JPH1021574A - Optical information recording/reproducing device - Google Patents

Optical information recording/reproducing device

Info

Publication number
JPH1021574A
JPH1021574A JP8174598A JP17459896A JPH1021574A JP H1021574 A JPH1021574 A JP H1021574A JP 8174598 A JP8174598 A JP 8174598A JP 17459896 A JP17459896 A JP 17459896A JP H1021574 A JPH1021574 A JP H1021574A
Authority
JP
Japan
Prior art keywords
aperture
objective lens
lens
information recording
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8174598A
Other languages
Japanese (ja)
Other versions
JP2990067B2 (en
Inventor
Shiyuuichi Konayama
秀一 小名山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8174598A priority Critical patent/JP2990067B2/en
Publication of JPH1021574A publication Critical patent/JPH1021574A/en
Application granted granted Critical
Publication of JP2990067B2 publication Critical patent/JP2990067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a small-sized, light-weighted and inexpensive optical information recording/reproducing device capable of recording/reproducing optical disk media of plural standards with different disk thickness and recording density in high performance. SOLUTION: This device consists of a finite system objective lens 3a of NA 0.6 designed for the disk thickness 0.6mm, an aperture limit means 5 switching an effective size of laser light incident on the finite system objective lens, a beam splitter 6 branching the reflection light from an information medium and a photodetector 10, etc., converting return light to an electric signal, and deals with two kinds of information media with different disk thickness by switching a lens effective size by the aperture limit means 5. Further, the opening part shape of the aperture limit means 5 is made an elliptic shape opening that a lens track moving direction becomes the minor axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は厚さが異なる各種光
ディスクに対して光学的情報の書込みや読込みを行う光
学式情報記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording / reproducing apparatus for writing and reading optical information on various optical disks having different thicknesses.

【0002】[0002]

【従来の技術】例えばディスク厚0.6mmの高密度光情
報媒体(DVD等)とディスク厚1.2mmの従来密度情
報媒体(CD等)の両方を1つの光学式再生装置で記録
再生するためには、いくつかの方法が提案されている。
これには、各々のディスク厚に最適に設計された2つの
対物レンズを1つのレンズアクチュエータで駆動するい
わゆるツインレンズ方式、ホログラムによりそれぞれ2
つの焦点をつくる2焦点方式、レンズの絞り径を切り替
える開口制限方式等がある。
2. Description of the Related Art For example, in order to record / reproduce both a high-density optical information medium (DVD, etc.) having a disk thickness of 0.6 mm and a conventional density information medium (CD, etc.) having a disk thickness of 1.2 mm by one optical reproducing apparatus. There are several methods proposed.
This is achieved by a so-called twin lens system in which two objective lenses optimally designed for each disk thickness are driven by a single lens actuator, and a hologram by two.
There are a bifocal system for creating two focal points, an aperture limiting system for switching the aperture of a lens, and the like.

【0003】本発明は開口制限方式の改良、発展型であ
り、このため、従来例として上記各種方式のなかの開口
制限方式に絞って説明する。
The present invention is an improvement and a development of the aperture limiting method. Therefore, the prior art will be described focusing on the aperture limiting method among the above various methods.

【0004】図5は従来の開口制限方式を簡単に説明し
たものである。ディスクに記録された情報を正確に再生
したり、ディスクに高密度な情報を記録するためには、
ディスク情報面上に収差のない微小なスポットを形成す
ることが大切である。したがって本従来例の説明では従
来の情報記録再生装置における往路のみにて説明する。
FIG. 5 is a schematic diagram illustrating a conventional aperture limiting system. In order to accurately reproduce the information recorded on the disc and to record high-density information on the disc,
It is important to form a minute spot without aberration on the disc information surface. Therefore, in the description of the conventional example, only the outward path in the conventional information recording / reproducing apparatus will be described.

【0005】図5(a)は高密度光情報媒体の記録、再
生状態を示す。1はレーザーダイオード(以後LDと呼
ぶ)、1aは前記LDから出射されたレーザー光、11
はコリメーターレンズ、3は無限系対物レンズ、4bは
例えば厚さ0.6mmの高密度光情報媒体(以後高密度デ
ィスクと呼ぶ)で、前記対物レンズ3は前記高密度ディ
スクを最適に記録、再生できるように設計されている。
今、LD1を発したレーザー光1aはコリメーターレン
ズ11で平行光となり無限系対物レンズ3に入射する。
このとき対物レンズに入射する平行光束は図示せぬレン
ズ絞りにて開口径を制限される。例えば高密度ディスク
再生時はNA0.6に制限される。レンズ3で集光され
たレーザーは高密度ディスクの情報面4bに収差の少な
い微小なスポットを形成する。
FIG. 5A shows a recording and reproducing state of a high-density optical information medium. 1 is a laser diode (hereinafter referred to as LD), 1a is a laser beam emitted from the LD, 11
Is a collimator lens, 3 is an infinite objective lens, 4b is a high-density optical information medium (hereinafter referred to as a high-density disk) having a thickness of, for example, 0.6 mm, and the objective lens 3 optimally records the high-density disk. Designed to be playable.
Now, the laser beam 1a emitted from the LD 1 is converted into parallel light by the collimator lens 11 and enters the infinite system objective lens 3.
At this time, the aperture diameter of the parallel light beam incident on the objective lens is limited by a lens stop (not shown). For example, during reproduction of a high-density disc, the NA is limited to 0.6. The laser condensed by the lens 3 forms a small spot with little aberration on the information surface 4b of the high-density disk.

【0006】次に図5(b)にて、例えば厚さ1.2mm
の通常密度光情報媒体(以後通常密度ディスクと呼ぶ)
の記録、再生状態を説明する。(b)においては、コリ
メーターレンズ11と無限系対物レンズ3の間に、開口
制限手段5を挿入した構成となっている。LD1を発し
コリメーターレンズ11で平行光となったレーザー光1
aは前記開口制限手段5の開口部5aによって光束を制
限され対物レンズ3に入射する。このとき制限された開
口径は円形形状をなし通常密度ディスクに最適な開口、
例えばNA0.45に設定される。これにより通常密度
ディスク情報面に収差の少ないスポットを形成する。
Next, in FIG. 5B, for example, a thickness of 1.2 mm
Normal density optical information medium (hereinafter referred to as normal density disc)
The recording and reproduction states of the above will be described. 2B, the aperture limiting means 5 is inserted between the collimator lens 11 and the infinite system objective lens 3. Laser light 1 emitted from LD 1 and converted into parallel light by collimator lens 11
The light beam a is restricted by the aperture 5a of the aperture limiting means 5 and is incident on the objective lens 3. At this time, the limited opening diameter is a circular shape and the optimal opening for normal density discs,
For example, NA is set to 0.45. As a result, a spot with little aberration is formed on the information surface of the normal density disk.

【0007】通常、開口制限手段5と無限系対物レンズ
3は図示せぬレンズアクチュエータにより同時に保持、
駆動される構成となっており、開口制限手段5を挿入の
有無により高密度ディスク用に設計された1つの無限系
対物レンズ3で通常密度ディスクの記録、再生を可能に
している。開口制限手段5においてはいくつかの方法が
提案されている。レーザーの偏向方向を利用した偏向フ
ィルタ、レーザーの波長の違いを利用した波長フィル
タ、単に機構的なシャッター方式等がある。
Usually, the aperture limiting means 5 and the infinite objective lens 3 are simultaneously held by a lens actuator (not shown).
The recording and reproduction of a normal density disc are enabled by one infinite system objective lens 3 designed for a high density disc depending on whether or not the aperture limiting means 5 is inserted. Several methods have been proposed for the aperture limiting means 5. There are a deflection filter using a laser deflection direction, a wavelength filter using a difference in laser wavelength, a mechanical shutter system, and the like.

【0008】図5の光学式情報記録再生装置はコリメー
ターレンズ11があるため、光路長が長くなり装置全体
の小型化、薄型化が困難であるという問題があった。そ
のための図6(a)、(b)に示すような対物レンズの
有限系化による構成が考えられた。有限系対物レンズ3
aは高密度ディスク4bの記録、再生に最適な特性が得
られるように設計されている。図6aにおいて、LD1
を発したレーザー光1aは図示せぬレンズ絞りによって
例えばNA0.6に開口を設定され有限系対物レンズ3
aに入射する。有限系対物レンズ3aで集光されたレー
ザー光は高密度ディスク情報面に収差の少ない微小なス
ポットを形成する。次に通常密度ディスク4aの記録、
再生時には無限光学系同様開口制限手段5を対物レンズ
3aとLD1の間に挿入した構成とする。LD1を発し
たレーザー光1aは開口制限手段5の開口部5aによっ
て開口径を制限され有限対物レンズ3aに入射する。制
限された開口径は円形形状をなし通常密度ディスクに最
適な開口、例えばNA0.45に設定される。これによ
り通常密度ディスク情報面に収差の少ないスポットを形
成する。この時有限系対物レンズ3aと開口制限手段5
は図示せぬレンズアクチュエータに同時に保持、駆動さ
れる。
The optical information recording / reproducing apparatus shown in FIG. 5 has a problem in that the length of the optical path is increased due to the presence of the collimator lens 11, making it difficult to reduce the size and thickness of the entire apparatus. For this purpose, a configuration based on a finite system of the objective lens as shown in FIGS. 6A and 6B has been considered. Finite objective lens 3
“a” is designed to obtain the optimum characteristics for recording and reproduction of the high-density disk 4b. In FIG. 6a, LD1
The laser beam 1a which emits light is set to an aperture of, for example, NA 0.6 by a lens stop (not shown) and the finite objective lens 3
a. The laser light condensed by the finite objective lens 3a forms a small spot with little aberration on the information surface of the high-density disk. Next, recording on the normal density disk 4a,
At the time of reproduction, the aperture limiting means 5 is inserted between the objective lens 3a and the LD 1 like the infinite optical system. The laser beam 1a emitted from the LD 1 has its aperture diameter restricted by the aperture 5a of the aperture restricting means 5, and enters the finite objective lens 3a. The limited opening diameter is set to a circular opening which is optimal for a normal density disk, for example, NA 0.45. As a result, a spot with little aberration is formed on the information surface of the normal density disk. At this time, the finite objective lens 3a and the aperture limiting means 5
Are simultaneously held and driven by a lens actuator (not shown).

【0009】[0009]

【発明が解決しようとする課題】この有限対物レンズを
使った光学系の場合、装置全体の小型、薄型化が可能に
なる反面、特に通常密度ディスクの軸外再生特性の劣化
が大きく実用化には以下説明するような大きな問題があ
った。
In the case of an optical system using this finite objective lens, the size and thickness of the entire apparatus can be reduced, but the off-axis reproduction characteristics of a normal density disk are particularly deteriorated, and the optical system is practically used. Had the following major problems.

【0010】一般に有限光学系の場合、無限光学系に比
べると、レンズの像高特性、光軸移動特性が劣っている
が、CD等では装置全体のシステム設計により有限光学
系が主流となっており、DVD等の高密度光ディスクに
も有限光学系の採用が当然検討されている。高密度ディ
スク用に設計された有限対物レンズも軸上の性能は無限
系対物レンズ同様の性能が得られるが、軸外性能におい
ては無限光学系に劣る分を装置全体のシステム設計にて
対応することとなる。ところがこの有限光学系を図6
(a)、(b)の複数規格媒体を記録、再生可能な光学
式情報記録再生装置に応用しようとすると、通常密度デ
ィスクの軸外再生性能が前記装置全体のシステム設計だ
けでは対応できない程の性能劣化が発生する。
In general, a finite optical system is inferior in image height characteristics and optical axis movement characteristics of a lens as compared with an infinite optical system. However, in a CD or the like, a finite optical system is mainly used due to a system design of the entire apparatus. Therefore, adoption of a finite optical system for a high-density optical disk such as a DVD is naturally studied. A finite objective lens designed for high-density discs has the same on-axis performance as an infinite objective lens, but the off-axis performance is inferior to the infinite optical system in the system design of the entire device. It will be. However, this finite optical system is shown in FIG.
When an application is made to an optical information recording / reproducing apparatus capable of recording and reproducing a plurality of standard media of (a) and (b), the off-axis reproduction performance of a normal density disc is too large to be supported by the system design of the entire apparatus. Performance degradation occurs.

【0011】次に、図4(a)、(b)にてその問題点
を説明する。図4(a)は各種有限系対物レンズをディ
スクトラック方向に移動した時の通常密度ディスク再生
信号のジッター変化を表したグラフである。グラフ中の
Aは通常密度ディスク(CD)再生専用に設計された有
限系対物レンズの光学系からなる再生装置の特性であ
る。レンズが移動して像高が発生してもジッタの劣化が
少なく安定した再生性能が得られる。グラフ中Bは図6
に示した高密度ディスク用有限対物レンズと開口制限手
段からなる光学系で通常密度ディスクを再生した時のジ
ッタ特性である。レンズが移動して像高が発生すると急
激にジッターが劣化する。Cは後述する本発明の特性で
ある。
Next, the problem will be described with reference to FIGS. FIG. 4A is a graph showing a change in jitter of a normal density disk reproduction signal when various finite objective lenses are moved in the disk track direction. A in the graph is a characteristic of a reproducing apparatus including an optical system of a finite objective lens designed exclusively for reproducing a normal density disk (CD). Even if the lens moves and an image height is generated, a stable reproduction performance is obtained with little deterioration of jitter. B in the graph is FIG.
5 shows jitter characteristics when a normal density disc is reproduced by the optical system including the finite objective lens for high density disc and the aperture limiting means shown in FIG. When the lens moves and an image height is generated, the jitter rapidly deteriorates. C is a characteristic of the present invention described later.

【0012】これらの現象は図4(b)に示す有限系対
物レンズ波面収差の像高特性で説明できる。グラフ中
A,B,Cは図4(a)のA,B,Cに対応する。通常
密度ディスク専用対物レンズAに比べ、高密度ディスク
用有限系対物レンズと開口制限手段による光学系Bの場
合、軸上収差はほぼ0にできるが、レンズ移動による波
面収差の劣化度合いが大きくこのままでは実用上問題が
発生する。
These phenomena can be explained by the image height characteristics of the finite objective lens wavefront aberration shown in FIG. A, B, and C in the graph correspond to A, B, and C in FIG. In the case of the finite objective lens for a high-density disk and the optical system B using the aperture limiting means, the axial aberration can be reduced to almost zero, but the degree of deterioration of the wavefront aberration due to the lens movement is large compared to the objective lens A for the normal density disk Then, a practical problem arises.

【0013】そこで本発明の目的は、かかる従来の実情
に鑑みて提案されたものであって、複数規格の光ディス
ク媒体の情報を効率良く再生、記録できる、安価で小型
な光学式情報記録再生装置を提供することである。
An object of the present invention has been proposed in view of such a conventional situation, and is an inexpensive and compact optical information recording / reproducing apparatus capable of efficiently reproducing and recording information on an optical disk medium of a plurality of standards. It is to provide.

【0014】[0014]

【課題を解決するための手段】本発明の光学式情報記録
再生装置は、上記の目的を達成するために提案されたも
のであって、例えばディスク厚0.6mm用に設計された
NA0.6の有限系対物レンズと、レーザーを発光する
レーザーダイオードと、有限系対物レンズに入射するレ
ーザー光の有効径を切り替える開口制限手段と、有限系
対物レンズと開口制限手段を同時に保持して情報記録媒
体のフォーカス方向とトラック方向に駆動するレンズア
クチュエータと、情報媒体からの反射光を光検出器側に
分岐するビームスプリッタと、戻り光を電気信号に変換
する光検出器とを含み、開口制限手段でレンズ有効径を
切り替えることでディスク厚の異なる2種類の情報媒体
を記録、再生するもので、開口制限手段の開口部形状を
レンズトラック移動方向が短軸となる楕円形状とするこ
とを特徴とする。
SUMMARY OF THE INVENTION An optical information recording / reproducing apparatus according to the present invention has been proposed to achieve the above-mentioned object, and has an NA of 0.6, for example, designed for a disk thickness of 0.6 mm. A finite system objective lens, a laser diode that emits a laser, an aperture limiting means for switching the effective diameter of laser light incident on the finite system objective lens, and an information recording medium that simultaneously holds the finite system objective lens and the aperture limiting means. Including a lens actuator that drives in the focus direction and the track direction, a beam splitter that branches reflected light from the information medium to the photodetector side, and a photodetector that converts return light into an electric signal. By switching the effective diameter of the lens, two types of information media having different disk thicknesses can be recorded and reproduced. Characterized by an elliptical shape whose direction the minor axis.

【0015】本発明においては、楕円開口形状の開口制
限手段を用いたことでトラック方向のNAが小さくなり
波面収差の劣化を小さくでき、一個の高NA有限対物レ
ンズを使って、複数規格媒体の光ディスクを安定して記
録、再生することができる。
In the present invention, the use of the aperture limiting means having an elliptical aperture shape reduces the NA in the track direction and can reduce the deterioration of wavefront aberration. The optical disk can be recorded and reproduced stably.

【0016】[0016]

【発明の実施の形態】次に本発明の光学式情報記録再生
装置の実施の形態について説明し、本発明の構成、作用
を明らかにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the optical information recording / reproducing apparatus of the present invention will be described, and the configuration and operation of the present invention will be clarified.

【0017】まず、図2を用いて本発明の開口制限手段
の開口部形状を説明する。図2(a)は従来の開口部形
状を示し、開口部5aは真円形状である。これは、通常
密度ディスク再生に最適な開口数NAになるように開口
部内径aが設定される。これに対して、本発明の開口制
限手段の開口部形状は図2(b)に示すようにレンズの
トラッキング移動方向(図中矢印方向)に単軸bとなる
楕円形状の開口部5aを有する。長軸側の軸長aは従来
開口部内径aと同じである。
First, the shape of the opening of the opening limiting means of the present invention will be described with reference to FIG. FIG. 2A shows a conventional opening shape, and the opening 5a has a perfect circular shape. In this case, the inner diameter a of the opening is set so that the numerical aperture NA is optimum for normal density disc reproduction. On the other hand, the aperture shape of the aperture limiting means of the present invention has an elliptical aperture 5a having a single axis b in the tracking movement direction of the lens (the direction of the arrow in the figure) as shown in FIG. 2B. . The axial length a on the long axis side is the same as the conventional opening inner diameter a.

【0018】本発明のようにトラック方向に開口径を小
さくすることはトラック方向のレンズ開口数NAを小さ
くすることとなり、本来の最適設計値からははずれるこ
とになる。楕円開口によって絞られたディスク上のスポ
ット形状も(b)のごとくトラック方向に長い楕円形状
となりトラック間のクロストークが悪化する。しかしな
がら図4(b)のグラフCに示すごとく、NAが小さく
なった分レンズ移動時の波面収差劣化度合いを従来開口
形状Bの場合に比べて大幅に改善できる。これに伴いジ
ッター特性も図4(a)に記載のグラフCに示すように
大幅な改善が可能となる。なお軸上の初期収差、ジッタ
ー性能は従来例に比べ悪化するが実用上問題とならな
い。計算と実験データから前記クロストーク分も含め最
適な開口形状を求めることができる。
Reducing the aperture diameter in the track direction as in the present invention decreases the lens numerical aperture NA in the track direction, which deviates from the original optimum design value. The spot shape on the disk narrowed by the elliptical aperture also becomes an elliptical shape long in the track direction as shown in FIG. 4B, and crosstalk between tracks deteriorates. However, as shown in the graph C of FIG. 4B, the degree of wavefront aberration degradation when the lens moves can be greatly improved as compared with the case of the conventional aperture shape B, as the NA becomes smaller. Along with this, the jitter characteristic can be greatly improved as shown in the graph C of FIG. Although the initial aberration and the jitter performance on the axis are deteriorated as compared with the conventional example, they do not pose a practical problem. The optimum aperture shape including the crosstalk can be obtained from the calculation and the experimental data.

【0019】開口制限手段5の具体的な方式としては従
来の開口制限手段の手法に対応していくつかの方法が考
えられるが、基本的にはどの方式の場合に対しても本発
明の楕円形状を適用できる。
As a specific method of the aperture limiting means 5, several methods can be considered corresponding to the method of the conventional aperture limiting means. Shape can be applied.

【0020】図3(a)は透明ガラス基盤上に特定の波
長帯を透過し所定の波長帯を遮断する波長フィルタ膜5
1を形成した開口制限手段を示す。例えば高密度ディス
クを記録、再生する際には例えば635nmのLDを使
う。この場合635nmのレーザー光はフィルタ膜の無い
楕円開口部5aと波長フィルタ膜部51の全領域を透過
し有限系対物レンズへと向かう。次に通常密度の記録、
再生時には例えば780nmのLDを使う。780nmのレ
ーザー光はフィルタの無い楕円開口部5aを透過し、波
長フィルタ面51では反射され、結果的に780nmのレ
ーザー光はトラック方向に狭い楕円形状の光束に制限さ
れ有限対物レンズへと向かう。また(a)の構造は偏向
フィルタでも実現できる。開口制限手段5に入射するレ
ーザー光の直線偏向方向を図示せぬ方法によって90度
切り替えることで前記同様開口径を制限することが可能
である。
FIG. 3A shows a wavelength filter film 5 that transmits a specific wavelength band and blocks a predetermined wavelength band on a transparent glass substrate.
1 shows an aperture limiting means formed with 1; For example, when recording and reproducing a high-density disk, an LD of, for example, 635 nm is used. In this case, the laser light of 635 nm passes through the entire area of the elliptical opening 5a without the filter film and the entire area of the wavelength filter film 51, and travels toward the finite objective lens. Next, record the normal density,
At the time of reproduction, for example, an 780 nm LD is used. The 780 nm laser light passes through the elliptical aperture 5a without a filter and is reflected by the wavelength filter surface 51. As a result, the 780 nm laser light is restricted to a narrow elliptical light beam in the track direction and travels toward the finite objective lens. In addition, the structure of (a) can also be realized by a deflection filter. By switching the linear deflection direction of the laser beam incident on the aperture limiting means 5 by 90 degrees by a method not shown, it is possible to limit the aperture diameter as described above.

【0021】図3(b)はホログラムを使った楕円開口
制限手段の例である。従来の開口形状は透明基盤上に同
芯円形状のホログラムを形成し、その1次回折光が通常
密度ディスク再生の為に最適な開口数で対物レンズに入
射する。本発明の楕円開口をホログラムに適用した実施
例は、透明基盤20上に形成された従来の同芯円形状ホ
ログラム領域20aのトラック方向周辺部を所定の寸法
20bまで削除することで実現できる。
FIG. 3B shows an example of an elliptical aperture limiting means using a hologram. In the conventional aperture shape, a concentric hologram is formed on a transparent substrate, and the first-order diffracted light is incident on an objective lens with an optimum numerical aperture for normal density disc reproduction. The embodiment in which the elliptical aperture of the present invention is applied to the hologram can be realized by removing the peripheral portion in the track direction of the conventional concentric hologram region 20a formed on the transparent substrate 20 to a predetermined size 20b.

【0022】図3(c)は(b)に示した楕円開口制限
手段を用いた場合の装置構成を示し、LD1を発したレ
ーザー光1aはホログラム方式楕円開口制限手段に入射
する。ホログラム領域20aは通常密度ディスク再生用
に使用する低NA光束を作る為に十分な面積を有し、高
密度ディスクの記録、再生時には前記ホログラム領域2
0aの0次透過光を含む1aの全0次透過光が有限対物
レンズ3aに入射する。有限対物レンズで集光されたレ
ーザー光は高密度ディスク情報面4bに収差の少ない微
小なスポットを形成する。次に通常密度ディスクを記録
再生する際には、楕円ホログラム領域20aの1次回折
光1bを使用する。20aの1次回折光1bは、前記楕
円開口形状のホログラム領域20aの作用によってトラ
ック方向に狭い楕円形状光束で有限系対物レンズ3に入
射する。有限系対物レンズ3で集光されたレーザー光は
収差の少ないスポットを通常密度ディスク情報面4aに
形成する。
FIG. 3C shows the configuration of the apparatus when the elliptical aperture limiting means shown in FIG. 3B is used, and the laser beam 1a emitted from the LD 1 is incident on the hologram type elliptical aperture limiting means. The hologram area 20a has a sufficient area for producing a low NA light beam used for normal density disc reproduction, and the hologram area 2a is used for recording and reproduction of a high density disc.
All the zero-order transmitted light of 1a including the zero-order transmitted light of 0a enters the finite objective lens 3a. The laser light condensed by the finite objective lens forms a small spot with little aberration on the high-density disc information surface 4b. Next, when recording / reproducing a normal density disk, the first-order diffracted light 1b of the elliptical hologram area 20a is used. The first-order diffracted light 1b of 20a enters the finite objective lens 3 as an elliptical light beam narrow in the track direction by the action of the holographic region 20a having the elliptical aperture shape. The laser beam condensed by the finite objective lens 3 forms a spot with little aberration on the normal density disk information surface 4a.

【0023】次に波長フィルタによる楕円開口制限手段
を用いた光学式情報記録再生装置の実施の形態について
図1を参照して説明する。
Next, an embodiment of an optical information recording / reproducing apparatus using an elliptical aperture limiting means using a wavelength filter will be described with reference to FIG.

【0024】図1の実施の形態は、短波長(635nm)
レーザー1、検出系内蔵の780nmレーザーユニット2
と高密度ディスク再生用NA0.6有限対物レンズ3、
光ディスク4、波長フィルタ方式楕円開口制限手段5、
無偏向ビームスプリッタ(NPBS)6、波長選択プリ
ズム7、フォーカス誤差検出レンズ8、内面反射プリズ
ム9、フォトダイオード10等から成る。また楕円開口
形状の波長フィルタ5は図2(b)、図3(a)に示し
たものである。
The embodiment shown in FIG. 1 has a short wavelength (635 nm).
Laser 1, 780nm laser unit 2 with built-in detection system
And NA0.6 finite objective lens 3 for high density disc playback,
Optical disc 4, wavelength filter type elliptical aperture limiting means 5,
It comprises a non-deflection beam splitter (NPBS) 6, a wavelength selection prism 7, a focus error detection lens 8, an internal reflection prism 9, a photodiode 10, and the like. The wavelength filter 5 having an elliptical aperture shape is shown in FIGS. 2B and 3A.

【0025】635LD1を発した短波長レーザー光1
aはNPBS6でその約50%は反射し波長選択プリズ
ム7に入射する。波長選択プリズム7は635nmを効率
良く(例えば95%以上)透過し780nmを効率良く反
射する。そのため635レーザー1aはほとんどが選択
プリズムを透過し内面反射プリズム9で反射し波長フィ
ルタ5へ向かう。635レーザー1aは波長フィルタ5
全面(開口部を含む)を透過し対物レンズ3で高密度デ
ィスク(DVD等)情報記録面4bに微小スポットを結
ぶ。ディスクの反射光は同じ経路でレーザー側に戻り、
NPBS6、フォーカス検出レンズ8を透過してフォト
ダイオード10に焦点を結び電気信号に変換される。
Short-wavelength laser light 1 emitted from 635LD1
a is an NPBS 6, of which about 50% is reflected and enters the wavelength selection prism 7. The wavelength selection prism 7 efficiently transmits 635 nm (for example, 95% or more) and efficiently reflects 780 nm. Therefore, most of the 635 laser 1a passes through the selection prism, is reflected by the internal reflection prism 9, and travels to the wavelength filter 5. 635 laser 1a is wavelength filter 5
Through the entire surface (including the opening), the objective lens 3 forms a minute spot on the information recording surface 4b of the high-density disk (DVD or the like). The reflected light of the disc returns to the laser side in the same path,
The light passes through the NPBS 6 and the focus detection lens 8 to focus on the photodiode 10 and is converted into an electric signal.

【0026】780nmレーザー光は780nmレーザーユ
ニット2を発し波長選択プリズム7、内面反射プリズム
9を効率良く反射して波長フィルタ5に入射する。波長
フィルタ5は780nmレーザー光を楕円開口で透過開口
を制限するため、楕円開口部に入射した780nmレーザ
ー光2aのみ対物レンズにて集光され通常密度ディスク
(CD等)情報記録面4aにスポットを結ぶ。この際7
80nm側レーザー発光点の光軸方向の位置を所定の位置
に設定することでディスク側の焦点距離や、ディスク厚
の違いによる球面収差の補正量を任意に設定できる。7
80nmのディスク反射光も同じ経路でレーザーユニット
2へと戻り、ユニット内の検出系にて電気信号に変換さ
れる。また本実施例に記載された内面反射プリズム9は
635nmから780nmの広波長帯域において、安価に高
反射率を満足させるために波長依存性の無い内面反射方
式にしたが表面反射ミラー方式でも適用できることは言
うまでもない。
The 780 nm laser beam is emitted from the 780 nm laser unit 2 and is efficiently reflected by the wavelength selection prism 7 and the internal reflection prism 9 to enter the wavelength filter 5. Since the wavelength filter 5 restricts the transmission aperture of the 780 nm laser light by the elliptical aperture, only the 780 nm laser light 2a incident on the elliptical aperture is condensed by the objective lens and spotted on the information recording surface 4a of a normal density disk (CD or the like). tie. At this time 7
By setting the position of the laser emission point on the 80 nm side in the optical axis direction at a predetermined position, it is possible to arbitrarily set the correction amount of the spherical aberration due to the difference in the disk side focal length and the disk thickness. 7
The 80 nm disk reflected light also returns to the laser unit 2 along the same path, and is converted into an electric signal by a detection system in the unit. In addition, the internal reflection prism 9 described in the present embodiment employs an internal reflection method having no wavelength dependency in order to satisfy a high reflectance at a low cost in a wide wavelength band from 635 nm to 780 nm. However, the surface reflection mirror method can be applied. Needless to say.

【0027】これまでに説明したいくつかの本発明にお
ける開口制限手段形状は有限対物レンズのトラック移動
方向に単軸をなす楕円形状であること、さらに本楕円形
状の開口制限手段は高密度ディスク用に設計された有限
系対物レンズとの組み合わせにおいて作用しその効果を
発揮するものである。
The shape of the aperture limiting means in some of the present invention described so far is an elliptical shape which forms a single axis in the track moving direction of the finite objective lens. It works in combination with the finite objective lens designed as described above to exhibit its effect.

【0028】[0028]

【発明の効果】以上、本発明によれば、楕円開口形状の
開口制限手段を用いたことでトラック方向のNAが小さ
くなり波面収差の劣化を小さくでき、開口制限手段の方
法にかかわらず、一個の高NA有限対物レンズを使っ
て、厚さ、記録密度の違う複数規格媒体の光ディスクを
安定して記録、再生でき、その結果、安価で薄型、小
型、軽量な光情報記録再生装置を実現することができ
る。
As described above, according to the present invention, the use of the aperture limiting means having an elliptical aperture shape can reduce the NA in the track direction and reduce the deterioration of the wavefront aberration. High-NA finite objective lens enables stable recording and reproduction of optical discs of different standard media with different thicknesses and recording densities, resulting in an inexpensive, thin, compact and lightweight optical information recording / reproducing apparatus. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明における楕円開口制限手段を説明するた
めの図で、(a)は従来の形状、(b)は本発明による
形状を示す。
FIGS. 2A and 2B are views for explaining an elliptical aperture limiting means according to the present invention, wherein FIG. 2A shows a conventional shape, and FIG.

【図3】本発明の開口制限手段の構成例を示す図で、
(a)は波長フィルタや偏向フィルタを用いた例を示
し、(b)はホログラム方式の例を示し、(c)はホロ
グラム方式を用いた場合の装置構成図。
FIG. 3 is a diagram showing an example of the configuration of an aperture limiting means according to the present invention;
(A) shows an example using a wavelength filter and a deflection filter, (b) shows an example of a hologram method, and (c) is a device configuration diagram when a hologram method is used.

【図4】有限対物レンズの特性を示す図で、(a)は像
高特性図、(b)はジッタ特性図。
4A and 4B are diagrams showing characteristics of a finite objective lens, where FIG. 4A is an image height characteristic diagram and FIG. 4B is a jitter characteristic diagram.

【図5】従来技術の構成を示す図で、(a)は高密度デ
ィスクの場合、(b)は通常密度ディスクの場合を示
す。
5A and 5B are diagrams showing a configuration of a conventional technique, wherein FIG. 5A shows a case of a high-density disk, and FIG. 5B shows a case of a normal-density disk.

【図6】有限光学系に適用した他の従来技術の構成を示
す図で、(a)は高密度ディスクの場合、(b)は通常
密度ディスクの場合を示す。
6A and 6B are diagrams showing a configuration of another conventional technique applied to a finite optical system, wherein FIG. 6A shows a case of a high-density disk, and FIG. 6B shows a case of a normal-density disk.

【符号の説明】[Explanation of symbols]

1 短波長半導体レーザー 2 780nmレーザーユニット 3,3a 高密度ディスク用対物レンズ 4 光ディスク 4a 通常密度光ディスク情報面 4b 高密度光デイスク情報面 5 開口制限手段 5a 開口制限開口部 6 NPBS 7 波長選択プリズム 8 フォーカス誤差検出レンズ 9 内面反射プリズム 10 光検出器(フォトダイオード) 11 コリメーターレンズ 20 ホログラムによる開口制限手段 20a 楕円形状ホログラム領域 DESCRIPTION OF SYMBOLS 1 Short wavelength semiconductor laser 2 780 nm laser unit 3, 3a Object lens for high-density disk 4 Optical disk 4a Normal-density optical disk information surface 4b High-density optical disk information surface 5 Aperture restricting means 5a Aperture restriction opening 6 NPBS 7 Wavelength selection prism 8 Focus Error detection lens 9 Internal reflection prism 10 Photodetector (photodiode) 11 Collimator lens 20 Holographic aperture limiting means 20a Elliptical hologram area

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ディスク厚の異なる情報媒体に対して対
物レンズを通してレーザ光により書込みあるいは読出し
を行う光学式情報記録再生装置であって、対物レンズの
手前に情報媒体に応じて開口を制御する開口制御手段を
具備し、前記開口がレンズトラック移動方向が短軸とな
る楕円形状であることを特徴とする光学式情報記録再生
装置。
1. An optical information recording / reproducing apparatus for writing / reading information media having different disk thicknesses through an objective lens by using a laser beam, wherein an aperture is controlled in front of the objective lens in accordance with the information medium. An optical information recording / reproducing apparatus comprising a control means, wherein the opening has an elliptical shape in which a lens track moving direction is a short axis.
【請求項2】 情報媒体に応じて異なる波長のレーザ光
が用いられ、波長に応じて前記開口制御手段の開口が変
わることを特徴とする請求項1の光学式情報記録再生装
置。
2. The optical information recording / reproducing apparatus according to claim 1, wherein laser beams having different wavelengths are used according to the information medium, and the aperture of said aperture control means changes according to the wavelength.
【請求項3】 前記開口制御手段が波長フィルタ膜で構
成されていることを特徴とする請求項2の光学式情報記
録再生装置。
3. An optical information recording / reproducing apparatus according to claim 2, wherein said aperture control means comprises a wavelength filter film.
【請求項4】 前記開口制御手段が偏向フィルタで構成
されていることを特徴とする請求項2の光学式情報記録
再生装置。
4. The optical information recording / reproducing apparatus according to claim 2, wherein said aperture control means comprises a deflection filter.
【請求項5】 前記開口制御手段がホログラム領域をも
った基盤で構成されていることを特徴とする請求項2の
光学式情報記録再生装置。
5. The optical information recording / reproducing apparatus according to claim 2, wherein said aperture control means comprises a base having a hologram area.
【請求項6】 高開口数の有限系対物レンズと、レーザ
ーを発光するレーザーダイオードと、前記有限系対物レ
ンズに入射するレーザー光の有効径を切り替える開口制
限手段と、前記情報媒体からの反射光を光検出器側に分
岐するビームスプリッタと、戻り光を電気信号に変換す
る光検出器とを含み、前記開口制限手段でレンズ有効径
を切り替えることでディスク厚の異なる2種類の情報媒
体を記録、再生する光学式情報記録再生装置において、
前記開口制限手段の開口部形状がレンズトラック移動方
向が短軸となる楕円形状開口であることを特徴とする光
学式情報記録再生装置。
6. A finite objective lens having a high numerical aperture, a laser diode for emitting a laser, aperture limiting means for switching an effective diameter of laser light incident on the finite objective lens, and a reflected light from the information medium. And a photodetector for converting return light into an electric signal, and recording two types of information media having different disk thicknesses by switching the effective diameter of the lens by the aperture limiting means. In an optical information recording / reproducing apparatus for reproducing,
An optical information recording / reproducing apparatus, wherein the opening of the opening limiting means is an elliptical opening having a short axis in a lens track moving direction.
JP8174598A 1996-07-04 1996-07-04 Optical information recording / reproducing device Expired - Fee Related JP2990067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174598A JP2990067B2 (en) 1996-07-04 1996-07-04 Optical information recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174598A JP2990067B2 (en) 1996-07-04 1996-07-04 Optical information recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH1021574A true JPH1021574A (en) 1998-01-23
JP2990067B2 JP2990067B2 (en) 1999-12-13

Family

ID=15981377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174598A Expired - Fee Related JP2990067B2 (en) 1996-07-04 1996-07-04 Optical information recording / reproducing device

Country Status (1)

Country Link
JP (1) JP2990067B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091857A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Optical pickup device and optical disk drive
US7260048B2 (en) 2002-08-07 2007-08-21 Nalux Co., Ltd. Object lens for optical pickup and method for designing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091857A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Optical pickup device and optical disk drive
US7260048B2 (en) 2002-08-07 2007-08-21 Nalux Co., Ltd. Object lens for optical pickup and method for designing the same

Also Published As

Publication number Publication date
JP2990067B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US6043912A (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
US6285646B1 (en) Optical pickup using objective lens compatible with a plurality of optical disks
JPH0855363A (en) Optical head
US6304540B1 (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
WO2000055849A1 (en) Convergent device, optical head, optical information recording/reproducing and optical information recording/reproducing method
KR100458038B1 (en) Optical head
KR100294235B1 (en) Optical pickup using optical variable iris
US5784354A (en) Optical pickup device
KR19980042630A (en) Objective lens and optical head and optical disk device using it
KR19980017956A (en) Optical pickup using optical phase plate
JP3471959B2 (en) Optical pickup device
JP2000048397A (en) Optical pickup
JP3919276B2 (en) Optical head and optical disk apparatus
JP2990067B2 (en) Optical information recording / reproducing device
JPH08212594A (en) Optical pickup device
JP3896171B2 (en) Optical pickup and optical disk apparatus
JP3619747B2 (en) Optical pickup device
JPH09265639A (en) Optical pickup
KR100468962B1 (en) Optical pickup
KR100682689B1 (en) Optical pick up having a multiple light emitting devices
KR100439374B1 (en) Optical pickup
KR20030023308A (en) Optical pickup
KR100317278B1 (en) laser diode module for generating beams different from the wave length and optical pick-up apparatus using the same
JPH10247338A (en) Optical pickup device
KR100260705B1 (en) Optical pickup compatible with optical recording media

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees