JPH10215583A - Power supply - Google Patents

Power supply

Info

Publication number
JPH10215583A
JPH10215583A JP9013696A JP1369697A JPH10215583A JP H10215583 A JPH10215583 A JP H10215583A JP 9013696 A JP9013696 A JP 9013696A JP 1369697 A JP1369697 A JP 1369697A JP H10215583 A JPH10215583 A JP H10215583A
Authority
JP
Japan
Prior art keywords
power supply
secondary windings
supply device
wound
primary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9013696A
Other languages
Japanese (ja)
Other versions
JP3487113B2 (en
Inventor
Shinji Makimura
紳司 牧村
Hiroshi Kido
大志 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP01369697A priority Critical patent/JP3487113B2/en
Priority to US08/834,826 priority patent/US5945785A/en
Priority to CNB971108072A priority patent/CN1244256C/en
Priority to DE19719168A priority patent/DE19719168A1/en
Publication of JPH10215583A publication Critical patent/JPH10215583A/en
Application granted granted Critical
Publication of JP3487113B2 publication Critical patent/JP3487113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive power supply in which the variation rate of circuit efficiently η can be decreased, even if the voltage being applied to the primary of a drive transformer is varied due to the variations in the characteristics of components. SOLUTION: This power supply comprises a high-frequency power supply having two switching elements-connected in series and supplying a load with a high-frequency AC voltage produced by converting a DC voltage, a drive transformer having a primary winding n1, two secondary windings n21, n22 connected in series with the control terminal of two switching elements and a magnetic core 10, and a driver for driving the two switching elements by applying a voltage to the primary winding n1 of the drive transformer, wherein the secondary windings n21, n22 are arranged at a constant interval, so that they do not make tight contact with each other, i.e., wound while being spaced apart at every turn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は電源装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply.

【0002】[0002]

【従来の技術】本発明に係る回路図を図6に示す。2. Description of the Related Art FIG. 6 shows a circuit diagram according to the present invention.

【0003】本回路は、透明なあるいは内壁に蛍光休が
塗布された、球状のガラスバルブ内に、不活性ガス、金
属蒸気等の放電ガズ(例えば水銀及ぴ希ガス)を封入し
た無電極放電灯1と、その外周に沿って近接配置された
高周波電力供給用コイル2と、高周波電力供給用コイル
2に高周波電力を供給する高周波電源3と、高周波電力
供給用コイル2と高周波電源3との両方のマッチングを
とって反射をなくし、無電極放電灯1に効率よく高周波
電力を供給するマッチング回路4とを備えて構成され
る。そして、高周波電源3から高周波電力供給用コイル
2に、数MHzから数百MHzの高周波電流を流すこと
により高周波電力供給用コイル2に高周波磁界を発生さ
せ、無電極放電灯1に高周波電力を供給し、無電極放電
灯1に高周波プラズマを発生させ、紫外線もしくは可視
光を発生させる。また、高周波電源3は、水晶振動子X
を用いた発振回路5と、発振回路5の出力を増幅する、
所謂C級増幅回路により構成されたプリアンプ6と、電
解効果トランジスタ(以下、スイッチング素子と呼
ぶ。)Q1、Q2とインダクタL2とコンデンサC2と
を含む、所謂D級増幅回路で構成されたメインアンプ7
と、1次巻線n1及び2次巻線n21、n22及び磁気
コアを有し、プリアンプ6からの出力をメインアンプ7
へ伝達するための駆動トランスTとから構成される。ま
た、発振回路5とブリアンプ6とでドライブ装置9を構
成する。駆動トランスTの1次巻線n1の両端には、容
量可変コンデンサVC(以下、バリコンVCと呼ぶ。)
が並列接続されており、バリコンVCを変化するとによ
り、メインアンプ7を構成するスイッチング素子Q1、
Q2のゲート・ソース間電圧VGSが調整され、高周波
電源3の出力制御が可能となる。例えば、スイッチング
素子01、Q2としてIR社製のIRF710を用いた
場合、制御電圧(以下、ゲート・ソース間電圧と呼ぶ)
VGSは略正弦波状の電圧波形となり、そのピーク値は
10〜15Vに設定される。ここで、メインアンプ7の
電源には直流電源E1、ドライブ装置9の電源には直流
電源E2を用いている。
[0003] This circuit is an electrodeless discharge lamp in which a discharge gas (eg, mercury and rare gas) such as an inert gas or metal vapor is sealed in a spherical glass bulb which is transparent or has a fluorescent film applied to the inner wall. An electric lamp 1, a high-frequency power supply coil 2 disposed close to the periphery of the lamp 1, a high-frequency power supply 3 for supplying high-frequency power to the high-frequency power supply coil 2, and a high-frequency power supply coil 2 and the high-frequency power supply 3. A matching circuit 4 is provided that eliminates reflection by performing both matchings and efficiently supplies high-frequency power to the electrodeless discharge lamp 1. Then, a high-frequency magnetic field of several megahertz to several hundreds of megahertz is passed from the high-frequency power supply 3 to the high-frequency power supply coil 2 to generate a high-frequency magnetic field in the high-frequency power supply coil 2, thereby supplying high-frequency power to the electrodeless discharge lamp 1. Then, high-frequency plasma is generated in the electrodeless discharge lamp 1 to generate ultraviolet light or visible light. The high-frequency power source 3 is a quartz oscillator X
An oscillation circuit 5 using the same, and amplifying the output of the oscillation circuit 5;
A preamplifier 6 configured by a so-called class C amplifier circuit, and a main amplifier 7 configured by a so-called class D amplifier circuit including field effect transistors (hereinafter, referred to as switching elements) Q1 and Q2, an inductor L2, and a capacitor C2.
And a primary winding n1, secondary windings n21 and n22, and a magnetic core.
And a drive transformer T for transmitting the power to the motor. The drive device 9 is composed of the oscillation circuit 5 and the preamplifier 6. At both ends of the primary winding n1 of the drive transformer T, a variable capacitance capacitor VC (hereinafter, referred to as a variable capacitor VC).
Are connected in parallel, and when the variable capacitor VC is changed, the switching elements Q1,
The gate-source voltage VGS of Q2 is adjusted, and the output of the high-frequency power supply 3 can be controlled. For example, when IRF710 manufactured by IR is used as the switching elements 01 and Q2, a control voltage (hereinafter, referred to as a gate-source voltage) is used.
VGS has a substantially sinusoidal voltage waveform, and its peak value is set to 10 to 15V. Here, a DC power supply E1 is used as a power supply of the main amplifier 7, and a DC power supply E2 is used as a power supply of the drive device 9.

【0004】図7に、本発明に係る従来例である、駆動
トランスTの模式的な斜視図を示す。
FIG. 7 is a schematic perspective view of a driving transformer T which is a conventional example according to the present invention.

【0005】駆動トランスTは、磁気コア10として例
えばトロイダルコアを用い、トロイダルコア10に1次
巻線n1と2次巻線n21、n22とを巻くと共に、2
次巻線n21と2次巻線n22とを一対にし、互いに隣
り合う2次巻線n21、n22が交差しないと共に密接
させてバイファイラ巻きとして構成されている。
[0005] The drive transformer T uses, for example, a toroidal core as the magnetic core 10, and winds a primary winding n 1 and secondary windings n 21 and n 22 around the toroidal core 10.
The secondary winding n21 and the secondary winding n22 are paired, and the secondary windings n21 and n22 adjacent to each other do not intersect and are close to each other to form a bifilar winding.

【0006】図8に、バリコンVCを変化させた時のゲ
ート・ソース間電圧VGSの振幅変化の特性図を示す。
ここで、図8に示すゲート・ソース間電圧VGSは直流
電源E2のみ投入した場合のものであり、これは、直流
電源E1投入直後には、ゲート・ソース間電圧VGSに
高周波リップルが重畳されてしまうので、バリコンVC
変化時のゲート・ソース間電圧VGSの振幅を読み取る
ことが困難であるためである。図8より、バリコンVC
の変化に対してゲート・ソース間電圧VGSは略放物線
状に変化し、バリコンVCの容量値がVCpの時にピー
ク値VGSpを有する。これはバリコンVCと駆動トラ
ンスTとの共振が生じていることを示している。
FIG. 8 shows a characteristic diagram of an amplitude change of the gate-source voltage VGS when the variable capacitor VC is changed.
Here, the gate-source voltage VGS shown in FIG. 8 is obtained when only the DC power supply E2 is turned on. This is because the high-frequency ripple is superimposed on the gate-source voltage VGS immediately after the DC power supply E1 is turned on. Since it is a variable condenser VC
This is because it is difficult to read the amplitude of the gate-source voltage VGS at the time of change. According to FIG.
, The gate-source voltage VGS changes substantially in a parabolic manner, and has a peak value VGSp when the capacitance value of the variable capacitor VC is VCp. This indicates that resonance occurs between the variable condenser VC and the driving transformer T.

【0007】次に、無電極放電灯1及びマッチング回路
4の合成インピーダンスと等価なインピーダンスを有す
るダミーロードRoをメインアンプ7の出力端に接続
し、この状態で直流電源E1及び直流電源E2の両方を
オンした場合の、スイッチング素子Q2のゲート・ソー
ス間電圧VGS波形を図9に、高周波電源3の回路効率
ηの変化の特性図を図10に示す。図10より、回路効
率ηは容量値VCp付近で最小となる曲線となってい
る。なお、高周波電源3の動作周波数は13.56MH
zに設定した。
Next, a dummy load Ro having an impedance equivalent to the combined impedance of the electrodeless discharge lamp 1 and the matching circuit 4 is connected to the output terminal of the main amplifier 7, and in this state, both the DC power supply E1 and the DC power supply E2 are connected. FIG. 9 shows the waveform of the gate-source voltage VGS of the switching element Q2 when the power supply is turned on, and FIG. FIG. 10 shows a curve in which the circuit efficiency η becomes minimum around the capacitance value VCp. The operating frequency of the high frequency power supply 3 is 13.56 MHz.
z.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記従来例で
は、例えば図10に示す様に、回路効率ηは最大で約8
4%あったものが、容量値VCp付近で約77%にまで
減少し、回路効率ηのバリコンVCの値に対する変化率
も大きくなっている。従って、最初、回路効率ηが最大
になるようバリコンVCを設定していたとしても、1次
巻線n1の周辺回路における構成部品の特性の経時変化
等により、1次巻線n1に印加される電圧が変化してし
まい、回路効率ηが大きく低下してしまうという問題点
が生じてしまう。
However, in the above conventional example, as shown in FIG. 10, for example, the circuit efficiency .eta.
From 4%, it decreases to about 77% near the capacitance value VCp, and the rate of change of the circuit efficiency η with respect to the value of the variable condenser VC also increases. Therefore, even if the variable capacitor VC is initially set to maximize the circuit efficiency η, the voltage is applied to the primary winding n1 due to a change over time in the characteristics of the components in the peripheral circuit of the primary winding n1. This causes a problem that the voltage is changed and the circuit efficiency η is greatly reduced.

【0009】本発明は、上記の問題点に鑑みてなされた
ものであり、その目的とするところは、構成部品の特性
変化等によって駆動トランスの1次側に印加される電圧
が変化しても、回路効率ηの変化率を小さくできる電源
装置を低コストで提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to reduce the variation in the voltage applied to the primary side of a driving transformer due to a change in the characteristics of components. Another object of the present invention is to provide a power supply device capable of reducing the rate of change in circuit efficiency η at low cost.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1記載の発明によれば、直列接続された2
つのスイッチング素子を有し、直流電圧を交流の高周波
電圧に変換して負荷に供給する高周波電源と、1次巻線
と2つのスイッチング素子の各々の制御端子に直列接続
された2つの2次巻線と1次巻線及び2つの2次巻線が
巻かれた磁気コアとを有する駆動トランスと、駆動トラ
ンスの1次巻線に電圧を印加することにより2つのスイ
ッチング素子を駆動するドライブ装置とを備え、2次巻
線は、スイッチング素子のオン時間を小さくすると共に
オン時間を確保する方向に巻くことを特徴とする。
In order to solve the above problems, according to the first aspect of the present invention, two serially connected 2
A high-frequency power supply that has two switching elements and converts a DC voltage into an AC high-frequency voltage and supplies it to a load; two secondary windings connected in series to the primary winding and control terminals of the two switching elements, respectively; A drive transformer having a wire, a primary winding, and a magnetic core wound with two secondary windings; and a drive device for driving two switching elements by applying a voltage to the primary winding of the drive transformer. And the secondary winding is wound in a direction to shorten the on-time of the switching element and secure the on-time.

【0011】請求項2記載の発明によれば、2つの2次
巻線は、1ターン毎に等間隔で巻くことを特徴とする。
According to the second aspect of the invention, the two secondary windings are wound at equal intervals every turn.

【0012】請求項3記載の発明によれば、2つの2次
巻線は、全ての2次巻線間を等間隔で巻くことを特徴と
する。
According to the third aspect of the present invention, the two secondary windings are wound at equal intervals between all the secondary windings.

【0013】請求項4記載の発明によれば、2つの2次
巻線は、互いに非接触に巻くことを特徴とする。
According to a fourth aspect of the present invention, the two secondary windings are wound without contact with each other.

【0014】請求項5記載の発明によれば、2つの2次
巻線は、一対にしてバイファイラ巻きすることを特徴と
する。
According to a fifth aspect of the present invention, the two secondary windings are paired and bifilar wound.

【0015】請求項6記載の発明によれば、駆動トラン
スは、1次巻線と2次巻線とを互いに遠ざける方向に巻
いたものであることを特徴とする。
According to a sixth aspect of the present invention, the drive transformer is characterized in that the primary winding and the secondary winding are wound in directions away from each other.

【0016】請求項7記載の発明によれば、1次巻線
は、少なくとも磁気コアの内側面側で各ターン毎に密接
して巻くことを特徴とする。
According to a seventh aspect of the present invention, the primary winding is closely wound at every turn at least on the inner surface side of the magnetic core.

【0017】請求項8記載の発明によれば、磁気コア
は、トロイダルコアであることを特徴とする。
According to the invention described in claim 8, the magnetic core is a toroidal core.

【0018】請求項9記載の発明によれば、磁気コア
は、カーボニル鉄系コアであることを特徴とする。
According to a ninth aspect of the present invention, the magnetic core is a carbonyl iron-based core.

【0019】請求項10記載の発明によれば、磁気コア
は、Ni−Zn系フェライトコアであることを特徴とす
る。
According to a tenth aspect of the present invention, the magnetic core is a Ni—Zn ferrite core.

【0020】請求項11記載の発明によれば、ドライブ
装置は、スイッチング素子を他励駆動するものであるこ
とを特徴とする。
According to an eleventh aspect of the present invention, the drive device drives the switching element separately.

【0021】請求項12記載の発明によれば、高周波電
源は、D級増幅回路であることを特徴とする。
According to a twelfth aspect of the present invention, the high frequency power supply is a class D amplifier circuit.

【0022】請求項13記載の発明によれば、高周波電
源の動作周波数は、0.5MHz以上であることを特徴
とする請求項1または請求項12に記載の電源装置。
According to the thirteenth aspect, the operating frequency of the high-frequency power source is 0.5 MHz or more.

【0023】請求項14記載の発明によれば、負荷は、
少なくとも無電極放電灯を含んでなることを特徴とす
る。
According to the fourteenth aspect, the load is:
It is characterized by including at least an electrodeless discharge lamp.

【0024】[0024]

【実施の形態】Embodiment

(実施の形態1)本発明に係る第1の実施の形態の模式
的な斜視図を図1に示す。
(Embodiment 1) FIG. 1 is a schematic perspective view of a first embodiment according to the present invention.

【0025】図7に示した従来例と異なる点は、2次巻
線n21、n22を互いに等間隔に且つ互いに密接しな
いように、つまり1ターン毎にお互いに距離を隔てて巻
いたことであり、その他の従来例と同一構成は同一符号
を付すことにより説明を省略する。
The difference from the conventional example shown in FIG. 7 is that the secondary windings n21 and n22 are wound at equal intervals and so as not to be in close contact with each other, that is, at a distance from each other every turn. The same components as those of the conventional example are denoted by the same reference numerals, and description thereof is omitted.

【0026】次に、動作を簡単に説明する。直流電源E
1及び直流電源E2の両方をオンした場合の、スイッチ
ング素子Q2のゲート・ソース間電圧VGS波形を図2
に、高周波電源3の回路効率ηのバリコンVCに対する
特性図を図3に示す。図3より、バリコンVC(或はゲ
ート・ソース間電圧VGS)の値が変化しても回路効率
ηは約84%を保持しており、従来例の様に容量値VC
p付近での回路効率ηの顕著な低下は見られない。つま
り、バリコンVCの値の変化によって駆動トランスTの
1次巻線n1に印加される電圧が変化しても、回路効率
ηは顕著には変化しない。
Next, the operation will be briefly described. DC power supply E
2 shows the waveform of the gate-source voltage VGS of the switching element Q2 when both the DC power supply E2 are turned on.
FIG. 3 shows a characteristic diagram of the circuit efficiency η of the high-frequency power supply 3 with respect to the variable capacitor VC. 3, even if the value of the variable capacitor VC (or the voltage VGS between the gate and the source) changes, the circuit efficiency η maintains about 84%, and the capacitance value VC as in the conventional example is maintained.
There is no noticeable decrease in the circuit efficiency η near p. That is, even if the voltage applied to the primary winding n1 of the drive transformer T changes due to a change in the value of the variable capacitor VC, the circuit efficiency η does not change significantly.

【0027】以下、回路効率ηは顕著には変化しない点
について述べる。ここで、図9に示す従来例と図2に示
す本実施の形態とにおけるスイッチング素子Q2のゲー
ト・ソース間電圧VGS波形を比較すると、図2に示す
本実施の形態のゲート・ソース間電圧VGS波形は、負
電位からの立ち上がり時に零V近傍で波形が歪んでいる
ことがわかる。これは、図1に示す様に、2次巻線n2
1と2次巻線n22とをお互いに距離を隔てて巻いたこ
とで磁気的結合が弱まり、この様な波形の歪みが発生し
たが、バリコンVCの値が変化しても波形歪みが作用し
てスイッチング素子Q1、Q2のオン幅やデッドオフタ
イムは大きくは変化しないと考えられる。よって、デッ
ドオフタイムとスイッチング素子Q1、Q2での損失と
は相関が有ることからも鑑みて、バリコンVCの値の変
化によって駆動トランスTの1次巻線n1に印加される
電圧が変化しても、回路効率ηは顕著には変化しない、
と考えられる。
Hereinafter, the point that the circuit efficiency η does not significantly change will be described. Here, comparing the gate-source voltage VGS waveforms of the switching element Q2 between the conventional example shown in FIG. 9 and the present embodiment shown in FIG. 2, the gate-source voltage VGS of the present embodiment shown in FIG. It can be seen that the waveform is distorted near zero V when rising from a negative potential. This is, as shown in FIG.
When the primary winding n22 and the secondary winding n22 are wound apart from each other, the magnetic coupling is weakened and such a waveform distortion occurs. However, even if the value of the variable capacitor VC changes, the waveform distortion acts. Therefore, it is considered that the ON width and the dead-off time of the switching elements Q1 and Q2 do not largely change. Therefore, in view of the fact that there is a correlation between the dead-off time and the loss in the switching elements Q1 and Q2, the voltage applied to the primary winding n1 of the drive transformer T changes due to the change in the value of the variable capacitor VC. The circuit efficiency η does not change significantly,
it is conceivable that.

【0028】(実施の形態2)本発明に係る第2の実施
の形態の模式的な斜視図を図4に示す。
(Embodiment 2) FIG. 4 is a schematic perspective view of a second embodiment according to the present invention.

【0029】図1に示した第1の実施の形態と異なる点
は、2次巻線n21、n22を互いに接近させると共に
非接触となる様に巻いていることであり、その他の第1
の実施の形態と同一構成には同一符号を付すことにより
説明を省略する。
The difference from the first embodiment shown in FIG. 1 is that the secondary windings n21 and n22 are wound close to each other and in a non-contact manner.
The same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0030】次に、動作を簡単に説明する。直流電源E
1及び直流電源E2の両方をオンした場合の、回路効率
ηのバリコンVCに対する特性図を図5に示す。図3に
示す第1の実施の形態と比較して、容量値VCp近傍で
やや回路効率ηは低下している(=最小値約82%)
が、図10に示す従来例と比較すれば回路効率ηの低下
は少なくなっている。これは、2次巻線n21、n22
を互いに接近させることにより、ゲート・ソース間電圧
VGS波形の歪みが小さくなり、その分、第1の実施の
形態と比較してバリコンVC或はゲート・ソース間電圧
VGSの値に対するスイッチング素子Q1、Q2のオン
幅の変化が大きくなった為と考えられる。
Next, the operation will be briefly described. DC power supply E
FIG. 5 shows a characteristic diagram of the circuit efficiency η with respect to the variable condenser VC when both the DC power supply 1 and the DC power supply E2 are turned on. As compared with the first embodiment shown in FIG. 3, the circuit efficiency η slightly decreases near the capacitance value VCp (= minimum value about 82%).
However, as compared with the conventional example shown in FIG. 10, the decrease in the circuit efficiency η is small. This is because the secondary windings n21 and n22
Are closer to each other, the distortion of the gate-source voltage VGS waveform is reduced, and accordingly, compared to the first embodiment, the switching element Q1 and the switching element Q1 for the value of the variable capacitor VC or the gate-source voltage VGS are reduced. It is considered that the change of the ON width of Q2 became large.

【0031】(実施の形態3)本発明に係る第3の実施
の形態を以下に示す。
(Embodiment 3) A third embodiment according to the present invention will be described below.

【0032】本実施の形態は、上記第1及び第2の実施
の形態における1次巻線n1を、トロイダルコア10に
対する巻線の占有面積が最小になる様に高密度に巻いた
ものである。1次巻線n1を高密度に巻くことより1次
巻線n1での磁束の漏れを少なくできるため、電力を効
率的に2次巻線n21、n22に伝えることができる。
特に、無電極放電灯1を負荷に用いた場合、無電極放電
灯1の始動時に多大な高周波電力を高周波電力供給用コ
イル2に供給しなければならないが、1次巻線n1を高
密度に巻くことにより、プリアンプ6の出力を効率的に
メインアンプ7に伝達することができ、よって無電極放
電灯1の始動性が向上する。
In this embodiment, the primary winding n1 in the first and second embodiments is wound at a high density so that the area occupied by the winding with respect to the toroidal core 10 is minimized. . Since the leakage of magnetic flux in the primary winding n1 can be reduced by winding the primary winding n1 at a high density, power can be efficiently transmitted to the secondary windings n21 and n22.
In particular, when the electrodeless discharge lamp 1 is used as a load, a large amount of high-frequency power must be supplied to the high-frequency power supply coil 2 when the electrodeless discharge lamp 1 is started. By winding, the output of the preamplifier 6 can be efficiently transmitted to the main amplifier 7, so that the startability of the electrodeless discharge lamp 1 is improved.

【0033】(実施の形態4)本発明に係る第4の実施
の形態を以下に示す。
(Embodiment 4) A fourth embodiment according to the present invention will be described below.

【0034】本実施の形態は、上記第1及び第2の実施
の形態において、トロイダルコア10の中心部を軸とし
て、1次巻線n1と2次巻線n21または2次巻線n2
2の少なくとも一方とを互いに略対称に配置することに
より、1次巻線n1と2次巻線n21または2次巻線n
22の少なくとも一方との距離を最大としたものであ
る。
This embodiment is different from the first and second embodiments in that the primary winding n1 and the secondary winding n21 or the secondary winding n2 around the center of the toroidal core 10 as an axis.
2 are arranged substantially symmetrically to each other, so that the primary winding n1 and the secondary winding n21 or the secondary winding n
22 is at a maximum.

【0035】この様に、1次巻線n1と2次巻線n21
または2次巻線n22の少なくとも一方との距離を最大
とすることにより、それらの間に発生する寄生容量が小
さくなり、寄生容量を介して1次巻線n1と2次巻線n
21または2次巻線n22の少なくとも一方との間に相
互誘導電流が流れることによる、スイッチング素子Q
1、Q2でのスイッチング損失の増大も抑えられる。
As described above, the primary winding n1 and the secondary winding n21
Alternatively, by maximizing the distance to at least one of the secondary windings n22, the parasitic capacitance generated therebetween is reduced, and the primary winding n1 and the secondary winding n
21 or at least one of the secondary windings n22, the switching element Q
1. The increase in switching loss in Q2 is also suppressed.

【0036】なお、上記全ての実施の形態では、ゲート
・ソース間電圧VGSをスイッチング素子Q2のゲート
・ソース間電圧としたが、スイッチング素子Q1のゲー
ト・ソース間電圧としてもよい。また、トロイダルコア
の代わりに他の磁気コアを用いてもよく、磁気コアは、
例えばカーボニル鉄系コアであっても、Ni−Zn系フ
ェライトコアであってもよい。
In all of the above embodiments, the gate-source voltage VGS is set to the gate-source voltage of the switching element Q2, but may be set to the gate-source voltage of the switching element Q1. Further, other magnetic cores may be used instead of the toroidal cores.
For example, it may be a carbonyl iron-based core or a Ni-Zn-based ferrite core.

【0037】[0037]

【発明の効果】請求項1記載の発明によれば、構成部品
の特性変化等によって駆動トランスの1次側に印加され
る電圧が変化しても、回路効率ηの変化率を小さくでき
る電源装置を低コストで提供できる。
According to the first aspect of the present invention, even if the voltage applied to the primary side of the drive transformer changes due to a change in the characteristics of the components, etc., the power supply device can reduce the rate of change of the circuit efficiency η. Can be provided at low cost.

【0038】請求項2乃至請求項5記載の発明によれ
ば、請求項1記載の発明の効果に加えて、構成部品の特
性の経時変化等により、駆動トランスの1次側に印加さ
れる電圧が多少変わっても、スイッチング素子のデッド
オフタイムはほとんど変化しないため、回路効率は顕著
に変化せず、高い回路効率を維持可能な電源装置を提供
できる。
According to the second to fifth aspects of the present invention, in addition to the effects of the first aspect of the present invention, the voltage applied to the primary side of the drive transformer due to the time-dependent change in the characteristics of the components and the like. Even if the power supply voltage slightly changes, the dead-off time of the switching element hardly changes, so that the circuit efficiency does not significantly change and a power supply device capable of maintaining high circuit efficiency can be provided.

【0039】請求項6記載の発明によれば、請求項1乃
至請求項5に記載の発明の効果に加えて、駆動トランス
の1、2次巻線間に発生する寄生容量が小さくなり、寄
生容量を介して1、2次巻線問に相互誘導電流れること
によるスイッチング損失を低減可能な電源装置を提供で
きる。
According to the invention of claim 6, in addition to the effects of the invention of claims 1 to 5, the parasitic capacitance generated between the primary and secondary windings of the drive transformer is reduced, It is possible to provide a power supply device capable of reducing switching loss caused by mutual induction current between the primary and secondary windings via a capacitor.

【0040】請求項7記載の発明によれば、請求項1乃
至請求項6に記載の発明の効果に加えて、プリアンプの
出力を効率的にメインアンプに伝達することができ、よ
って無電極放電灯の始動性が向上可能な電源装置を提供
できる。
According to the seventh aspect of the invention, in addition to the effects of the first to sixth aspects, the output of the preamplifier can be efficiently transmitted to the main amplifier. A power supply device capable of improving the startability of an electric lamp can be provided.

【0041】請求項8記載の発明によれば、請求項1乃
至請求項7に記載の発明の効果に加えて、磁気コアとし
てトロイダルコアを用いることにより、磁束の漏れが小
さいため不要輻射雑音を低減することが可能な電源装置
を提供できる。
According to the eighth aspect of the present invention, in addition to the effects of the first to seventh aspects of the present invention, unnecessary radiation noise can be reduced by using a toroidal core as the magnetic core because the leakage of magnetic flux is small. A power supply device that can be reduced can be provided.

【0042】請求項9記載の発明によれば、請求項1乃
至請求項8に記載の発明の効果に加えて、磁気コアとし
てカーボニル鉄系コアを用いることにより、温度特性及
び磁束レベルが安定し、周波数特性が良好で、特に0.
05MHz〜200MHzで高いQ特性を示すことが可
能な電源装置を提供できる。
According to the ninth aspect of the invention, in addition to the effects of the first to eighth aspects, the use of a carbonyl iron-based core as the magnetic core stabilizes the temperature characteristics and the magnetic flux level. , Good frequency characteristics.
A power supply device capable of exhibiting a high Q characteristic in a range of from 05 MHz to 200 MHz can be provided.

【0043】請求項10記載の発明によれば、請求項1
乃至請求項8に記載の発明の効果に加えて、磁気コアと
してNi‐Zn系フェライトコアを用いることにより、
損失(tanδ/μi)が小さく、周波数特性が良好
で、特に0.5MHz〜100MHzで高いQ特性を示
すことが可能な電源装置を提供できる。
According to the tenth aspect, the first aspect is provided.
In addition to the effects of the invention described in claim 8, by using a Ni-Zn ferrite core as the magnetic core,
It is possible to provide a power supply device having a small loss (tan δ / μi), good frequency characteristics, and capable of exhibiting a high Q characteristic particularly at 0.5 MHz to 100 MHz.

【0044】請求項11記載の発明によれば、請求項1
記載の発明の効果に加えて、スイッチング素子を他励駆
動することにより、例えば無電極放電灯を負荷として動
作周波数が10MHzを越える場合であっても、安定し
たスイッチング動作が可能な電源装置を提供できる。
According to the eleventh aspect of the present invention, the first aspect is provided.
In addition to the effects of the invention described above, by separately driving the switching element, a power supply device capable of performing a stable switching operation even when the operating frequency exceeds 10 MHz with an electrodeless discharge lamp as a load, for example, is provided. it can.

【0045】請求項12記載の発明によれば、請求項1
記載の発明の効果に加えて、スイッチング素子での損失
を更に低減可能で、回路効率を向上可能な電源装置を提
供できる。
According to the twelfth aspect of the present invention, the first aspect of the present invention is as follows.
In addition to the effects of the described invention, it is possible to provide a power supply device capable of further reducing the loss in the switching element and improving the circuit efficiency.

【0046】請求項13及び請求項14に記載の発明に
よれば、請求項1記載の発明の効果に加えて、無電極放
電灯を高周波電力で効率的に点灯すること可能な電源装
置を提供できる。
According to the thirteenth and fourteenth aspects of the invention, in addition to the effects of the first aspect, there is provided a power supply device capable of efficiently lighting an electrodeless discharge lamp with high-frequency power. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1の実施の形態の模式的な斜視
図を示す。
FIG. 1 is a schematic perspective view of a first embodiment according to the present invention.

【図2】上記実施の形態に係る、直流電源E1及び直流
電源E2の両方をオンした場合の、スイッチング素子Q
2のゲート・ソース間電圧VGS波形を示す。
FIG. 2 shows a switching element Q according to the embodiment when both the DC power supply E1 and the DC power supply E2 are turned on.
2 shows a gate-source voltage VGS 2 waveform.

【図3】上記実施の形態に係る、直流電源E1及び直流
電源E2の両方をオンした場合の、高周波電源3の回路
効率ηのバリコンVCに対する特性図を示す。
FIG. 3 is a characteristic diagram of the circuit efficiency η of the high-frequency power supply 3 with respect to the variable capacitor VC when both the DC power supply E1 and the DC power supply E2 are turned on according to the embodiment.

【図4】本発明に係る第2の実施の形態の模式的な斜視
図を示す。
FIG. 4 is a schematic perspective view of a second embodiment according to the present invention.

【図5】上記実施の形態に係る、直流電源E1及び直流
電源E2の両方をオンした場合の、回路効率ηのバリコ
ンVCに対する特性図を示す。
FIG. 5 is a characteristic diagram of the circuit efficiency η with respect to the variable capacitor VC when both the DC power supply E1 and the DC power supply E2 are turned on according to the embodiment.

【図6】本発明に係る回路図を示す。FIG. 6 shows a circuit diagram according to the invention.

【図7】本発明に係る従来例の模式的な斜視図を示す。FIG. 7 shows a schematic perspective view of a conventional example according to the present invention.

【図8】上記従来例に係る、直流電源E2のみ投入した
場合の、バリコンVCを変化させた時のゲート・ソース
間電圧VGSの振幅変化の特性図を示す。
FIG. 8 shows a characteristic diagram of an amplitude change of the gate-source voltage VGS when the variable capacitor VC is changed when only the DC power supply E2 is turned on according to the conventional example.

【図9】上記従来例に係る、直流電源E1及び直流電源
E2の両方をオンした場合の、スイッチング素子Q2の
ゲート・ソース間電圧VGS波形図を示す。
FIG. 9 shows a waveform diagram of the gate-source voltage VGS of the switching element Q2 when both the DC power supply E1 and the DC power supply E2 are turned on according to the above-described conventional example.

【図10】上記従来例に係る、直流電源E1及び直流電
源E2の両方をオンした場合の、回路効率ηのバリコン
VCに対する特性図を示す。
FIG. 10 is a characteristic diagram of the circuit efficiency η with respect to the variable capacitor VC when both the DC power supply E1 and the DC power supply E2 are turned on according to the above conventional example.

【符号の説明】[Explanation of symbols]

1 無電極放電灯 3 高周波電源 9 ドライブ装置 n1 1次巻線 n2 2次巻線 Q スイッチング素子 T 駆動トランス VGS 制御電圧 REFERENCE SIGNS LIST 1 electrodeless discharge lamp 3 high frequency power supply 9 drive device n1 primary winding n2 secondary winding Q switching element T drive transformer VGS control voltage

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 直列接続された2つのスイッチング素子
を有し、直流電圧を交流の高周波電圧に変換して負荷に
供給する高周波電源と、1次巻線と2つの前記スイッチ
ング素子の各々の制御端子に直列接続された2つの2次
巻線と1次巻線及び2つの2次巻線が巻かれた磁気コア
とを有する駆動トランスと、前記駆動トランスの1次巻
線に電圧を印加することにより2つの前記スイッチング
素子を駆動するドライブ装置とを備える電源装置におい
て、 前記2次巻線は、前記スイッチング素子のオン時間を小
さくすると共にオン時間を確保する方向に巻くことを特
徴とする電源装置。
1. A high-frequency power supply having two switching elements connected in series, converting a DC voltage into an AC high-frequency voltage and supplying it to a load, and controlling a primary winding and each of the two switching elements. A drive transformer having two secondary windings connected in series to a terminal, a primary winding, and a magnetic core wound with the two secondary windings, and applying a voltage to the primary winding of the drive transformer. And a drive device for driving the two switching elements, wherein the secondary winding is wound in a direction to reduce the on-time of the switching element and secure the on-time. apparatus.
【請求項2】 2つの前記2次巻線は、1ターン毎に等
間隔で巻くことを特徴とする請求項1記載の電源装置。
2. The power supply device according to claim 1, wherein the two secondary windings are wound at equal intervals every turn.
【請求項3】 2つの前記2次巻線は、全ての2次巻線
間を等間隔で巻くことを特徴とする請求項1または請求
項2に記載の電源装置。
3. The power supply device according to claim 1, wherein the two secondary windings are wound at equal intervals between all the secondary windings.
【請求項4】 2つの前記2次巻線は、互いに非接触に
巻くことを特徴とする請求項1乃至請求項3のいずれか
に記載の電源装置。
4. The power supply device according to claim 1, wherein the two secondary windings are wound in a non-contact manner.
【請求項5】 2つの前記2次巻線は、一対にしてバイ
ファイラ巻きすることを特徴とする請求項1乃至請求項
4のいずれかに記載の電源装置。
5. The power supply device according to claim 1, wherein the two secondary windings are paired and bifilar wound.
【請求項6】 前記駆動トランスは、前記1次巻線と前
記2次巻線とを互いに遠ざける方向に巻いたものである
ことを特徴とする請求項1乃至請求項5のいずれかに記
載の電源装置。
6. The drive transformer according to claim 1, wherein the drive transformer is formed by winding the primary winding and the secondary winding in directions away from each other. Power supply.
【請求項7】 前記1次巻線は、少なくとも前記磁気コ
アの内側面側で各ターン毎に密接して巻くことを特徴と
する請求項1乃至請求項6のいずれかに記載の電源装
置。
7. The power supply device according to claim 1, wherein the primary winding is wound closely at each turn at least on an inner surface side of the magnetic core.
【請求項8】 前記磁気コアは、トロイダルコアである
ことを特徴とする請求項1乃至請求項7のいずれかに記
載の電源装置。
8. The power supply device according to claim 1, wherein the magnetic core is a toroidal core.
【請求項9】 前記磁気コアは、カーボニル鉄系コアで
あることを特徴とする請求項1乃至請求項8のいずれか
に記載の電源装置。
9. The power supply device according to claim 1, wherein the magnetic core is a carbonyl iron-based core.
【請求項10】 前記磁気コアは、Ni−Zn系フェラ
イトコアであることを特徴とする請求項1乃至請求項8
のいずれかに記載の電源装置。
10. The magnetic core according to claim 1, wherein the magnetic core is a Ni—Zn ferrite core.
The power supply device according to any one of the above.
【請求項11】 前記ドライブ装置は、前記スイッチン
グ素子を他励駆動するものであることを特徴とする請求
項1記載の電源装置。
11. The power supply device according to claim 1, wherein the drive device separately drives the switching element.
【請求項12】 前記高周波電源は、D級増幅回路であ
ることを特徴とする請求項1記載の電源装置。
12. The power supply according to claim 1, wherein the high-frequency power supply is a class D amplifier circuit.
【請求項13】 前記高周波電源の動作周波数は、0.
5MHz以上であることを特徴とする請求項1または請
求項12に記載の電源装置。
13. The operating frequency of the high-frequency power supply is 0.1.
13. The power supply according to claim 1, wherein the power supply is 5 MHz or more.
【請求項14】 前記負荷は、少なくとも無電極放電灯
を含んでなることを特徴とする請求項1記載の電源装
置。
14. The power supply device according to claim 1, wherein the load includes at least an electrodeless discharge lamp.
JP01369697A 1996-08-27 1997-01-28 Power supply Expired - Fee Related JP3487113B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01369697A JP3487113B2 (en) 1997-01-28 1997-01-28 Power supply
US08/834,826 US5945785A (en) 1996-08-27 1997-04-11 Power source device with minimized variation in circuit efficiency due to variation in applied voltage to driving transformer
CNB971108072A CN1244256C (en) 1996-08-27 1997-04-25 Power source equipment
DE19719168A DE19719168A1 (en) 1996-08-27 1997-05-06 Power supply with high frequency source that converts DC into AC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01369697A JP3487113B2 (en) 1997-01-28 1997-01-28 Power supply

Publications (2)

Publication Number Publication Date
JPH10215583A true JPH10215583A (en) 1998-08-11
JP3487113B2 JP3487113B2 (en) 2004-01-13

Family

ID=11840370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01369697A Expired - Fee Related JP3487113B2 (en) 1996-08-27 1997-01-28 Power supply

Country Status (1)

Country Link
JP (1) JP3487113B2 (en)

Also Published As

Publication number Publication date
JP3487113B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US5387850A (en) Electrodeless discharge lamp containing push-pull class E amplifier
US5200672A (en) Circuit containing symetrically-driven coil for energizing electrodeless lamp
JP2004103316A (en) Discharge lamp lighting device
US5525871A (en) Electrodeless discharge lamp containing push-pull class E amplifier and bifilar coil
JPH059194U (en) Ballast circuit for electrodeless fluorescent lamps
WO2003009649A1 (en) Dielectric barrier discharge lamp operating device
US5945785A (en) Power source device with minimized variation in circuit efficiency due to variation in applied voltage to driving transformer
JP3487113B2 (en) Power supply
JP3487114B2 (en) Power supply
JP3812335B2 (en) Power supply
JPH08223945A (en) Drive circuit of piezoelectric transformer
US6545426B1 (en) Control circuit using piezoelectric ceramic transformer for driving back-light devices
JP2000068086A (en) Electrodeless discharge lamp lighting device
JP3341595B2 (en) Electrodeless discharge lamp lighting device
JP3988341B2 (en) Noble gas fluorescent lamp lighting device
JP3355867B2 (en) Class C amplifier circuit
JP3234361B2 (en) Electrodeless discharge lamp lighting device
Cho et al. A novel average burst-duty control method for the dimming of induction lamps
JP3937780B2 (en) Power supply
Yeon et al. A new dimming algorithm for the electrodeless fluorescent lamps
JP3812336B2 (en) Power supply
JPH07212145A (en) E-class push-pull power amplifier circuit
JP3487112B2 (en) Power supply
JPH06338737A (en) Class 'e' amplifier circuit
JP2833028B2 (en) Electrodeless discharge lamp lighting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees