmの透
過率を測定したところ、98.5%であった。このサン
プル中の硫黄及びフッ素濃度をイオンクロマトグラフに
より定量したところ、硫黄が350ppm,フッ素が2
0000ppmであった(重量比57)。
[Comparative Example 1] Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame by using a burner having a five-tube structure under the following conditions. Silicon tetrachloride 10 g / min + He carrier 1 slm Double line oxygen 5 slm Triple line hydrogen 10 slm Quadruple line oxygen 15 slm Five line hydrogen 40 slm By carrying out under these conditions for 20 hours, the diameter 180 × length 5
A 00 mm porous glass body was obtained. This is chlorine 1 sl
In an atmosphere of m + helium 20 slm, 1100 ° C., 20
After dehydration treatment for 1 hour, fluorine doping was carried out at 1300 ° C. for 20 hours in an atmosphere of sulfur hexafluoride 2 slm + helium 20 slm. Further, at the time of transparency, a transparency treatment was performed at 1650 ° C. in an atmosphere of sulfur hexafluoride 1 slm + He 20 slm to obtain quartz glass doped with fluorine having a diameter of 90 mm. When the transmittance of this sample at 193 nm was measured, it was 98.5%. When the sulfur and fluorine concentrations in this sample were determined by ion chromatography, the sulfur content was 350 ppm and the fluorine content was 2 ppm.
It was 0000 ppm (weight ratio 57).

【0013】〔実施例2〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行った。 四塩化ケイ素 10g/min+Heキャリア1slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径180×長さ5
00mmの多孔質ガラス体を得た。これを、塩素1sl
m+ヘリウム20slmの雰囲気中,1100℃,20
時間、脱水処理を行った後、四フッ化ケイ素4slm+
ヘリウム20slm雰囲気中,1300℃,20時間、
フッ素ドープを行った。また、透明化の際には六フッ化
硫黄1slm+He20slm雰囲気中,1650℃で
透明化処理を行い、径90mmのフッ素をドープした石
英ガラスを得た。このサンプルについて、193nmの
透過率を測定したところ、99.9%以上であった。こ
のサンプル中の硫黄及びフッ素濃度をイオンクロマトグ
ラフにより定量したところ、硫黄が45ppm,フッ素
が25000ppmであった(重量比555)。
Example 2 Hydrolysis of silicon tetrachloride was carried out in an oxyhydrogen flame by using a burner having a five-tube structure under the following conditions. Silicon tetrachloride 10 g / min + He carrier 1 slm Double line oxygen 5 slm Triple line hydrogen 10 slm Quadruple line oxygen 15 slm Five line hydrogen 40 slm By carrying out under these conditions for 20 hours, the diameter 180 × length 5
A 00 mm porous glass body was obtained. This is chlorine 1 sl
In an atmosphere of m + helium 20 slm, 1100 ° C., 20
After performing dehydration treatment for 4 hours, silicon tetrafluoride 4slm +
In a helium 20slm atmosphere, 1300 ° C, 20 hours,
Fluorine doping was performed. Further, at the time of transparency, a transparency treatment was performed at 1650 ° C. in an atmosphere of sulfur hexafluoride 1 slm + He 20 slm to obtain quartz glass doped with fluorine having a diameter of 90 mm. When the transmittance of this sample at 193 nm was measured, it was 99.9% or more. When the sulfur and fluorine concentrations in this sample were determined by ion chromatography, the sulfur content was 45 ppm and the fluorine content was 25000 ppm (weight ratio: 555).

【0014】〔比較例2〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行うと同時にガラス化を行った。 四塩化ケイ素 10g/min+六フッ化硫黄キャリア1slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径90mmのフッ
素をドープした石英ガラスを得た。このサンプルについ
て、193nmの透過率を測定したところ、97.0%
であった。このサンプル中の硫黄及びフッ素濃度をイオ
ンクロマトグラフにより定量したところ、硫黄が40p
pm,フッ素が1600ppmであった(重量比4
0)。
[Comparative Example 2] Under the conditions shown below, silicon tetrachloride was hydrolyzed in an oxyhydrogen flame and simultaneously vitrified by using a quintuple-tube burner. Silicon tetrachloride 10 g / min + sulfur hexafluoride carrier 1 slm Double line oxygen 5 slm Triple line hydrogen 10 slm Quadruple line oxygen 15 slm Five line hydrogen 40 slm Doping under this condition for 20 hours allows dope with 90 mm diameter fluorine. Obtained quartz glass was obtained. When the transmittance of this sample at 193 nm was measured, it was 97.0%.
Met. When the sulfur and fluorine concentrations in this sample were determined by ion chromatography, the sulfur content was 40 p.
pm, fluorine was 1600 ppm (weight ratio 4
0).

【0015】〔実施例3〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行った。 四塩化ケイ素 10g/min+Heキャリア1slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径180×長さ5
00mmの多孔質ガラス体を得た。これを、塩素1sl
m+ヘリウム20slmの雰囲気中,1100℃,20
時間、脱水処理を行った後、四フッ化ケイ素1slm+
ヘリウム20slm雰囲気中,1300℃,20時間、
フッ素ドープを行った。また、透明化の際には六フッ化
硫黄1slm+He20slm雰囲気中,1650℃で
透明化処理を行い、径90mmのフッ素をドープした石
英ガラスを得た。このサンプルについて、193nmの
透過率を測定したところ、99.9%以上であった。こ
のサンプル中の硫黄及びフッ素濃度をイオンクロマトグ
ラフにより定量したところ、硫黄が50ppm,フッ素
が7500ppmであった(重量比150)。
Example 3 Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame by using a burner having a five-tube structure under the following conditions. Silicon tetrachloride 10 g / min + He carrier 1 slm Double line oxygen 5 slm Triple line hydrogen 10 slm Quadruple line oxygen 15 slm Five line hydrogen 40 slm By carrying out under these conditions for 20 hours, the diameter 180 × length 5
A 00 mm porous glass body was obtained. This is chlorine 1 sl
In an atmosphere of m + helium 20 slm, 1100 ° C., 20
After performing the dehydration treatment for 1 hour, silicon tetrafluoride 1slm +
In a helium 20slm atmosphere, 1300 ° C, 20 hours,
Fluorine doping was performed. Further, at the time of transparency, a transparency treatment was performed at 1650 ° C. in an atmosphere of sulfur hexafluoride 1 slm + He 20 slm to obtain quartz glass doped with fluorine having a diameter of 90 mm. When the transmittance of this sample at 193 nm was measured, it was 99.9% or more. When the sulfur and fluorine concentrations in this sample were quantified by ion chromatography, sulfur was 50 ppm and fluorine was 7500 ppm (weight ratio 150).

【0016】〔実施例4〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行うと同時にガラス化を行った。 四塩化ケイ素 15g/min+六フッ化硫黄キャリア1slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径90mmのフッ
素をドープした石英ガラスを得た。このサンプルについ
て、193nmの透過率を測定したところ、99.9%
以上であった。このサンプル中の硫黄及びフッ素濃度を
イオンクロマトグラフにより定量したところ、硫黄が1
0ppm,フッ素が1500ppmであった(重量比1
50)。
Example 4 Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame and vitrified at the same time by using a quintuple-tube burner under the following conditions. Silicon tetrachloride 15 g / min + Sulfur hexafluoride carrier 1 slm Double pipe oxygen 5 slm Triple pipe hydrogen 10 slm Quad pipe oxygen 15 slm Five pipe hydrogen 40 slm Doping under this condition for 20 hours, doping with 90 mm diameter fluorine Obtained quartz glass was obtained. When the transmittance of this sample at 193 nm was measured, it was 99.9%.
That was all. When the sulfur and fluorine concentrations in this sample were determined by ion chromatography, the sulfur content was 1%.
0 ppm and fluorine was 1500 ppm (weight ratio 1
50).

【0017】〔比較例3〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行うと同時にガラス化を行った。 四塩化ケイ素 15g/min+六フッ化硫黄キャリア1.5slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径90mmのフッ
素をドープした石英ガラスを得た。このサンプルについ
て、193nmの透過率を測定したところ、97.2%
であった。このサンプル中の硫黄及びフッ素濃度をイオ
ンクロマトグラフにより定量したところ、硫黄が40p
pm,フッ素が1800ppmであった(重量比4
5)。
[Comparative Example 3] Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame and simultaneously vitrified by using a quintuple-tube burner under the following conditions. Silicon tetrachloride 15 g / min + sulfur hexafluoride carrier 1.5 slm Double line oxygen 5 slm Triple line hydrogen 10 slm Quadruple line oxygen 15 slm Five line hydrogen 40 slm By performing under these conditions for 20 hours, fluorine having a diameter of 90 mm is obtained. Was obtained. When the transmittance of this sample at 193 nm was measured, it was 97.2%.
Met. When the sulfur and fluorine concentrations in this sample were determined by ion chromatography, the sulfur content was 40 p.
pm, fluorine was 1800 ppm (weight ratio 4
5).

【0018】〔実施例5〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行うと同時にガラス化を行った。 四フッ化ケイ素 1.32slm+六フッ化硫黄キャリア1slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径90mmのフッ
素をドープした石英ガラスを得た。このサンプルについ
て、193nmの透過率を測定したところ、99.9%
以上であった。このサンプル中の硫黄及びフッ素濃度を
イオンクロマトグラフにより定量したところ、硫黄が2
0ppm,フッ素が3700ppmであった(重量比1
85)。
Example 5 Hydrolysis was carried out in an oxyhydrogen flame and simultaneously with vitrification of silicon tetrachloride under the following conditions by using a quintuple tube burner. Silicon tetrafluoride 1.32 slm + sulfur hexafluoride carrier 1 slm Double pipe oxygen 5 slm Triple pipe hydrogen 10 slm Quad pipe oxygen 15 slm Five pipe hydrogen 40 slm By performing for 20 hours under these conditions, fluorine having a diameter of 90 mm is produced. A doped quartz glass was obtained. When the transmittance of this sample at 193 nm was measured, it was 99.9%.
That was all. When the sulfur and fluorine concentrations in this sample were determined by ion chromatography, the sulfur content was 2%.
0 ppm and fluorine was 3700 ppm (weight ratio 1
85).

【0019】〔比較例4〕四塩化ケイ素を以下に示す条
件にて、五重管構造のバーナを用いることにより、酸水
素火炎中で加水分解を行うと同時にガラス化を行った。 四フッ化ケイ素1.32slm+六フッ化硫黄キャリア1.5slm 二重管目酸素 5slm 三重管目水素 10slm 四重管目酸素 15slm 五重管目水素 40slm この条件で20時間行うことにより、径90mmのフッ
素をドープした石英ガラスを得た。このサンプルについ
て、193nmの透過率を測定したところ、97.0%
であった。このサンプル中の硫黄及びフッ素濃度をイオ
ンクロマトグラフにより定量したところ、硫黄が30p
pm,フッ素が2500ppmであった(重量比8
3)。
COMPARATIVE EXAMPLE 4 Silicon tetrachloride was hydrolyzed in an oxyhydrogen flame and vitrified at the same time by using a burner having a five-tube structure under the following conditions. 1.32 slm of silicon tetrafluoride + 1.5 slm of sulfur hexafluoride carrier Double pipe oxygen 5 slm Triple pipe hydrogen 10 slm Quad pipe oxygen 15 slm Five pipe hydrogen 40 slm By performing under these conditions for 20 hours, a diameter of 90 mm is obtained. A quartz glass doped with fluorine was obtained. When the transmittance of this sample at 193 nm was measured, it was 97.0%.
Met. When the sulfur and fluorine concentrations in this sample were quantified by ion chromatography, the sulfur content was 30 p.
pm, fluorine was 2500 ppm (weight ratio 8
3).

【0020】[0020]

【発明の効果】以上のように、フッ素のドーパントガス
としてフッ素化合物ガスを用いる石英ガラスの製造方法
により得られる光学用石英ガラス部材において、部材中
に含有されるフッ素と硫黄の重量比(フッ素含有量/硫
黄含有量)が 100以上とすることにより、 250nm以下の
紫外光用として用いられ、なおかつ 193nmでの透過率が
99.9%以上であるフッ素をドープされた石英ガラスを得
ることができた。
As described above, in the optical quartz glass member obtained by the method for producing quartz glass using a fluorine compound gas as a fluorine dopant gas, the weight ratio of fluorine to sulfur (fluorine-containing Amount / sulfur content) is 100 or more, it is used for ultraviolet light of 250 nm or less, and the transmittance at 193 nm is
Quartz glass doped with fluorine of 99.9% or more was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 フッ素と硫黄の比率と初期透過率の相関の図
である。
FIG. 1 is a diagram of the correlation between the ratio of fluorine and sulfur and the initial transmittance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】フッ素のドーパントガスとしてフッ素化合
物ガスを用いる石英ガラスの製造方法により得られる光
学用石英ガラス部材において、該部材中に含有されるフ
ッ素と硫黄の重量比(フッ素含有量/硫黄含有量)が 1
00以上であることを特徴とする光学用石英ガラス部材。
An optical quartz glass member obtained by a method for producing quartz glass using a fluorine compound gas as a fluorine dopant gas, wherein the weight ratio of fluorine to sulfur contained in the member (fluorine content / sulfur content) Quantity) is 1
The quartz glass member for optics, which is not less than 00.
【請求項2】請求項1に記載のフッ素をドープされた光
学用石英ガラス部材において、ガラス中に含まれるフッ
素濃度が100ppm以上であることを特徴とする光学用石英
ガラス部材。
2. The optical quartz glass member according to claim 1, wherein the concentration of fluorine contained in the glass is 100 ppm or more.
【請求項3】請求項1に記載のフッ素をドープされた光
学用石英ガラス部材において、 250nm以下の紫外光用と
して用いられ、なおかつ 193nmでの透過率が99.9%以上
であることを特徴とする光学用石英ガラス部材。
3. The fluorine-doped optical quartz glass member according to claim 1, wherein the quartz glass member is used for ultraviolet light of 250 nm or less and has a transmittance at 193 nm of 99.9% or more. Quartz glass member for optics.
JP9225414A 1996-08-21 1997-08-21 Optical quartz glass member Withdrawn JPH10218636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9225414A JPH10218636A (en) 1996-08-21 1997-08-21 Optical quartz glass member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21899196 1996-08-21
JP8-218991 1996-08-21
JP9225414A JPH10218636A (en) 1996-08-21 1997-08-21 Optical quartz glass member

Publications (1)

Publication Number Publication Date
JPH10218636A true JPH10218636A (en) 1998-08-18

Family

ID=26522862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9225414A Withdrawn JPH10218636A (en) 1996-08-21 1997-08-21 Optical quartz glass member

Country Status (1)

Country Link
JP (1) JPH10218636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191380A (en) * 2005-12-21 2007-08-02 National Institute Of Advanced Industrial & Technology Silica glass for laser machining
JP2011121857A (en) * 2009-11-16 2011-06-23 Shin-Etsu Chemical Co Ltd Titania and sulfur co-doped quartz glass member and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191380A (en) * 2005-12-21 2007-08-02 National Institute Of Advanced Industrial & Technology Silica glass for laser machining
JP2011121857A (en) * 2009-11-16 2011-06-23 Shin-Etsu Chemical Co Ltd Titania and sulfur co-doped quartz glass member and method for producing the same
KR101492663B1 (en) * 2009-11-16 2015-02-12 신에쓰 가가꾸 고교 가부시끼가이샤 Titania and sulfur co-doped quartz glass member and making method

Similar Documents

Publication Publication Date Title
KR100298167B1 (en) Method for manufacturing silica glass for vacuum ultraviolet wavelength light ray, and the silica glass and optical member manufactured thereby
TW440548B (en) Synthetic silica glass optical member and method of manufacturing the same
US5908482A (en) Method for producing a silica glass
US5958809A (en) Fluorine-containing silica glass
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
WO2000048046A1 (en) Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
JP3125630B2 (en) Method for producing quartz glass for vacuum ultraviolet and quartz glass optical member
US6473226B1 (en) Silica glass member
JP2764207B2 (en) Water-soluble synthetic quartz glass for ultraviolet region and method for producing the same
JPWO2003091175A1 (en) Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method
JP2002241196A (en) Method for reducing oxygen and carbon components in fluoride
JPH0867530A (en) Optical glass for ultraviolet light
TW581747B (en) Synthetic quartz glass optical member for ultraviolet light
JP2000143278A (en) Projection exposure device having enhanced durability and production of image forming optical system
JP2008189547A (en) Synthetic quartz glass and its production method
JPH10218636A (en) Optical quartz glass member
JP3531870B2 (en) Synthetic quartz glass
JP2000290026A (en) Optical quartz glass member for excimer laser
JPH0881225A (en) Synthetic quartz glass for light transmission and its production
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JPH1067521A (en) Fluorine containing quartz glass, production of the same, and projection recording system
JP4051805B2 (en) Exposure apparatus and photomask
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4228493B2 (en) Synthetic quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061017