JPH10215006A - Manufacture of thermoelectric conversion material - Google Patents

Manufacture of thermoelectric conversion material

Info

Publication number
JPH10215006A
JPH10215006A JP9016938A JP1693897A JPH10215006A JP H10215006 A JPH10215006 A JP H10215006A JP 9016938 A JP9016938 A JP 9016938A JP 1693897 A JP1693897 A JP 1693897A JP H10215006 A JPH10215006 A JP H10215006A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
oxygen
carbon
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9016938A
Other languages
Japanese (ja)
Other versions
JP3617229B2 (en
Inventor
Shugo Yamada
周吾 山田
Makoto Soma
誠 相馬
Atsushi Makino
篤 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP01693897A priority Critical patent/JP3617229B2/en
Publication of JPH10215006A publication Critical patent/JPH10215006A/en
Application granted granted Critical
Publication of JP3617229B2 publication Critical patent/JP3617229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the performance index by sufficiently removing oxygen in a sintering process without using reducing gas by providing the removing process, wherein the oxygen, which is bonded to thermoelectric-conversion raw-material powder, or the oxygen between the powders is removed in the sintering process. SOLUTION: Carbon powder 2 dispersed in a molded body 4 reacts with the oxygen in the oxide body of BiTe-based compound in the vicinity, that is to say, the oxygen bonded to thermoelectric-conversion raw-material powder 1, and the oxygen present in the gap between the thermoelectric-conversion raw-material powders 1, respectively. The oxygen is removed as the carbon dioxide. That is to say, the carbon powder 2 reacts with the oxygen in the vicinity at first, and the carbon monoxide is generated. The carbon monoxide is dispersed and penetrated into the molded body 4 and further reacts with the oxygen, and the carbon dioxide is generated. The oxygen, which is bonded to the thermoelectric-conversion raw-material powder 1, or the oxygen in the molded body 4, is removed. Furthermore, the carbon powder 2, which has reacted with the oxygen, becomes the carbon dioxide gas, and the gap is formed at this part. Therefore, the thermal conductivity of the molded body 4 becomes low.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビスマス及びテル
ルを主成分とした熱電変換材料の製造方法に関するもの
である。
The present invention relates to a method for producing a thermoelectric conversion material containing bismuth and tellurium as main components.

【0002】[0002]

【従来の技術】従来、この種の熱電変換材料の製造方法
として、次に説明する従来例が存在する。ビスマス(以
下Bi)及びテルル(以下Te)を主成分とし、他にS
e、Sb及びハロゲン化合物などを添加剤とする成分元
素粉末を混合し石英管などに封入する。次いで、その成
分元素粉末を加熱溶融し反応させた後、一方向凝固させ
て単結晶鋳塊を製造して、その単結晶鋳塊から任意のサ
イズの熱電変換材料を切り出す。
2. Description of the Related Art Conventionally, as a method for producing this kind of thermoelectric conversion material, there is a conventional example described below. Bismuth (hereafter Bi) and tellurium (hereafter Te) are the main components.
e, Sb, and component element powders containing additives such as halogen compounds are mixed and sealed in a quartz tube or the like. Next, the component element powder is heated and melted and reacted, and then unidirectionally solidified to produce a single crystal ingot, and a thermoelectric conversion material of an arbitrary size is cut out from the single crystal ingot.

【0003】また、別の従来例を次に説明する。上述し
た単結晶鋳塊を微粉化することによって熱電変換原料粉
末を形成する微粉化工程と、その熱電変換原料粉末を押
し出し成形して成形体を形成する成形工程と、その成形
体を加熱して焼結する燒結工程とを有している。
[0003] Another conventional example will be described below. A pulverizing step of forming a thermoelectric conversion raw material powder by pulverizing the above-mentioned single crystal ingot, a forming step of extruding the thermoelectric conversion raw material powder to form a formed body, and heating the formed body And a sintering step for sintering.

【0004】ここで、単結晶鋳塊を微粉化して熱電変換
原料粉末を作成するとき、または熱電変換原料粉末間に
酸素が含有された成形体を燒結するとき、熱電変換原料
粉末はBiTe系化合物が酸素と結合し酸化されて導電
性を失い、つまり比抵抗値が増大し後述する熱電変換材
料の性能指数Zが低下する。したがって、酸化を阻止す
る措置がとられ、微粉化された熱電変換原料粉末があら
かじめ水素ガスなどの還元性ガスで還元される。あるい
は、微粉化、成形、及び燒結が不活性雰囲気中、又は水
素ガスや一酸化炭素の還元性ガス雰囲気中で行われる。
[0004] Here, when a single crystal ingot is pulverized to prepare a thermoelectric conversion raw material powder, or when a compact containing oxygen is sintered between the thermoelectric conversion raw material powders, the thermoelectric conversion raw material powder is made of a BiTe-based compound. Is combined with oxygen and oxidized to lose conductivity, that is, the specific resistance increases, and the performance index Z of the thermoelectric conversion material described later decreases. Therefore, measures are taken to prevent oxidation, and the finely divided thermoelectric conversion raw material powder is reduced in advance with a reducing gas such as hydrogen gas. Alternatively, pulverization, molding, and sintering are performed in an inert atmosphere or in a reducing gas atmosphere of hydrogen gas or carbon monoxide.

【0005】ここで、熱電変換材料の性能を評価する尺
度として、性能指数が一般に用いられる。その性能指数
(Z値)はその材料が有するパラメータによって以下の
式で表される。
[0005] Here, a performance index is generally used as a scale for evaluating the performance of a thermoelectric conversion material. The figure of merit (Z value) is represented by the following equation according to the parameters of the material.

【0006】Z=α*α/(ρκ) ここで、αは熱電能、ρは比抵抗値、及びκは熱伝導率
である。本式に示すように、比抵抗値ρが増大すると性
能指数Zが低下する。
Z = α * α / (ρκ) where α is thermoelectric power, ρ is specific resistance, and κ is thermal conductivity. As shown in this equation, as the specific resistance value ρ increases, the figure of merit Z decreases.

【0007】[0007]

【発明が解決しようとする課題】上記した別の従来例の
熱電変換材料の製造方法では、微粉化工程、成形工程及
び燒結工程を経て、生産性が高く、線状の熱電変換材料
を容易に製造することができる。
In the above-mentioned conventional method for producing a thermoelectric conversion material, a high productivity and a linear thermoelectric conversion material can be easily obtained through a pulverization step, a forming step and a sintering step. Can be manufactured.

【0008】しかしながら、熱電変換原料粉末と、すな
わちBiTe系化合物と結合した酸素を、還元性ガスで
もって十分に還元することが困難であって、性能指数の
向上に限界があった。また、不活性雰囲気を維持するた
めの装置が高価であること、大量に消費されるガスのラ
ンニングコストが高いこと、水素ガスや一酸化炭素ガス
などの還元性ガスが爆発危険性や毒性を含んでいるこ
と、といった問題も生じていた。
However, it is difficult to sufficiently reduce the thermoelectric conversion raw material powder, that is, the oxygen combined with the BiTe-based compound, with a reducing gas, and there is a limit in improving the performance index. In addition, the equipment for maintaining the inert atmosphere is expensive, the running cost of gas consumed in large quantities is high, and reducing gases such as hydrogen gas and carbon monoxide gas contain explosion hazard and toxicity. There was also the problem of being out.

【0009】本発明は、上記事由に鑑みてなしたもの
で、その目的とするところは、熱電変換原料粉末と結合
した酸素を、又は粉末間の酸素を還元性ガスを使用する
ことなく燒結工程で十分に除去して、性能指数を向上で
きる熱電変換材料の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sintering process in which oxygen combined with thermoelectric conversion raw material powder or oxygen between powders is used without using a reducing gas. The present invention provides a method for producing a thermoelectric conversion material that can be sufficiently removed by the method described above to improve the figure of merit.

【0010】[0010]

【課題を解決するための手段】上記した課題を解決する
ために、請求項1記載の熱電変換材料の製造方法は、少
なくともビスマス及びテルルの元素を含有した熱電変換
原料粉末を加圧成形して成形体を形成する成形工程と、
成形体を加熱して焼結する燒結工程とを有した熱電変換
材料の製造方法において、前記成形工程は、前記熱電変
換原料粉末と結合した酸素、又はその粉末間の酸素を燒
結工程で除去する除去手段が設けられた構成にしてあ
る。
According to a first aspect of the present invention, there is provided a method for producing a thermoelectric conversion material, comprising: forming a thermoelectric conversion raw material powder containing at least bismuth and tellurium elements under pressure; A molding step of forming a molded body,
A sintering step of heating and sintering the formed body, wherein the forming step removes oxygen combined with the thermoelectric conversion raw material powder or oxygen between the powders in the sintering step. The configuration is such that a removing means is provided.

【0011】請求項2記載の熱電変換材料の製造方法
は、請求項1記載の製造方法において、前記除去手段
は、前記酸素と反応する炭素でもって形成された構成に
してある。
According to a second aspect of the present invention, there is provided a method for producing a thermoelectric conversion material, wherein the removing means is formed of carbon which reacts with the oxygen.

【0012】請求項3記載の熱電変換材料の製造方法
は、請求項2記載の製造方法において、前記除去手段
は、前記熱電変換原料粉末とともに混合され成形された
0.1乃至0.5重量%の炭素粉末でもって形成された
構成にしてある。
According to a third aspect of the present invention, there is provided a method for producing a thermoelectric conversion material according to the second aspect, wherein the removing means comprises 0.1 to 0.5% by weight mixed and molded with the thermoelectric conversion raw material powder. Of carbon powder.

【0013】請求項4記載の熱電変換材料の製造方法
は、請求項2記載の製造方法において、前記成形工程
は、前記熱電変換原料粉末が内部に密閉充填された長尺
状の金属ビュレットを押し出して加圧成形するものであ
って、前記除去手段は金属ビュレットの内周壁に設けら
れた炭素層でもって形成された構成にしてある。
According to a fourth aspect of the present invention, in the manufacturing method of the second aspect, the molding step includes extruding a long metal buret in which the thermoelectric conversion raw material powder is hermetically sealed. And the pressure removing means, wherein the removing means is formed of a carbon layer provided on the inner peripheral wall of the metal buret.

【0014】請求項5記載の熱電変換材料の製造方法
は、請求項4記載の製造方法において、前記成形工程
は、前記金属ビュレットの長手方向に対する直交方向へ
沿って別の炭素層が複数設けられるとともに、前記除去
手段は前記炭素層及び別の炭素層でもって形成された構
成にしてある。
According to a fifth aspect of the present invention, in the manufacturing method of the fourth aspect, in the forming step, a plurality of different carbon layers are provided along a direction perpendicular to a longitudinal direction of the metal buret. At the same time, the removing means is formed of the carbon layer and another carbon layer.

【0015】[0015]

【発明の実施の形態】本発明の第1実施形態を図1及び
図2に基づいて以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS.

【0016】先ず、微粉化工程において、それぞれ純度
が99.999%以上で、全体に対して80重量%のB
i2Te3、及び20重量%のSb2Te3に、SbI3か
らなる添加剤を約0.09重量%添加し、パイレックス
ガラス管(図示せず)内に真空封入する。そして、溶解
したのち一方向凝固し、導電型がN型の半導体である単
結晶鋳塊を作成し、その単結晶鋳塊をボールミルで平均
粒径50μmとなるまで粉砕して、熱電変換原料粉末1
を形成する。
First, in the pulverization step, the purity of each is 99.999% or more, and 80% by weight of B
About 0.09% by weight of an additive consisting of SbI3 is added to i2Te3 and 20% by weight of Sb2Te3, and the mixture is vacuum-sealed in a Pyrex glass tube (not shown). Then, after melting, the solid is unidirectionally solidified to form a single crystal ingot having a semiconductor of an N-type conductivity, and the single crystal ingot is pulverized by a ball mill until the average particle diameter becomes 50 μm, and the thermoelectric conversion raw material powder is obtained. 1
To form

【0017】次いで、混合工程において、炭素粉末2が
カーボンブラックにより、粒径10乃至50μmの粉末
状に形成され、全体の粉体重量に対して0.1重量%に
なるよう、熱電変換原料粉末1に添加混合される。金属
ビュレット3は、アルミニウム合金により、直径67m
m、長さ275mmの有底円筒状で長尺状に形成され、
直径23mmで長さ200mmの有底穴が設けられ、熱
電変換原料粉末1及び炭素粉末2がその有底穴に充填さ
れる。
Next, in the mixing step, the carbon powder 2 is formed into a powder having a particle size of 10 to 50 μm with carbon black, and the thermoelectric conversion raw material powder is adjusted to 0.1% by weight with respect to the total powder weight. Add to 1 and mix. The metal buret 3 is made of aluminum alloy and has a diameter of 67 m.
m, is formed in a cylindrical shape with a bottom and a length of 275 mm in length,
A bottomed hole having a diameter of 23 mm and a length of 200 mm is provided, and the bottomed hole is filled with the thermoelectric conversion raw material powder 1 and the carbon powder 2.

【0018】次いで、成形工程において、金属ビュレッ
ト3を密閉し熱電変換原料粉末1及び炭素粉末2を内部
に密閉充填し、400℃に加熱し金属ビュレット3のア
ルミニウム合金に適度な軟性を持たせ、800MPaの
圧力で直接押し出し法により押し出して、線形状に加圧
成形されたBiTe系の成形体4を形成する。
Next, in the forming step, the metal buret 3 is sealed, the thermoelectric conversion raw material powder 1 and the carbon powder 2 are hermetically filled therein, and heated to 400 ° C. to give the aluminum alloy of the metal buret 3 a moderate softness. Extrusion is performed by a direct extrusion method at a pressure of 800 MPa to form a BiTe-based molded body 4 that is linearly molded under pressure.

【0019】次いで、燒結工程において、金属ビュレッ
ト3の両端部を切削により取り除き、アルミニウム外周
部31を残した状態で、成形体4を600℃で24時
間、不活性雰囲気中で加熱して焼結する。室温まで冷却
した後、アルミニウム外周部31を切削により取り除
き、内部の成形体4を取り出して熱電変換材料を得た。
Next, in the sintering step, the molded body 4 is heated at 600 ° C. for 24 hours in an inert atmosphere and sintered in a state where the both ends of the metal buret 3 are removed by cutting and the aluminum outer peripheral portion 31 is left. I do. After cooling to room temperature, the aluminum outer peripheral portion 31 was removed by cutting, and the internal molded body 4 was taken out to obtain a thermoelectric conversion material.

【0020】ここで、成形体4に分散した炭素粉末2が
近傍のBiTe系化合物の酸化体中の酸素、すなわち熱
電変換原料粉末1と結合した酸素と、及び熱電変換原料
粉末1間の空隙に存在する酸素とそれぞれ反応して、そ
の酸素を二酸化炭素として除去する。つまり、炭素粉末
2が酸素の除去手段を形成する。詳述すると、炭素粉末
2がまず近傍の酸素と反応して一酸化炭素を発生し、そ
の一酸化炭素が成形体4中に拡散して浸透し、さらに酸
素と反応して二酸化炭素を生成し、熱電変換原料粉末1
と結合した酸素、又は成形体4中の酸素を除去する。ま
た、酸素と反応した炭素粉末2が二酸化炭素ガスになっ
て、そこに空隙を生じるので、成形体4の熱伝導率が低
くなる。
Here, the carbon powder 2 dispersed in the compact 4 contains oxygen in the neighboring BiTe-based compound oxidant, that is, oxygen combined with the thermoelectric conversion raw material powder 1, and voids between the thermoelectric conversion raw material powder 1. Each reacts with the oxygen present and removes the oxygen as carbon dioxide. That is, the carbon powder 2 forms a means for removing oxygen. More specifically, the carbon powder 2 first reacts with oxygen in the vicinity to generate carbon monoxide, and the carbon monoxide diffuses and penetrates into the compact 4 and further reacts with oxygen to generate carbon dioxide. , Thermoelectric conversion raw material powder 1
And the oxygen in the compact 4 is removed. In addition, since the carbon powder 2 that has reacted with oxygen becomes carbon dioxide gas and produces voids therein, the thermal conductivity of the molded body 4 decreases.

【0021】炭素粉末2は、全体の粉体重量に対して
0.1乃至0.5重量%が適正範囲であり、0.1重量
%未満では、熱電変換原料粉末1と結合した酸素、又は
成形体4中の酸素を燒結工程で除去する除去能力が低く
なり、また、0.5重量%を越えると空隙が多くなって
材料強度が劣化する。
The carbon powder 2 has a proper range of 0.1 to 0.5% by weight based on the total powder weight, and if less than 0.1% by weight, oxygen combined with the thermoelectric conversion raw material powder 1 or The ability to remove oxygen in the compact 4 in the sintering step is reduced, and if it exceeds 0.5% by weight, voids are increased and the material strength is reduced.

【0022】燒結された成形体4は、酸素含有率及び比
抵抗値が測定される。ここで、酸素含有率はパーキンエ
ルマー社製全自動元素分析装置2400IICHNS/O
型を用いて測定し、また比抵抗値は山崎精機研究所製Y
MR3型を用いて、線状の成形体4の長手方向へ沿って
通電することによって測定した。測定結果は、酸素含有
率が0.023重量%、比抵抗値が1.2μΩmであっ
た。また、熱電変換原料粉末1の酸素含有率は0.11
重量%であった。
The sintered compact 4 is measured for oxygen content and specific resistance. Here, the oxygen content was measured by a PerkinElmer full-automatic element analyzer 2400IICHNS / O.
Is measured using a mold.
The measurement was performed by applying an electric current along the longitudinal direction of the linear molded body 4 using the MR3 type. As a result of the measurement, the oxygen content was 0.023% by weight, and the specific resistance was 1.2 μΩm. The oxygen content of the thermoelectric conversion raw material powder 1 was 0.11.
% By weight.

【0023】比較例を図9及び図10に基づいて以下に
説明する。比較例では、炭素粉末2を混合せずに熱電変
換原料粉末1を加圧成形して成形体4を形成し、アルミ
ニウム外周部31を切削し、水素雰囲気中で焼結した以
外は第1実施形態と同一である。得られた熱電変換材料
の測定結果は、酸素含有率が0.026重量%、比抵抗
値が1.2μΩmであった。酸素含有率は熱電変換原料
粉末1よりも低く、酸素の除去が行われているものの、
第1実施形態と比較すると高い。すなわち、第1実施形
態における酸素含有率は、比較例よりも低く良好な値で
あって、熱電変換原料粉末1と結合した酸素、及び成形
体4中の酸素が十分に除去されていることがわかる。
A comparative example will be described below with reference to FIGS. 9 and 10. In the comparative example, the thermoelectric conversion raw material powder 1 was press-formed without mixing the carbon powder 2 to form a compact 4, and the aluminum outer peripheral portion 31 was cut and sintered in a hydrogen atmosphere. Same as the form. As a result of the measurement of the obtained thermoelectric conversion material, the oxygen content was 0.026% by weight, and the specific resistance was 1.2 μΩm. Although the oxygen content is lower than that of the thermoelectric conversion raw material powder 1 and oxygen is removed,
This is higher than the first embodiment. That is, the oxygen content in the first embodiment is lower than that of the comparative example and is a good value, and the oxygen combined with the thermoelectric conversion raw material powder 1 and the oxygen in the compact 4 are sufficiently removed. Recognize.

【0024】かかる第1実施形態の熱電変換材料の製造
方法にあっては、上記したように、熱電変換原料粉末1
と結合した酸素、及びその熱電変換原料粉末1間の酸素
を除去する除去手段が成形工程に設けられたから、成形
工程につづく焼結工程で、除去手段が酸化したビスマス
及びテルルの酸素を除去し還元して、及び粉末間の酸素
が除去されるのでビスマス及びテルルの新規酸化を阻止
して、従来のように爆発危険性のある還元性ガスを使用
することなく、比抵抗値を減少せしめ性能指数を向上し
た熱電変換材料を安定して製造することができる。
In the method of manufacturing a thermoelectric conversion material according to the first embodiment, as described above, the thermoelectric conversion raw material powder 1 is used.
In the forming step, a removing means for removing oxygen combined with oxygen and the oxygen between the thermoelectric conversion raw material powders 1 is provided. In the sintering step following the forming step, the removing means removes oxidized bismuth and oxygen of tellurium. Reduction and removal of oxygen between powders prevent new oxidation of bismuth and tellurium, and reduce specific resistance without using explosive reducing gas as in the past. A thermoelectric conversion material with an improved index can be stably manufactured.

【0025】また、除去手段が炭素でもって形成された
から、炭素がビスマス及びテルルと結合した酸素と反応
し還元して、及び熱電変換原料粉末1間の酸素と反応し
て、炭素が比較的安価な原料であるので、コスト的に有
利な熱電変換材料を製造することができる。
Further, since the removing means is formed of carbon, carbon reacts with oxygen bonded to bismuth and tellurium to reduce and reacts with oxygen between the thermoelectric conversion raw material powders 1 so that carbon is relatively inexpensive. Since it is a raw material, it is possible to produce a thermoelectric conversion material that is advantageous in cost.

【0026】また、除去手段が熱電変換原料粉末1とと
もに混合され成形された炭素粉末2でもって形成され、
かつ炭素の組成範囲が0.1乃至0.5重量%で適正範
囲に選択されたたから、成形体4中に分散した炭素粉末
2が燒結工程で酸素と反応し除去されて空隙を生じ、そ
の空隙が成形体4の熱伝導率を低下せしめて、熱電変換
材料の性能指数をさらに向上することができる。
Further, the removing means is formed by the carbon powder 2 mixed and molded with the thermoelectric conversion raw material powder 1,
In addition, since the composition range of carbon was selected to be an appropriate range of 0.1 to 0.5% by weight, the carbon powder 2 dispersed in the compact 4 reacts with oxygen in the sintering step and is removed to form voids. The voids lower the thermal conductivity of the molded body 4 and can further improve the figure of merit of the thermoelectric conversion material.

【0027】なお、第1実施形態では、酸素と反応する
炭素粉末2をカーボンブラックとしたが、グラファイト
又は活性炭でもよく限定されない。
In the first embodiment, the carbon powder 2 which reacts with oxygen is carbon black. However, graphite or activated carbon is not limited.

【0028】また、第1実施形態では、燒結工程で酸素
を除去する除去手段を炭素でもって形成したが、ビスマ
ス及びテルルよりも酸素と親和力が強くそのビスマス及
びテルルと結合した酸素を還元する元素でもって、除去
手段を形成してもよく限定されない。
Further, in the first embodiment, the removing means for removing oxygen in the sintering step is formed by using carbon. However, an element which has a higher affinity for oxygen than bismuth and tellurium and reduces oxygen combined with bismuth and tellurium is used. Thus, the removing means may be formed without limitation.

【0029】また、第1実施形態では、炭素粉末2が熱
電変換原料粉末1と結合した酸素、及びその粉末間の酸
素の両方を燒結工程で除去したが、いづれか一方を除去
してもよく限定されない。
Further, in the first embodiment, both the oxygen combined with the thermoelectric conversion raw material powder 1 and the oxygen between the carbon powder 2 are removed in the sintering step, but either one may be removed. Not done.

【0030】本発明の第2実施形態を図3乃び図4に基
づいて以下に説明する。なお、第2実施形態では第1実
施形態と異なる製造方法について述べることとし、第1
実施形態と実質的に同一機能を有する部材については、
同一符号を付して説明を省略する。
A second embodiment of the present invention will be described below with reference to FIGS. In the second embodiment, a manufacturing method different from that of the first embodiment will be described.
For members having substantially the same function as the embodiment,
The same reference numerals are given and the description is omitted.

【0031】成形工程において、炭素粉末2を混合せず
に熱電変換原料粉末1のみを加圧成形して成形体4を形
成する。炭素層21は、グラファイトにより、厚さが
1.5mmに形成され、金属ビュレット3の内周壁に設
けられて除去手段を形成する。成形工程において、熱電
変換原料粉末1が充填された金属ビュレット3を押し出
して加圧成形し、外周部に炭素層21を被覆した成形体
4を形成する。その成形体4を焼結した後、アルミニウ
ム外周部31と炭素層21とを取り除いて熱電変換材料
を得る。
In the compacting step, only the thermoelectric conversion raw material powder 1 is compacted without mixing the carbon powder 2 to form a compact 4. The carbon layer 21 is formed of graphite to a thickness of 1.5 mm, and is provided on the inner peripheral wall of the metal buret 3 to form a removing unit. In the forming step, the metal burette 3 filled with the thermoelectric conversion raw material powder 1 is extruded and pressed to form a formed body 4 having an outer peripheral portion covered with a carbon layer 21. After sintering the molded body 4, the aluminum outer peripheral portion 31 and the carbon layer 21 are removed to obtain a thermoelectric conversion material.

【0032】得られた熱電変換材料の測定結果は、酸素
含有率が0.012重量%、比抵抗値が1.1μΩmで
あった。酸素含有率及び比抵抗値は、いづれも比較例よ
りも低く良好な値であって、熱電変換原料粉末1と結合
した酸素、及び成形体4中の酸素が十分に除去されてい
ることがわかる。
As a result of the measurement of the obtained thermoelectric conversion material, the oxygen content was 0.012% by weight and the specific resistance was 1.1 μΩm. The oxygen content and the specific resistance were both lower than the comparative example and were good values, indicating that oxygen combined with the thermoelectric conversion raw material powder 1 and oxygen in the compact 4 were sufficiently removed. .

【0033】かかる第2実施形態の熱電変換材料の製造
方法にあっては、上記したように、除去手段が金属ビュ
レット3の内周壁に設けられた炭素層21で形成された
から、炭素層21が酸素を成形体4の外周部から順次除
去して、成形体4が空隙を生じることなく焼結されて、
熱電変換材料の強度を向上することができる。
In the method for manufacturing a thermoelectric conversion material according to the second embodiment, since the removing means is formed by the carbon layer 21 provided on the inner peripheral wall of the metal burette 3 as described above, the carbon layer 21 Oxygen is sequentially removed from the outer peripheral portion of the molded body 4 so that the molded body 4 is sintered without forming a void,
The strength of the thermoelectric conversion material can be improved.

【0034】本発明の第3実施形態を図5及び図6に基
づいて以下に説明する。なお、第3実施形態では第2実
施形態と異なる製造方法について述べることとし、第2
実施形態と実質的に同一機能を有する部材については、
同一符号を付して説明を省略する。
A third embodiment of the present invention will be described below with reference to FIGS. In the third embodiment, a manufacturing method different from that of the second embodiment will be described.
For members having substantially the same function as the embodiment,
The same reference numerals are given and the description is omitted.

【0035】成形工程において、別の炭素層22は、グ
ラファイトにより、厚さが3mmで外径が金属ビュレッ
ト3の内径と同一で板状に形成され、金属ビュレット3
の長手方向に対する直交方向へ沿って複数設けられる。
すなわち、熱電変換原料粉末50gに対して1枚の割合
で交互に充填されて、熱電変換原料粉末1を直交方向へ
貫通し、炭素層21とともに除去手段を形成する。
In the forming step, another carbon layer 22 is formed of graphite into a plate shape having a thickness of 3 mm and an outer diameter equal to the inner diameter of the metal burette 3.
Are provided in a direction orthogonal to the longitudinal direction of the plurality.
That is, the powder is alternately filled at a rate of 50 g of the thermoelectric conversion raw material powder, penetrates the thermoelectric conversion raw material powder 1 in the orthogonal direction, and forms a removing unit together with the carbon layer 21.

【0036】得られた熱電変換材料の測定結果は、酸素
含有率が0.007重量%、比抵抗値が0.8μΩmで
あった。酸素含有率及び比抵抗値は、いづれも比較例よ
りも大幅に低く良好な値であって、熱電変換原料粉末1
と結合した酸素、及び成形体4中の酸素が十分に除去さ
れていることがわかる。
As a result of the measurement of the obtained thermoelectric conversion material, the oxygen content was 0.007% by weight and the specific resistance was 0.8 μΩm. The oxygen content and the specific resistance were all significantly lower than those of the comparative example and were good values.
It can be seen that the oxygen combined with and the oxygen in the compact 4 were sufficiently removed.

【0037】かかる第3実施形態の熱電変換材料の製造
方法にあっては、上記したように、除去手段が炭素層2
1及び複数の別の炭素層22でもって形成されたから、
別の炭素層22が金属ビュレット3の長手方向に対する
直交方向へ沿って設けられ、すなわち充填された熱電変
換原料粉末1を貫通して、成形体4の内部に位置した酸
素を除去することができる。
In the method for manufacturing a thermoelectric conversion material according to the third embodiment, as described above, the removing means is used for removing the carbon layer 2.
Since it was formed with one and a plurality of different carbon layers 22,
Another carbon layer 22 is provided along the direction perpendicular to the longitudinal direction of the metal burette 3, that is, it can penetrate the filled thermoelectric conversion raw material powder 1 to remove oxygen located inside the molded body 4. .

【0038】本発明の第4実施形態を図7及び図8に基
づいて以下に説明する。なお、第3実施形態では第1実
施形態と異なる機能について述べることとし、第1実施
形態と実質的に同一機能を有する部材については、同一
符号を付して説明を省略する。
A fourth embodiment of the present invention will be described below with reference to FIGS. In the third embodiment, functions different from those in the first embodiment will be described, and members having substantially the same functions as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

【0039】成形工程において、炭素粉末2を混合せず
に熱電変換原料粉末1のみを加圧成形して成形体4を形
成する。また、グラファイトからなる別の炭素層22
は、板状で厚さが3mmで外径が金属ビュレット3の内
径と同一に形成され、金属ビュレット3の長手方向に対
する直交方向へ沿って複数設けられる。すなわち、熱電
変換原料粉末50gに対して1枚の割合で交互に充填さ
れて、熱電変換原料粉末1を直交方向へ貫通して、除去
手段を形成する。
In the molding step, only the thermoelectric conversion raw material powder 1 is molded under pressure without mixing the carbon powder 2 to form a molded body 4. Further, another carbon layer 22 made of graphite is used.
The metal buret 3 is formed in a plate shape, the thickness is 3 mm, and the outer diameter is formed to be the same as the inner diameter of the metal buret 3. That is, the powder is alternately filled at a rate of one sheet per 50 g of the thermoelectric conversion raw material powder, penetrates the thermoelectric conversion raw material powder 1 in the orthogonal direction, and forms a removing means.

【0040】得られた熱電変換材料の測定結果は、酸素
含有率が0.01重量%、比抵抗値が0.9μΩmであ
った。酸素含有率及び比抵抗値は、いづれも比較例より
も低く良好な値であって、熱電変換原料粉末1と結合し
た酸素、及び成形体4中の酸素が十分に除去されている
ことがわかる。
As a result of the measurement of the obtained thermoelectric conversion material, the oxygen content was 0.01% by weight and the specific resistance was 0.9 μΩm. The oxygen content and the specific resistance were both lower than the comparative example and were good values, indicating that oxygen combined with the thermoelectric conversion raw material powder 1 and oxygen in the compact 4 were sufficiently removed. .

【0041】[0041]

【発明の効果】請求項1記載の熱電変換材料の製造方法
は、熱電変換原料粉末と結合した酸素、又はその熱電変
換原料粉末間の酸素を除去する除去手段が成形工程に設
けられたから、成形工程につづく焼結工程で、除去手段
が酸化したビスマス及びテルルの酸素を除去し還元し
て、又は粉末間の酸素が除去されるのでビスマス及びテ
ルルの新規酸化を阻止して、従来のように爆発危険性の
ある還元性ガスを使用することなく、比抵抗値を減少せ
しめ性能指数を向上した熱電変換材料を安定して製造す
ることができる。
According to the method for producing a thermoelectric conversion material according to the first aspect of the present invention, the removing step for removing oxygen combined with the thermoelectric conversion raw material powder or oxygen between the thermoelectric conversion raw material powder is provided in the molding step. In the sintering step following the step, the removing means removes and reduces the oxygen of the oxidized bismuth and tellurium, or prevents the new oxidation of bismuth and tellurium as the oxygen between the powders is removed. A thermoelectric conversion material having a reduced specific resistance value and an improved figure of merit can be stably manufactured without using a reducing gas having a risk of explosion.

【0042】請求項2記載の熱電変換材料の製造方法
は、請求項1記載の製造方法の効果に加えて、除去手段
が炭素でもって形成されたから、炭素がビスマス及びテ
ルルと結合した酸素と反応し還元して、又は熱電変換原
料粉末間の酸素と反応して、炭素が比較的安価な原料で
あるので、コスト的に有利な熱電変換材料を製造するこ
とができる。
In the method for producing a thermoelectric conversion material according to the second aspect, in addition to the effect of the production method according to the first aspect, since the removing means is formed of carbon, the carbon reacts with oxygen bonded to bismuth and tellurium. Since carbon is a relatively inexpensive raw material by reducing and reducing or reacting with oxygen between thermoelectric conversion raw material powders, a thermoelectric conversion material which is advantageous in cost can be produced.

【0043】請求項3記載の熱電変換材料の製造方法
は、請求項2記載の製造方法の効果に加えて、除去手段
が熱電変換原料粉末とともに混合され成形された炭素粉
末でもって形成され、かつ炭素の組成範囲が0.1乃至
0.5重量%で適正範囲に選択されたたから、成形体中
に分散した炭素粉末が燒結工程で酸素と反応し除去され
て空隙を生じ、その空隙が成形体の熱伝導率を低下せし
めて、熱電変換材料の性能指数をさらに向上することが
できる。
According to a third aspect of the present invention, in addition to the effect of the second aspect, the removing means is formed of carbon powder mixed and molded with the thermoelectric conversion raw material powder, and Since the composition range of carbon was selected in an appropriate range from 0.1 to 0.5% by weight, the carbon powder dispersed in the molded body reacted with oxygen in the sintering step and was removed to form voids. By lowering the thermal conductivity of the body, the figure of merit of the thermoelectric conversion material can be further improved.

【0044】請求項4記載の熱電変換材料の製造方法
は、請求項2記載の製造方法の効果に加えて、成形工程
が熱電変換原料粉末を充填した長尺状の金属ビュレット
を、押し出して成形するものであれば、除去手段が金属
ビュレットの内周壁に設けられた炭素層で形成されたか
ら、炭素層が酸素を成形体の外周部から順次除去して、
成形体が空隙を生じることなく焼結されて、熱電変換材
料の強度を向上することができる。
According to a fourth aspect of the present invention, in addition to the effect of the second aspect, the molding step comprises extruding a long metal burette filled with the thermoelectric conversion raw material powder. If it does, since the removing means is formed of a carbon layer provided on the inner peripheral wall of the metal buret, the carbon layer sequentially removes oxygen from the outer peripheral portion of the molded body,
The molded body is sintered without generating voids, and the strength of the thermoelectric conversion material can be improved.

【0045】請求項5記載の熱電変換材料の製造方法
は、請求項4記載の製造方法の効果に加えて、除去手段
が炭素層及び複数の別の炭素層でもって形成されたか
ら、別の炭素層が金属ビュレットの長手方向に対する直
交方向へ沿って設けられ、すなわち、充填された熱電変
換原料粉末を貫通して、成形体の内部にわたって酸素を
除去することができる。
According to a fifth aspect of the present invention, in addition to the effect of the fourth aspect, the removing means is formed of a carbon layer and a plurality of other carbon layers. A layer is provided along a direction perpendicular to the longitudinal direction of the metal buret, that is, oxygen can be removed through the filled thermoelectric conversion raw material powder and throughout the inside of the molded body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す熱電変換原料粉末
及び炭素粉末が充填された金属ビュレットの断面図であ
る。
FIG. 1 is a cross-sectional view of a metal buret filled with a thermoelectric conversion raw material powder and a carbon powder according to a first embodiment of the present invention.

【図2】同上の焼結された成形体の断面図である。FIG. 2 is a cross-sectional view of the same sintered compact.

【図3】本発明の第2実施形態を示す熱電変換原料粉末
が充填された金属ビュレットの断面図である。
FIG. 3 is a cross-sectional view of a metal buret filled with thermoelectric conversion raw material powder according to a second embodiment of the present invention.

【図4】同上の焼結された成形体の断面図である。FIG. 4 is a cross-sectional view of the same sintered compact.

【図5】本発明の第3実施形態を示す熱電変換原料粉末
が充填された金属ビュレットの断面図である。
FIG. 5 is a cross-sectional view of a metal buret filled with thermoelectric conversion raw material powder according to a third embodiment of the present invention.

【図6】同上の焼結された成形体の断面図である。FIG. 6 is a cross-sectional view of the same sintered compact.

【図7】本発明の第4実施形態を示す熱電変換原料粉末
が充填された金属ビュレットの断面図である。
FIG. 7 is a cross-sectional view of a metal buret filled with thermoelectric conversion raw material powder according to a fourth embodiment of the present invention.

【図8】同上の焼結された成形体の断面図である。FIG. 8 is a sectional view of the sintered compact according to the first embodiment.

【図9】従来例を示す熱電変換原料粉末が充填された金
属ビュレットの断面図である。
FIG. 9 is a cross-sectional view of a metal buret filled with thermoelectric conversion raw material powder, showing a conventional example.

【図10】同上の焼結された成形体の断面図である。FIG. 10 is a cross-sectional view of the same sintered body.

【符号の説明】[Explanation of symbols]

1 熱電変換原料粉末 2 炭素粉末(除去手段) 21 炭素層(除去手段) 22 別の炭素層(除去手段) 3 金属ビュレット DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion raw material powder 2 Carbon powder (removal means) 21 Carbon layer (removal means) 22 Another carbon layer (removal means) 3 Metal buret

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくともビスマス及びテルルの元素を
含有した熱電変換原料粉末を加圧成形して成形体を形成
する成形工程と、成形体を加熱して焼結する燒結工程と
を有した熱電変換材料の製造方法において、 前記成形工程は、前記熱電変換原料粉末と結合した酸
素、又はその粉末間の酸素を燒結工程で除去する除去手
段が設けられたことを特徴とする熱電変換材料の製造方
法。
1. A thermoelectric conversion method comprising: a forming step of forming a compact by pressing a thermoelectric conversion raw material powder containing at least bismuth and tellurium elements; and a sintering step of heating and sintering the compact. In the method for producing a material, a method for producing the thermoelectric conversion material, further comprising: removing means for removing oxygen bonded to the thermoelectric conversion raw material powder or oxygen between the powder in the sintering step. .
【請求項2】 前記除去手段は、前記酸素と反応する炭
素でもって形成されたことを特徴とする請求項1記載の
熱電変換材料の製造方法。
2. The method for producing a thermoelectric conversion material according to claim 1, wherein said removing means is formed of carbon reacting with said oxygen.
【請求項3】 前記除去手段は、前記熱電変換原料粉末
とともに混合され成形された0.1乃至0.5重量%の
炭素粉末でもって形成されたことを特徴とする請求項2
記載の熱電変換材料の製造方法。
3. The method according to claim 2, wherein the removing means is formed of 0.1 to 0.5% by weight of carbon powder mixed and molded with the thermoelectric conversion raw material powder.
A method for producing the thermoelectric conversion material according to the above.
【請求項4】 前記成形工程は、前記熱電変換原料粉末
が内部に密閉充填された長尺状の金属ビュレットを押し
出して加圧成形するものであって、前記除去手段は金属
ビュレットの内周壁に設けられた炭素層でもって形成さ
れたことを特徴とする請求項2記載の熱電変換材料の製
造方法。
4. The molding step includes extruding a long metal burette in which the thermoelectric conversion raw material powder is hermetically sealed and press-molding the metal buret, and the removing means is provided on an inner peripheral wall of the metal buret. 3. The method for producing a thermoelectric conversion material according to claim 2, wherein the method is formed with the provided carbon layer.
【請求項5】 前記成形工程は、前記金属ビュレットの
長手方向に対する直交方向へ沿って別の炭素層が複数設
けられるとともに、前記除去手段は前記炭素層及び別の
炭素層でもって形成されたことを特徴とする請求項4記
載の熱電変換材料の製造方法。
5. In the forming step, a plurality of different carbon layers are provided along a direction perpendicular to a longitudinal direction of the metal buret, and the removing unit is formed of the carbon layer and another carbon layer. The method for producing a thermoelectric conversion material according to claim 4, wherein:
JP01693897A 1997-01-30 1997-01-30 Method for producing thermoelectric conversion material Expired - Fee Related JP3617229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01693897A JP3617229B2 (en) 1997-01-30 1997-01-30 Method for producing thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01693897A JP3617229B2 (en) 1997-01-30 1997-01-30 Method for producing thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JPH10215006A true JPH10215006A (en) 1998-08-11
JP3617229B2 JP3617229B2 (en) 2005-02-02

Family

ID=11930073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01693897A Expired - Fee Related JP3617229B2 (en) 1997-01-30 1997-01-30 Method for producing thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP3617229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478391B1 (en) * 1999-06-25 2005-03-23 마츠시다 덴코 가부시키가이샤 Method of producing sintered body of material for thermoelectric element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478391B1 (en) * 1999-06-25 2005-03-23 마츠시다 덴코 가부시키가이샤 Method of producing sintered body of material for thermoelectric element

Also Published As

Publication number Publication date
JP3617229B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
WO2010116679A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
JP6411782B2 (en) Method for manufacturing thermoelectric material
JP3949848B2 (en) Method for producing scutteldite thermoelectric material
US3385677A (en) Sintered composition material
US3560170A (en) Rod-shaped multilayer semifinished material and a process and an apparatus for manufacturing such material
US5889220A (en) Copper-tungsten alloys and their manufacturing methods
US3182391A (en) Process of preparing thermoelectric elements
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
US4988386A (en) Copper-tungsten metal mixture and process
JPH10215006A (en) Manufacture of thermoelectric conversion material
CN107326250A (en) The supper-fast method for preparing high-performance ZrNiSn block thermoelectric materials of one step
JP3580778B2 (en) Thermoelectric conversion element and method of manufacturing the same
US4056365A (en) Silver electrical contact materials and method of making
KR101417965B1 (en) GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JPH08186294A (en) Thermoelectric material
JPH09260728A (en) High-temperature thermoelectric material and manufacture thereof
JP3528222B2 (en) P-type thermoelectric material and alloy for P-type thermoelectric material
KR101323321B1 (en) MnTe thermoelectric material doped with Sb and manufacturing method thereby
JP2811454B2 (en) Copper-tungsten mixed sintered body and method for producing the same
US2901442A (en) Resistors and resistor materials
JPH09289339A (en) Thermoelectric transducer material and manufacture thereof
JP2689448B2 (en) Thermal battery
JP2002232024A (en) Method for manufacturing thermoelectric element
JP2005259869A (en) Method for manufacturing thermoelectric material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees