JPH10214637A - Hydride secondary battery and its manufacture - Google Patents

Hydride secondary battery and its manufacture

Info

Publication number
JPH10214637A
JPH10214637A JP9018105A JP1810597A JPH10214637A JP H10214637 A JPH10214637 A JP H10214637A JP 9018105 A JP9018105 A JP 9018105A JP 1810597 A JP1810597 A JP 1810597A JP H10214637 A JPH10214637 A JP H10214637A
Authority
JP
Japan
Prior art keywords
battery
electrode body
electrode
nickel hydroxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9018105A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukunaga
浩 福永
Shoichiro Tateishi
昭一郎 立石
Hiromi Tamakoshi
博美 玉腰
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP9018105A priority Critical patent/JPH10214637A/en
Publication of JPH10214637A publication Critical patent/JPH10214637A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydride secondary battery which brings about a high capacity, and sufficiently copes with downsizing of the battery in the hydride secondary battery formed by containing an electrode body which is made by spirally winding a positive electrode using paste type hydroxide as an active material and a negative electrode composed of a hydrogen storage alloy via a separator in a battery can. SOLUTION: An electrode body 4, which is made by sprially winding a positive electrode 1 using nickel hydroxide as an active material and a negative electrode 2 composed of a hydrogen storage alloy via a separator 3, is contained in a battery can 5, an electrolyte composed of alkaline aqueous solution is filled thereinto, and the same is sealed by a sealing body equipped with a reversible vent so as to form a hydride secondary battery. Therein, the nickel hydroxide is powder, its particle size is 2 to 40μm, and its average particle diameter is 8±2μm. In the powder particles of average particle diameter or more are spherical, and 95 percentage by weigh or more of the particles of less than average particle diameter are also spherical. The winding center 4a of the electrode body 4 and the center 5a of the battery can 5 are dislocated mutually.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ペ─スト式水酸化
ニツケルを活物質とする正極と水素吸蔵合金よりなる負
極をセパレ―タを介して渦巻状に巻回した電極体を電池
缶に収容してなる水素化物二次電池とその製造方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a battery can in which a positive electrode having a paste type nickel hydroxide as an active material and a negative electrode made of a hydrogen storage alloy are spirally wound through a separator to a battery can. The present invention relates to a hydride secondary battery housed therein and a method for producing the same.

【0002】[0002]

【従来の技術】正極と負極をセパレ―タを介して渦巻状
に巻回した電極体は、巻回構造のために正負両極の対向
面積を大きく確保でき、負荷特性が良いことから、ニツ
ケル−水素吸蔵合金電池、ニツケル−カドミウム電池、
リチウム二次電池などに広く用いられている。これらの
中でも、ニツケル−水素吸蔵合金電池は、アルカリ水溶
液中でも電気化学的に多量の水素の吸蔵、放出を行え、
また正極のニツケル極として、導電性多孔基材に水酸化
ニツケルを主体とする活物質スラリ─を担持させた、い
わゆるペ─スト式水酸化ニツケルを活物質としたものを
用いると、高容量化や低価格化を期待できるため、とく
に注目されている。。
2. Description of the Related Art An electrode body in which a positive electrode and a negative electrode are spirally wound via a separator can secure a large opposing area between the positive and negative electrodes due to the wound structure, and has good load characteristics. Hydrogen storage alloy batteries, nickel-cadmium batteries,
Widely used for lithium secondary batteries and the like. Among these, the nickel-hydrogen storage alloy battery is capable of electrochemically storing and releasing a large amount of hydrogen even in an alkaline aqueous solution,
When the nickel electrode of the positive electrode is made of a so-called paste type nickel hydroxide as an active material, in which an active material slurry mainly composed of nickel hydroxide is supported on a conductive porous substrate, the capacity is increased. It is especially noted because it can be expected to have lower prices. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、最近で
は、電池を使用する機器が小型化し、それに伴つて電池
も小型化が求められている。電極の単位体積あたりに流
す電流規格値を一定にしつつ、小型化に要請に対応する
ため、電極体を収容する電池缶の内径を小さくしていく
と、電極体の巻き数が少なくなる。その結果、電極体の
巻き数を任意に設定できず、使用機器の電流値に適した
巻き数を採用できなくなつたり、電極体の断面形状がい
びつになつて電極体と電池缶との缶の空隙が大きくな
り、電池容量の向上を達成できなくなるという問題があ
つた。
However, recently, devices using batteries have been downsized, and accordingly, batteries have been required to be downsized. In order to meet the demand for miniaturization while keeping the standard value of the current flowing per unit volume of the electrode constant, the number of turns of the electrode body decreases as the inner diameter of the battery can housing the electrode body decreases. As a result, the number of turns of the electrode body cannot be set arbitrarily, and the number of turns suitable for the current value of the equipment to be used cannot be adopted. However, there is a problem that the gap of the battery becomes large and it is impossible to achieve an improvement in battery capacity.

【0004】たとえば、後記の比較例1に示すように、
厚さが0.15mmのセパレ―タ、負極ならびにその負極
に対して体積比で2.1倍の活物質量を持つ正極を用い
て、直径2.5mmの巻回軸にセパレ―タ、負極、セパレ
―タ、正極の順にそれらの部材を2〜3回巻いて、最外
周部が負極で巻き終わる巻回構造の電極体を作製し、こ
の電極体を、巻回軸を抜き取つたのちに、その巻回中心
と電池缶の中心をそろえて、内径が9.4mmの電池缶に
収容する場合を想定する。この場合、負極の厚さを0.
25mm、正極の厚さを0.43mmとして、正極の巻き数
が2.75回のときに、電極体と電池缶との間の空隙が
最も小さくなるが、この電極構成では、電池容量が不足
し、高容量化を望むことは難しい。
For example, as shown in Comparative Example 1 below,
Using a separator having a thickness of 0.15 mm, a negative electrode, and a positive electrode having an active material amount 2.1 times the volume ratio of the negative electrode, the separator and the negative electrode are wound on a winding shaft having a diameter of 2.5 mm. , A separator and a positive electrode, in order, to form an electrode body having a wound structure in which the outermost portion is wound around the negative electrode by winding the member two to three times. Next, it is assumed that the winding center and the center of the battery can are aligned and the battery can is housed in a battery can having an inner diameter of 9.4 mm. In this case, the thickness of the negative electrode is set to 0.1.
When the number of turns of the positive electrode is 2.75, the gap between the electrode body and the battery can is the smallest when the thickness of the positive electrode is 25 mm and the thickness of the positive electrode is 0.43 mm. It is difficult to increase the capacity.

【0005】上記より少ない巻回数となると、電極体と
電池缶との間の空隙が大きくなり、電極面積が少なくな
つて電極の単位面積あたりの電流値が大きくなり、負荷
特性が悪くなる。負荷特性を良くするため、電極体を薄
くして巻回数を増やすと、電池反応に関与しないセパレ
―タが多くなり、電池容量が低下する。つまり、電極体
の巻き数が少ない場合には、電池缶に収容する際に、上
記巻き数を使用機器の電流値に適したものに設定するこ
とが難しいという問題がある。また、電極体の巻き数が
少ないほど、電極体の断面形状が円形からずれたいびつ
な形状となり、電池缶に収容したときに、電極体と電池
缶との間の空隙が大きくなり、電流容量の向上をはかる
上で問題となるのである。
[0005] If the number of turns is smaller than the above, the gap between the electrode body and the battery can becomes large, and as the electrode area decreases, the current value per unit area of the electrode increases, and the load characteristics deteriorate. If the electrode body is thinned and the number of windings is increased to improve the load characteristics, the number of separators not involved in the battery reaction increases, and the battery capacity decreases. That is, when the number of turns of the electrode body is small, there is a problem that it is difficult to set the number of turns to a value suitable for the current value of the device to be used when the electrode body is accommodated in the battery can. Also, as the number of turns of the electrode body is smaller, the cross-sectional shape of the electrode body becomes a distorted shape that deviates from a circle. This is a problem when trying to improve the quality.

【0006】本発明は、上記従来の事情にてらして、ニ
ツケル−水素吸蔵合金電池として、とくにペ─スト式水
酸化ニツケルを活物質とする正極と水素吸蔵合金よりな
る負極をセパレ―タを介して渦巻状に巻回した電極体を
電池缶に収容してなる水素化物二次電池において、その
高容量化をはかり、電池の小型化に十分に対応できる上
記水素化物二次電池を提供することを目的としている。
In view of the above circumstances, the present invention provides a nickel-hydrogen storage alloy battery in which a positive electrode using a paste-type nickel hydroxide as an active material and a negative electrode made of a hydrogen storage alloy are interposed through a separator. To provide a hydride secondary battery in which a spirally wound electrode body is accommodated in a battery can to increase the capacity and sufficiently cope with the miniaturization of the battery. It is an object.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的に対して、鋭意検討した結果、電池の小型化に対応し
て巻き数を少なくし、これに伴い断面形状が円形からず
れていびつになつた電極体を電池缶に収容するにあた
り、上記電極体の巻回中心と電極缶の中心をずらして収
容すると、電極体と電池缶との缶の空隙が減少して、電
池の高容量化に大きく寄与できるものであることを知つ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above objects, and as a result, have reduced the number of windings in accordance with the miniaturization of the battery, and the cross-sectional shape has shifted from a circular shape. When accommodating the distorted electrode body in the battery can, if the winding center of the electrode body and the center of the electrode can are accommodated in a displaced manner, the gap between the electrode body and the battery can is reduced, and the battery can I learned that it can greatly contribute to high capacity.

【0008】一方、電極体を構成する正極は、導電性多
孔基材に水酸化ニツケルを主体とする活物質スラリ─を
充填し、乾燥したのち、圧縮成形して、シ―ト状物とし
たものであるが、従来の上記水酸化ニツケルは通常数μ
m〜数10μm程度の粒子径を有して、粒度分布の幅が
広く、しかも、粒子径の大きなものは球状であるが、小
さなものはダンゴ状のいびつな形状を有している。この
ため、上記の圧縮成形時に上記基材に密に詰まりやす
く、これが成形正極の外力に対する耐衝撃性や耐変形性
を損なう結果となり、巻回構造の電極体を作製する際
に、巻回時に割れやちぎれなどの不良を起こしやすく、
この問題は前記した巻き数が少なくていびつな断面形状
となりやすい電極体にとくに顕著となる。
On the other hand, the positive electrode constituting the electrode body is obtained by filling a conductive porous base material with an active material slurry mainly composed of nickel hydroxide, drying, and compression molding to obtain a sheet-like material. However, the conventional nickel hydroxide is usually several μm.
It has a particle diameter of about m to several tens of μm, has a wide particle size distribution, and a particle having a large particle diameter is spherical, while a small particle has a distorted dango-like shape. For this reason, the above-mentioned base material tends to be densely clogged at the time of the above-mentioned compression molding, and this results in impairing the impact resistance and deformation resistance against external force of the molded positive electrode.When producing an electrode body having a wound structure, It is easy to cause defects such as cracks and tears,
This problem is particularly remarkable in an electrode body having a small number of turns and easily forming an irregular cross section.

【0009】ところで、本発明者らは、先の研究におい
て、硫酸ニツケル水溶液に水酸化ナトリウムを加えて水
酸化ニツケルの沈殿物とし、これを水洗、乾燥して水酸
化ニツケル粉末を製造するにあたり、反応、水洗、乾
燥、粉砕などの諸条件を適宜選択すると、粒度分布が狭
くてかつ粒子径の小さいものまで球状を呈する真球に近
い水酸化ニツケル粉末が得られることを見い出してい
る。
By the way, in the previous study, the present inventors added nickel hydroxide to an aqueous solution of nickel sulfate to form a precipitate of nickel hydroxide, and washed and dried it to produce nickel hydroxide powder. It has been found that by appropriately selecting various conditions such as reaction, washing, drying and pulverization, it is possible to obtain a nickel hydroxide powder having a narrow particle size distribution and a spherical shape up to a small particle diameter, which is almost spherical.

【0010】本発明者らは、この特定性状の水酸化ニツ
ケル粉末を正極構成用の水酸化ニツケルとして用いる
と、圧縮成形時に上記の水酸化ニツケル粉末が動きやす
く、また球であるために粉同士の接触抵抗がダンゴ状で
いびつなものより少ないことから、圧縮されにくいとい
う特徴があり、その結果、成形正極の外力に対する耐衝
撃性や耐変形性が向上し、巻回構造の電極体の作製に際
し、巻回時に割れやちぎれなどの不良を起こしにくくな
ることを知つた。
The inventors of the present invention use nickel hydroxide powder of this specific property as a nickel hydroxide for forming a positive electrode, the nickel hydroxide powder is easy to move at the time of compression molding, and the powders are spheres. Has a characteristic that it is difficult to be compressed because the contact resistance of the molded positive electrode is less than that of a dangling and distorted one. As a result, the impact resistance and deformation resistance of the molded positive electrode against external force are improved, and the production of a wound electrode body is achieved. On the other hand, it has been found that defects such as cracks and tears are less likely to occur during winding.

【0011】また、このように圧縮されにくいというこ
とは、正極の空孔が減少せず、電池の高容量化という面
で本来不利となるものと思われたが、上記特定性状の水
酸化ニツケル粉末が、従来の水酸化ニツケルに比べてす
ぐれた利用率を示し、これが電池の高容量化に大きく貢
献する結果、電極体の巻回中心と電極缶の中心をずらこ
とによる電極体と電池缶との間の空隙の減少効果と相ま
つて、非常に高容量の水素化物二次電池の製造を可能と
することを見い出した。
[0011] Further, the fact that it is difficult to be compressed is considered that the pores of the positive electrode do not decrease and this is originally disadvantageous in terms of increasing the capacity of the battery. The powder shows an excellent utilization rate compared to the conventional nickel hydroxide, which greatly contributes to increasing the capacity of the battery.As a result, the center of the electrode body and the center of the electrode can are shifted from the electrode body to the battery can. It has been found that a very high capacity hydride rechargeable battery can be manufactured in combination with the effect of reducing the gap between the battery and the battery.

【0012】本発明の第一は、上記の知見に基づいて完
成されたものであり、水酸化ニツケルを活物質とする正
極と水素吸蔵合金よりなる負極をセパレ―タを介して渦
巻状に巻回した電極体を電池缶に収容し、かつアルカリ
水溶液よりなる電解液を注入し、可逆ベントを持つ封止
体により密閉した水素化物二次電池において、上記の水
酸化ニツケルは粒度が2〜40μm、平均粒径が8±2
μmの粉末で、この粉末は平均粒径以上の粒子が球状で
かつ平均粒径以下の粒子の95重量%以上も球状であ
り、かつ上記の電極体の巻回中心と電池缶の中心とがず
れていることを特徴とする水素化物二次電池(請求項1
〜7)に係るものである。
A first aspect of the present invention has been completed based on the above findings, and comprises a positive electrode using nickel hydroxide as an active material and a negative electrode made of a hydrogen storage alloy, which are spirally wound through a separator. In the hydride secondary battery in which the turned electrode body is accommodated in a battery can and an electrolyte solution composed of an alkaline aqueous solution is injected and sealed with a sealing body having a reversible vent, the nickel hydroxide has a particle size of 2 to 40 μm. , Average particle size is 8 ± 2
The powder having a mean particle diameter of at least 95% by weight of particles having an average particle diameter of at least 95% by weight is spherical. A hydride secondary battery (claim 1)
To 7).

【0013】また、本発明の第二は、水酸化ニツケルを
活物質とする正極と水素吸蔵合金よりなる負極をセパレ
―タを介して渦巻状に巻回した電極体を電池缶に収容
し、かつアルカリ水溶液よりなる電解液を注入し、可逆
ベントを持つ封止体により密閉した水素化物二次電池の
製造方法において、上記の水酸化ニツケルとして、粒度
が2〜40μm、平均粒径が8±2μmであつて、平均
粒径以上の粒子が球状でかつ平均粒径以下の粒子の95
重量%以上も球状である粉末を使用し、この水酸化ニツ
ケル粉末を含むペ─ストを導電性多孔基材に担持させ、
乾燥したのち、圧縮成形して、正極を作製し、この正極
と水素吸蔵合金よりなる負極をセパレ―タを介して渦巻
状に巻回した電極体を、その巻回中心と電池缶の中心と
がずれるように、電池缶に収容することを特徴とする水
素化物二次電池の製造方法(請求項8,9)に係るもの
である。
A second aspect of the present invention is that an electrode body in which a positive electrode using nickel hydroxide as an active material and a negative electrode made of a hydrogen storage alloy are spirally wound via a separator is housed in a battery can. In addition, in the method for producing a hydride secondary battery in which an electrolytic solution composed of an alkaline aqueous solution is injected and sealed with a sealed body having a reversible vent, the nickel hydroxide has a particle size of 2 to 40 μm and an average particle size of 8 ± 2 μm, particles having an average particle size or more are spherical and particles having an average particle size
Using a powder that is spherical in weight percent or more, a paste containing the nickel hydroxide powder is supported on a conductive porous substrate,
After drying, compression molding is performed to produce a positive electrode, and the electrode body obtained by spirally winding this positive electrode and a negative electrode made of a hydrogen storage alloy via a separator is placed between the winding center and the center of the battery can. The present invention relates to a method for manufacturing a hydride secondary battery, wherein the battery is housed in a battery can so that the battery is shifted.

【0014】[0014]

【発明の実施の形態】本発明に用いられる水酸化ニツケ
ルは、マイクロトラツプ法により測定される粒度が2〜
40μm、平均粒径が8±2μmの粉末であつて、この
粉末はSEM(走査型電子顕微鏡)による観察で平均粒
径以上の粒子が球状でかつ平均粒径以下の粒子の95重
量%以上も球状である、つまり、従来のものに比べて、
粒度分布の幅が狭くて均一な粒子からなり、かつ粒径の
大きいものだけでなく粒径の小さい粒子までもが球状で
あることを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Nickel hydroxide used in the present invention has a particle size of 2 to 2 as measured by a microtrap method.
40 μm, powder having an average particle size of 8 ± 2 μm, and this powder was observed by SEM (scanning electron microscope), where particles having an average particle size of more than 95% by weight were spherical and particles having an average particle size of not more than 95% by weight. It is spherical, that is, compared to the conventional one,
It is characterized in that it is composed of uniform particles having a narrow particle size distribution, and that not only particles having a large particle size but also particles having a small particle size are spherical.

【0015】従来のように小さい粒子が均一な球状とな
らずダンゴ状となる水酸化ニツケル粉末では、結晶性が
低いため、電気化学的反応の効率が悪くなり、そのぶん
正極の利用率が低くなる。これに対して、本発明の上記
水酸化ニツケル粉末は結晶性が高く、電気化学的反応の
効率が良くなり、正極の利用率が向上するとともに、粒
度分布が狭いため、上記反応が各粒子で均一に起こりや
すく、これも利用率の向上や長寿命化に寄与しているも
のと考えられる。
[0015] Nickel hydroxide powder in which small particles are not spherical and dango-shaped as in the prior art has low crystallinity, so that the efficiency of the electrochemical reaction is reduced and the utilization rate of the positive electrode is reduced. Become. On the other hand, the nickel hydroxide powder of the present invention has high crystallinity, improves the efficiency of the electrochemical reaction, improves the utilization rate of the positive electrode, and has a narrow particle size distribution. It is likely to occur uniformly, which is also considered to have contributed to the improvement of the utilization rate and the extension of the service life.

【0016】本発明の水酸化ニツケル粉末は、以下のよ
うに調製できる。まず、ニツケルを含む水溶液に通常コ
バルトや亜鉛を溶解させた硫酸溶液を混合した液とアル
カリ水溶液とアンモニウムイオン供給体を、同時にかつ
連続的に供給して、ニツケルイオン濃度が40mg/リツ
トル以下の反応液とし、これを5〜20℃に保持し、水
酸化ナトリウムを加えてpHを9〜12とし、撹拌しな
がら12時間以上熟成し、その間のpHを9〜12に維
持する。つぎに、水酸化ニツケルの沈澱物を吸引ろ過
し、水洗後、80〜120℃で乾燥すると、本発明の水
酸化ニツケル粉末が得られる。この方法は、従来の調製
方法と比べ、低温(5〜20℃)で水酸化ニツケルを調
製している点で、大きく異なつている。
The nickel hydroxide powder of the present invention can be prepared as follows. First, a solution obtained by mixing a sulfuric acid solution obtained by dissolving cobalt or zinc in an aqueous solution containing nickel, an alkaline aqueous solution and an ammonium ion donor are simultaneously and continuously supplied so that a nickel ion concentration of 40 mg / liter or less is obtained. The solution is maintained at 5 to 20 ° C., and the pH is adjusted to 9 to 12 by adding sodium hydroxide. The mixture is aged for 12 hours or more with stirring, and the pH is maintained at 9 to 12 during the aging. Next, the nickel hydroxide precipitate is filtered by suction, washed with water and dried at 80 to 120 ° C. to obtain the nickel hydroxide powder of the present invention. This method is significantly different from the conventional preparation method in that nickel hydroxide is prepared at a low temperature (5 to 20 ° C.).

【0017】このように調製される水酸化ニツケル粉末
は、BET吸着法により測定される細孔半径が従来の水
酸化ニツケル粉末と同じ7〜8Åにピ─クを有するとと
もに、5〜6Åの範囲にもピ─クを有するという特異な
性状を示し、通常、7〜8Åのピ―クの強度(la)と
上記の5〜6Åのピ―クの強度(lb)との比(la:
lb)が100:50以上となるものである。
The nickel hydroxide powder thus prepared has a pore radius measured by the BET adsorption method of 7 to 8 ° which is the same as that of the conventional nickel hydroxide powder, and is in the range of 5 to 6 °. Also, it has a peculiar property that it has a peak, and usually, the ratio (la :) of the peak intensity (la) of 7 to 8 mm to the peak intensity (lb) of 5 to 6 mm described above.
lb) is 100: 50 or more.

【0018】また、通常は、BET吸着法により測定さ
れる比表面積が5〜20m2/g、BET吸着法により測
定される細孔容積が0.015〜0.030cc/g、平
均細孔半径が25〜50Åの範囲に入つている。BET
吸着法により測定される比表面積は、窒素吸着法(ユア
サアイオニクス、オ─トソ─プ1)で1〜100Å、試
料1g、測定時間127分、吸着側での測定値である。
Usually, the specific surface area measured by the BET adsorption method is 5 to 20 m 2 / g, the pore volume measured by the BET adsorption method is 0.015 to 0.030 cc / g, and the average pore radius is Is in the range of 25 to 50 °. BET
The specific surface area measured by the adsorption method is a value measured on the adsorption side in a nitrogen adsorption method (Yuasa Ionics, Otosop 1) at 1 to 100 ° C, 1 g of sample, 127 minutes of measurement time.

【0019】本発明において、正極は、上記の水酸化ニ
ツケル粉末とカルボキシメチルセルロ―ス、ポリテトラ
フルオロエチレンなどのバインダとを混練し、このペ─
ストをニツケル発泡体などの導電性多孔基材に担持さ
せ、乾燥したのち、圧縮成形することにより、作製され
る。その際、ペ―ストに導電助剤として平均粒径1.5
μm以下のコバルト粉末を含ませてもよく、この場合、
圧縮成形後にアルカリ水溶液中に浸漬する工程を付加す
るのが望ましい。コバルト粉末のほか、ニツケル粉末や
コバルト化合物などの他の導電助剤を含ませてもよい。
In the present invention, the positive electrode is prepared by kneading the above-mentioned nickel hydroxide powder with a binder such as carboxymethyl cellulose or polytetrafluoroethylene.
It is produced by supporting a strike on a conductive porous base material such as a nickel foam, drying, and compression molding. At that time, the paste has a mean particle size of 1.5 as a conductive aid.
μm or less of cobalt powder may be included. In this case,
It is desirable to add a step of dipping in an aqueous alkali solution after compression molding. In addition to the cobalt powder, other conductive aids such as nickel powder and a cobalt compound may be included.

【0020】このように作製されるペ─スト式水酸化ニ
ツケルを活物質とする正極に対し、水素吸蔵合金よりな
る負極を用い、この正負両極をナイロン不織布などのセ
パレ―タを介して渦巻状に巻回して、巻回構造の電極体
とする。その際、電池の小型化に対応した正極厚さとそ
の巻き数が選択されるが、このような電極体の作製時に
上記正極に割れやちぎれなどの不良を生じる心配はとく
にない。
A negative electrode made of a hydrogen-absorbing alloy is used for the positive electrode made of the paste-type nickel hydroxide as an active material, and the positive and negative electrodes are spirally wound through a separator such as a nonwoven fabric of nylon. To form a wound electrode body. At this time, the thickness of the positive electrode and the number of windings thereof are selected in accordance with the miniaturization of the battery. However, there is no particular concern that the positive electrode will have a defect such as cracking or tearing when producing such an electrode body.

【0021】本発明においては、上記巻回構造の電極体
を、その巻回中心と電池缶の中心とがずれるように、電
池缶に収容するとともに、電解液として水酸化ナトリウ
ムや水酸化カリウムなどの水溶液にLiOHなどの電解
質を溶解させたアルカリ水溶液を注入し、常法に準じて
可逆ベントを持つ封止体により密閉封止することによ
り、目的とする水素化物二次電池を得ることができる。
In the present invention, the wound electrode body is accommodated in a battery can so that the center of the wound and the center of the battery can are displaced from each other. The desired hydride secondary battery can be obtained by injecting an alkaline aqueous solution in which an electrolyte such as LiOH is dissolved into an aqueous solution of, and hermetically sealing with a sealing body having a reversible vent according to a conventional method. .

【0022】本発明において、上記電極体の巻回中心と
電池缶の中心とのずれ距離は、電池缶の内径の4%以上
であることが望ましい。このようなずれ距離に設定する
と、電極体がその少ない巻き数などによつて断面形状が
円形からずれていても、このずれが吸収されやすくな
り、電極体と電池缶との缶の空隙が小さいものとなる。
しかし、上記ずれ距離があまりに大きくなりすぎると、
電極体と電池缶との缶の空隙が却つて大きくなる傾向が
あるため、上記ずれ距離としては、電池缶の内径の4%
以上で9%以下であるのが望ましい。
In the present invention, the offset distance between the winding center of the electrode body and the center of the battery can is preferably at least 4% of the inner diameter of the battery can. When such a shift distance is set, even if the cross-sectional shape of the electrode body is deviated from the circular shape due to a small number of windings or the like, this shift is easily absorbed, and the gap between the electrode body and the battery can is small. It will be.
However, if the deviation distance is too large,
Since the gap between the electrode body and the battery can tends to be rather large, the deviation distance is set to 4% of the inner diameter of the battery can.
It is desirable that the above is 9% or less.

【0023】また、本発明においては、上記電極体の断
面形状が円形からずれるのをできるだけ抑制するため
に、上記電極体の断面の径が最も大きくなる方向、すな
わち、上記電極体の巻き終わり部分が存在する方向を可
及的に径小化することにより、電極体の最短径と最長径
との比を1に近づけ、電極体の断面形状ができるだけ円
形に近づくようにしておくのが好ましい。
Further, in the present invention, in order to suppress the cross-sectional shape of the electrode body from being deviated from a circle as much as possible, the direction in which the cross-sectional diameter of the electrode body becomes the largest, that is, the winding end portion of the electrode body It is preferred that the ratio of the shortest diameter to the longest diameter of the electrode body be close to 1 by reducing the diameter of the direction in which is present as much as possible, so that the cross-sectional shape of the electrode body is as circular as possible.

【0024】具体的には、正極または負極の一部に厚み
の薄い部分を設け、この厚みの薄い部分を電極体の巻き
終わり部分が存在する方向のどこかに配置することによ
り、電極体の断面の最短径と最長径との比を1に近づけ
ることができる。上記の正極または負極の一部に厚みの
薄い部分を設けるには、各極を成形する際に用いる基材
の一部を薄くし、これに活物質が充填されないように工
夫すればよい。また、電極体の中心部における空洞部の
断面の径が最も長くなる方向と電極体の巻き終わり部分
が存在する方向を一致させないことにより、電極体の断
面の最短径と最長径との比を1に近づけるようにしても
よい。
More specifically, a thin portion is provided in a part of the positive electrode or the negative electrode, and the thin portion is arranged somewhere in the direction in which the winding end portion of the electrode body exists. The ratio between the shortest diameter and the longest diameter of the cross section can be made closer to 1. In order to provide a thin portion in a part of the positive electrode or the negative electrode, a part of the base material used for forming each electrode may be thinned so that the active material is not filled therein. In addition, by not matching the direction in which the diameter of the cross section of the cavity at the center of the electrode body becomes the longest and the direction in which the winding end portion of the electrode body exists, the ratio between the shortest diameter and the longest diameter of the cross section of the electrode body is reduced. You may make it approach 1.

【0025】負極に用いる水素吸蔵合金としては、Mm
(La,Ce,Nd,Pr)−Ni系、Ti−Ni系、
Ti−NiZr(Ti2-x Zrx 4-y Niy 1-z
z系(x=0〜1.5、y=0.6〜3.5、z=
0.2以下)、Ti−Mn系、Zr−Mn系などの各種
合金が挙げられる。これらの水素吸蔵合金は、通常は、
カルボキシメチルロ─ス、ポリテトラフルオロエチレン
などのバインダと混練してペ─ストとされ、これをニツ
ケル発泡体基材などに担持させ、乾燥したのち、圧縮成
形することにより、シ―ト状に成形される。
The hydrogen storage alloy used for the negative electrode is Mm
(La, Ce, Nd, Pr) -Ni-based, Ti-Ni-based,
Ti-NiZr (Ti 2-x Zr x V 4-y Ni y) 1-z C
r z system (x = 0 to 1.5, y = 0.6 to 3.5, z =
0.2 or less), various alloys such as Ti-Mn-based and Zr-Mn-based alloys. These hydrogen storage alloys are usually
The paste is kneaded with a binder such as carboxymethyl rose or polytetrafluoroethylene to form a paste. The paste is supported on a nickel foam base material, dried, and then compression-molded to form a sheet. Molded.

【0026】[0026]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。以下において、部とあるのは重量部を
意味する。また、実施例1,2で用いたタイプA,Bの
水酸化ニツケル粉末は、下記の合成例1,2で得たもの
である。
Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means “parts by weight”. The nickel hydroxide powders of types A and B used in Examples 1 and 2 were obtained in Synthesis Examples 1 and 2 below.

【0027】<合成例1>硫酸ニツケル50重量%の水
溶液10Kgと、コバルト2g、亜鉛4gをそれぞれ溶解
させた硫酸溶液5Kgと、25重量%の水酸化ナトリウム
水溶液と、7重量%のアンモニア水溶液とを、同時にか
つ連続的に供給し、反応液内のニツケルイオン濃度を4
0mg/リツトル以下に調整した。この混合溶液を10〜
15℃に保持し、pH9〜12になるように調整した。
得られた水酸化ニツケルの沈澱物を吸引ろ過し、水洗
後、90〜95℃で乾燥して、コバルトと亜鉛が水酸化
ニツケルの内部に均一に固溶した水酸化ニツケル粉末
(タイプA)を得た。
<Synthesis Example 1> 10 kg of an aqueous solution containing 50% by weight of nickel sulfate, 5 kg of a sulfuric acid solution in which 2 g of cobalt and 4 g of zinc were dissolved, an aqueous solution of 25% by weight of sodium hydroxide, and an aqueous solution of 7% by weight of ammonia At the same time and continuously to reduce the nickel ion concentration in the reaction solution to 4
Adjusted to 0 mg / litre or less. This mixed solution is
It was kept at 15 ° C. and adjusted to pH 9-12.
The obtained nickel hydroxide precipitate is filtered by suction, washed with water, and dried at 90 to 95 ° C. to obtain a nickel hydroxide powder (type A) in which cobalt and zinc are uniformly dissolved in the nickel hydroxide. Obtained.

【0028】このタイプAの水酸化ニツケル粉末は、I
CP法(発光分光分析法、日本ジヤ─レル・アツシユI
CP727、シングルモ─ド)による測定で、コバルト
含有量が1重量%、亜鉛含有量が2重量%であつた。こ
の水酸化ニツケル粉末について、SEM(倍率1,00
0倍)により観察した結果は、図1に示されるとおりで
あり、平均粒径以上の粒子が球状でかつ平均粒径以下の
粒子の95重量%以上も球状であつた。
This type A nickel hydroxide powder is
CP method (emission spectroscopy, Nippon Jarrell Atsushi I
CP727, single mode), the cobalt content was 1% by weight and the zinc content was 2% by weight. This nickel hydroxide powder was subjected to SEM (magnification: 1,000
The result of observation by (0 ×) is as shown in FIG. 1, where particles having an average particle size or more were spherical and 95% by weight or more of the particles having an average particle size or less were spherical.

【0029】また、マイクロトラツプ法により粒度分布
を調べた結果は、図4に示されるとおりであり、粒度が
2〜40μm、平均粒径が9.2μmであつた。さら
に、BET吸着法により細孔半径を測定した結果は、図
7の曲線−7aに示されるとおりであり、7〜8Åのピ
─クのほかに、5〜6Åにもピ─クを有し、7〜8Åの
ピ─クの強度(la)と5〜6Åのピ─クの強度(l
b)の比(la:lb)は100:83であつた。ま
た、BET吸着法による比表面積は5m2/g、細孔容積
は0.015cc/g、平均細孔半径は25Åであつた。
FIG. 4 shows the result of examining the particle size distribution by the microtrap method. The particle size was 2 to 40 μm, and the average particle size was 9.2 μm. Further, the result of the measurement of the pore radius by the BET adsorption method is as shown by a curve -7a in FIG. 7, and in addition to the peak at 7 to 8 °, the peak also exists at 5 to 6 °. , 7-8 peak intensity (la) and 5-6 peak intensity (l)
The ratio (la: lb) of b) was 100: 83. The specific surface area by the BET adsorption method was 5 m 2 / g, the pore volume was 0.015 cc / g, and the average pore radius was 25 °.

【0030】<合成例2>コバルトを2g、亜鉛を10
gとした以外は、合成例1と同様にして、水酸化ニツケ
ル粉末(タイプB)を得た。ICP法による測定で、コ
バルト含有量は1重量%、亜鉛含有量は5重量%であつ
た。この水酸化ニツケル粉末について、SEM(倍率
1,000倍)により観察した結果は、図2に示される
とおりであり、平均粒径以上の粒子が球状でかつ平均粒
径以下の粒子の95重量%以上も球状であつた。
<Synthesis Example 2> 2 g of cobalt and 10 g of zinc
A nickel hydroxide powder (type B) was obtained in the same manner as in Synthesis Example 1 except that g was used. The cobalt content was 1% by weight and the zinc content was 5% by weight as determined by ICP method. The result of observation of the nickel hydroxide powder by SEM (1,000-fold magnification) is as shown in FIG. 2, where 95% by weight of the particles having an average particle size or more are spherical and the particles having an average particle size or less are spherical. The above was also spherical.

【0031】また、マイクロトラツプ法により粒度分布
を調べた結果は、図5に示されるとおりであり、粒度が
2〜40μm、平均粒径が7.2μmであつた。さら
に、BET吸着法により細孔半径を測定した結果は、図
7の曲線−7bに示されるとおりであり、7〜8Åのピ
─クのほかに、5〜6Åにもピ─クを有し、7〜8Åの
ピ─クの強度(la)と5〜6Åのピ─クの強度(l
b)の比(la:lb)は100:70であつた。ま
た、BET吸着法による比表面積は20m2/g、細孔容
積は0.030cc/g、平均細孔半径は50Åであつ
た。
The result of examining the particle size distribution by the microtrap method is as shown in FIG. 5, and the particle size was 2 to 40 μm and the average particle size was 7.2 μm. Further, the result of measuring the pore radius by the BET adsorption method is as shown by a curve -7b in FIG. 7, and in addition to the peak at 7 to 8 °, the peak also exists at 5 to 6 °. , 7-8 peak intensity (la) and 5-6 peak intensity (l)
The ratio (la: lb) of b) was 100: 70. Further, the specific surface area by the BET adsorption method was 20 m 2 / g, the pore volume was 0.030 cc / g, and the average pore radius was 50 °.

【0032】実施例1 市販のMm(La、Ce、Nd、Pr)、Ni、Co、
Mn、AlおよびMo(いずれも純度99.9重量%以
上)の各試料を、Mm(La:0.32原子%、Ce:
0.48原子%、Nd:0.15原子%、Pr:0.0
4原子%)、Ni:3.55原子%、Co:0.75原
子%、Mn:0.4原子%、Al:0.3原子%、M
o:0.04原子%の組成になるように、高周波溶解炉
によつて加熱溶解し、水素吸蔵合金を得た。この合金を
耐圧容器中で10-4Torrまで真空引きを行い、アル
ゴンガスで3回パ─ジを行つたのち、水素圧力14Kg/
cm2で24時間保持し、水素を排気し、さらに400℃
で加熱し、水素を完全に放出することにより、20〜1
00μmの粉末を得た。
Example 1 Commercially available Mm (La, Ce, Nd, Pr), Ni, Co,
Each sample of Mn, Al, and Mo (all with a purity of 99.9% by weight or more) was subjected to Mm (La: 0.32 atomic%, Ce:
0.48 atomic%, Nd: 0.15 atomic%, Pr: 0.0
4 atomic%), Ni: 3.55 atomic%, Co: 0.75 atomic%, Mn: 0.4 atomic%, Al: 0.3 atomic%, M
o: The composition was heated and melted in a high-frequency melting furnace so as to have a composition of 0.04 atomic% to obtain a hydrogen storage alloy. This alloy is evacuated to 10 −4 Torr in a pressure vessel, purged with argon gas three times, and then subjected to a hydrogen pressure of 14 kg / g.
cm 2 for 24 hours, evacuated hydrogen, and further heated to 400 ° C.
To release hydrogen completely, so that 20 to 1
A powder of 00 μm was obtained.

【0033】この合金粉末100部に、3重量%のカル
ボキシメチルセルロ─ス水溶液50部、60重量%のポ
リテトラフルオロエチレン(以下、PTFEという)分
散剤溶液5部、カルボニルニツケル粉末10部を混合
し、ペ─ストを調製した。このペ─ストをニツケル発泡
体基材に充填担持させ、乾燥後、圧縮成形した。その
後、所定サイズに裁断して、厚さが0.295mmの負極
シ─トとした。
To 100 parts of this alloy powder, 50 parts of a 3% by weight aqueous solution of carboxymethyl cellulose, 5 parts of a 60% by weight polytetrafluoroethylene (hereinafter referred to as PTFE) dispersant solution, and 10 parts of carbonyl nickel powder are mixed. Then, a paste was prepared. The paste was filled and supported on a nickel foam base material, dried, and compression molded. Thereafter, the sheet was cut into a predetermined size to obtain a negative electrode sheet having a thickness of 0.295 mm.

【0034】これとは別に、タイプAの水酸化ニツケル
粉末100部に、ニツケル粉末10部、コバルト粉末1
0部、2重量%のカルボキシメチルセルロ─ス水溶液5
部、60重量%のPTFE分散剤溶液5部を混合し、ペ
─ストとした。このペ─ストを、一部分をつぶしたニツ
ケル発泡体基材に充填担持させ、80℃で2時間乾燥
後、1トン/cm2 で圧縮成形して、シ─ト状とした。一
部分をつぶした基材部分の塗布物を洗い流した。これを
80℃のアルカリ水溶液に2時間浸漬したのち、80℃
の温水で2時間水洗し、さらに80℃で1時間乾燥後、
圧縮成形し、所定サイズに裁断して、厚さが0.53mm
の正極シ─トとした。
Separately, 100 parts of nickel hydroxide hydroxide powder of type A, 10 parts of nickel powder, and 1 part of cobalt powder
0 parts, 2% by weight carboxymethyl cellulose aqueous solution 5
And a 60% by weight PTFE dispersant solution were mixed to give a paste. The paste was filled and supported on a partially crushed nickel foam base material, dried at 80 ° C. for 2 hours, and compression-molded at 1 ton / cm 2 to form a sheet. The coating material on the partially crushed substrate was washed away. This was immersed in an alkaline aqueous solution at 80 ° C for 2 hours,
After washing with warm water for 2 hours and drying at 80 ° C for 1 hour,
Compression molded, cut to size, thickness 0.53mm
Positive electrode sheet.

【0035】上記の負極シ―トと正極シ─トを、厚さが
0.15mmのポリアミド不織布からなるセパレ─タを介
して渦巻状に巻回し、その際、正極の巻き数が2.5回
で、最外周部が負極で巻き終わるようにして、巻回構造
の電極体を作製した。なお、この電極体の作製に際して
は、正極、負極およびセパレ―タからなる部材を巻き付
ける巻回軸として、直径2.5mmの断面円形の棒を用い
て、電極体の作製後、この巻回軸を電極体から抜き取つ
た。
The above-mentioned negative electrode sheet and positive electrode sheet are spirally wound via a separator made of a non-woven polyamide fabric having a thickness of 0.15 mm. In this way, the outermost peripheral portion was wound around the negative electrode, whereby an electrode body having a wound structure was produced. In the production of this electrode body, a rod having a circular cross section with a diameter of 2.5 mm was used as a winding shaft around which a member consisting of a positive electrode, a negative electrode and a separator was wound. Was extracted from the electrode body.

【0036】このようにして作製した電極体を、単4サ
イズの内径9.4mmの電池缶に収容した。この状態での
電極体の断面を、図8に示した。同図において、1は正
極、2は負極、3はセパレ―タである。また、4は正極
1と負極2をセパレ―タ3を介して渦巻状に巻回して作
製した巻回構造の電極体、4aは上記電極体4の巻回中
心である。5は電池缶、5aは電池缶5の中心である。
ただし、電池缶5はその内周面のみを細線で示してい
る。
The electrode body manufactured in this manner was accommodated in a battery can having a size of AAA and having an inner diameter of 9.4 mm. FIG. 8 shows a cross section of the electrode body in this state. In the figure, 1 is a positive electrode, 2 is a negative electrode, and 3 is a separator. Reference numeral 4 denotes an electrode body having a wound structure formed by spirally winding the positive electrode 1 and the negative electrode 2 via a separator 3, and reference numeral 4 a denotes a winding center of the electrode body 4. 5 is a battery can and 5a is a center of the battery can 5.
However, only the inner peripheral surface of the battery can 5 is shown by a thin line.

【0037】この電極体4は、前記のように基材の一部
に活物質層を形成しないで局部的に厚さを薄くした正極
を用い、上記厚さの薄い部分を電極体4の断面の径の最
も長くなる方向、つまり巻き終わり部分が存在する方向
に配置することにより、電極体4の断面の最長径を小さ
くし、最短径と最長径との比を1:1.05にした。ち
なみに、正極の厚さを部分的に薄くしなかつた場合の電
極体の断面の最短径と最長径との比は1:1.10であ
つた。また、上記構成の電極体4を電池缶5に収容する
にあたり、電極体4の巻回中心4aを電極缶5の中心5
aから電池缶5の内径の6.8%にあたる距離分ずらし
て収容した。
The electrode body 4 uses a positive electrode whose thickness is locally reduced without forming an active material layer on a part of the base material as described above. The longest diameter of the cross section of the electrode body 4 was reduced by arranging in the direction in which the diameter of the electrode body becomes the longest, that is, the direction in which the winding end portion exists, and the ratio of the shortest diameter to the longest diameter was 1: 1.05. . Incidentally, the ratio of the shortest diameter to the longest diameter of the cross section of the electrode body when the thickness of the positive electrode was not partially reduced was 1: 1.10. When the electrode body 4 having the above configuration is accommodated in the battery can 5, the winding center 4 a of the electrode body 4 is aligned with the center 5 of the electrode can 5.
a was shifted by a distance corresponding to 6.8% of the inner diameter of the battery can 5 from the container a.

【0038】なお、本発明では、電極体4と電池缶5と
の間の空隙を小さくしたことを特徴としているにもかか
わらず、上記の図8では、電極体4と電池缶5との間に
かなり大きな空隙があるように図示されている。しか
し、これは、図8があくまでも電極体4と電池缶5の位
置関係などを模式的に示すために、電極体4を構成する
正極1,負極2およびセパレ―タ3などの部材を実際よ
りもかなり厚めに図示したことによるもので、上記各部
材の厚さは実際はこれよりはるかに小さいため、現実に
は図示のように大きな空隙は生じないものである。
Although the present invention is characterized in that the gap between the electrode body 4 and the battery can 5 is reduced, the gap between the electrode body 4 and the battery can 5 is shown in FIG. Are shown with a fairly large void. However, this is because the members such as the positive electrode 1, the negative electrode 2 and the separator 3, which constitute the electrode body 4, are actually shown in FIG. 8 in order to schematically show the positional relationship between the electrode body 4 and the battery can 5. This is because the thickness of each of the above members is actually much smaller than this, so that a large gap does not actually occur as shown in the drawing.

【0039】このように電池缶に電極体を収容したの
ち、電解液として30重量%水酸化カリウム水溶液1リ
ツトルにLiOHを17g溶解させたアルカリ水溶液を
用い、この電解液0.85ミリリツトルを注入し、その
後は常法に準じて電池作製のための諸工程を進め、最後
に可逆ベントを持つ封止体により密閉封止して、単4形
のニツケル−水素吸蔵合金系のアルカリ二次電池とし
た。これを、60℃で17時間保存し、0.1C(50
mA)で15時間充電し、0.2C(100mA)で
1.0Vまで放電した。このサイクルを放電容量が一定
になるまで繰り返し、図9に示す構造の水素化物二次電
池を作製した。
After accommodating the electrode body in the battery can, an alkaline aqueous solution in which 17 g of LiOH was dissolved in 1 liter of a 30% by weight aqueous potassium hydroxide solution was used as an electrolytic solution, and 0.85 milliliter of this electrolytic solution was injected. After that, various steps for battery fabrication were carried out according to a conventional method. Finally, the battery was hermetically sealed with a sealing body having a reversible vent to form a AAA-type nickel-hydrogen storage alloy alkaline secondary battery. did. This was stored at 60 ° C. for 17 hours, and 0.1 C (50
(mA) for 15 hours, and discharged to 1.0 V at 0.2 C (100 mA). This cycle was repeated until the discharge capacity became constant, to produce a hydride secondary battery having the structure shown in FIG.

【0040】図9は、各部材をわかりやすくするため
に、模式的に示したもので、図8とは各部材の位置関係
や寸法を若干異ならせて図示している。この図9におい
て、1は正極、2は負極、3はセパレ―タ、4は巻回構
造の電極体、5は電池缶、6は環状ガスケツト、7は電
池蓋、8は端子板、9は封口板、10は金属バネ、11
は弁体、12は正極端子板、13,14は絶縁体であ
る。
FIG. 9 schematically shows each member for easy understanding. The positional relationship and dimensions of each member are slightly different from those of FIG. 9, reference numeral 1 denotes a positive electrode, 2 denotes a negative electrode, 3 denotes a separator, 4 denotes a wound electrode body, 5 denotes a battery can, 6 denotes an annular gasket, 7 denotes a battery lid, 8 denotes a terminal plate, and 9 denotes a terminal plate. Sealing plate, 10 is a metal spring, 11
Is a valve body, 12 is a positive electrode terminal plate, and 13 and 14 are insulators.

【0041】正極1は、前記のようにペ―スト式ニツケ
ル電極からなるものであり、負極2は、前記のようにペ
―スト式水素吸蔵合金電極からなるものである。セパレ
―タ3は、前記のようにポリアミド不織布からなるもの
であり、上記正極1と負極2とはこのセパレ―タ3を介
して渦巻状に巻回して巻回構造の電極体4として電池缶
5内に収容され、その上部に絶縁体14が配置されてい
る。
The positive electrode 1 is composed of a paste-type nickel electrode as described above, and the negative electrode 2 is composed of a paste-type hydrogen storage alloy electrode as described above. The separator 3 is made of a polyamide non-woven fabric as described above, and the positive electrode 1 and the negative electrode 2 are spirally wound via the separator 3 to form a battery can 4 as a wound electrode body 4. 5, and an insulator 14 is arranged on the upper part.

【0042】環状ガスケツト6は、ナイロン66で作製
され、電池蓋7は端子板8と封口板9とで構成され、電
池缶5の開口部はこの電池蓋7と上記の環状ガスケツト
6とで封口されている。つまり、電池缶5内に巻回構造
の電極体4や絶縁体14などを挿入したのち、電池缶5
の開口端近傍部分に底部が内周側に突出した環状の溝5
bを形成し、その溝5bの内周側突出部で環状ガスケツ
ト6の下部を支えさせて、環状ガスケツト6と電池蓋7
とを電池缶5の開口部に配置し、電池缶5の溝5bから
先の部分を内方に締め付けて、電池缶5の開口部を電池
蓋7と環状ガスケツト6とで封口している。
The annular gasket 6 is made of nylon 66, the battery lid 7 is composed of a terminal plate 8 and a sealing plate 9, and the opening of the battery can 5 is sealed with the battery lid 7 and the annular gasket 6 described above. Have been. That is, after inserting the wound electrode body 4 and the insulator 14 into the battery can 5, the battery can 5
Annular groove 5 whose bottom portion protrudes inward in the vicinity of the open end
b, the lower portion of the annular gasket 6 is supported by the inner peripheral side protruding portion of the groove 5b, and the annular gasket 6 and the battery lid 7 are supported.
Are placed in the opening of the battery can 5, the portion of the battery can 5 beyond the groove 5 b is tightened inward, and the opening of the battery can 5 is sealed with the battery lid 7 and the annular gasket 6.

【0043】電池蓋7を構成する端子板8にはガス排出
孔8aが、封口板9にはガス検知孔9aが設けられてい
るとともに、端子板8と封口板9との間に金属バネ10
と弁体11とが配置されており、封口板9の外周部を折
り曲げて端子板8の外周部を挟み込んで端子板8と封口
板9とを固定している。
The terminal plate 8 constituting the battery cover 7 is provided with a gas discharge hole 8a, the sealing plate 9 is provided with a gas detection hole 9a, and a metal spring 10 is provided between the terminal plate 8 and the sealing plate 9.
And the valve body 11 are arranged, and the outer peripheral portion of the sealing plate 9 is bent to sandwich the outer peripheral portion of the terminal plate 8 to fix the terminal plate 8 and the sealing plate 9 together.

【0044】この電池は、通常の状況下では金属バネ1
0の押圧力により弁体11がガス検知孔9aを閉鎖して
いるので、電池内部は密閉状態に保たれているが、電池
内部にガスが発生して電池内圧が異常に上昇した場合に
は、金属バネ10が収縮して弁体11とガス検知孔9a
との間に隙間が生じ、電池内部のガスはガス検知孔9a
およびガス排出孔8aを通過して電池外部に放出され、
電池破裂が防止できるように構成されている。つまり、
この電池は、上記構成に示すような可逆ベントを持つた
封止体により密閉封止されている。
This battery is a metal spring 1 under normal circumstances.
Since the valve body 11 closes the gas detection hole 9a by the pressing force of 0, the inside of the battery is kept in a sealed state. However, when gas is generated inside the battery and the battery internal pressure rises abnormally, The metal spring 10 contracts and the valve body 11 and the gas detection hole 9a
A gap is created between the gas detection hole 9a and the gas inside the battery.
And is discharged outside the battery through the gas discharge hole 8a,
It is configured to prevent battery rupture. That is,
This battery is hermetically sealed by a sealing body having a reversible vent as described above.

【0045】なお、この電池において、正極リ―ド体1
2の一方の端部は、正極2の末端部にスポツト溶接され
たニツケルリボンからなる集電体(タブ)にスポツト溶
接され、他方の端部は封口板9の下端にスポツト溶接さ
れており、端子板8は上記封口板9との接触により正極
端子として作用する。また、前記したように、巻回構造
の電極体4の最外周部は負極2で構成され、この負極2
の最外周部の外面側は図示しない金属製の基材が露出し
ていて、この基材が電池缶5の内壁に接触し、それによ
つて、電池缶5は負極端子として作用する。
In this battery, the positive electrode lead 1
One end of the positive electrode 2 is spot-welded to a current collector (tab) made of a nickel ribbon spot-welded to the end of the positive electrode 2, and the other end is spot-welded to the lower end of the sealing plate 9. The terminal plate 8 functions as a positive electrode terminal by contact with the sealing plate 9. Further, as described above, the outermost peripheral portion of the wound electrode body 4 is constituted by the negative electrode 2.
A metal base (not shown) is exposed on the outer peripheral side of the outermost peripheral portion of the battery can 5, and this base comes into contact with the inner wall of the battery can 5, whereby the battery can 5 functions as a negative electrode terminal.

【0046】実施例2 正極の水酸化ニツケル粉末として、タイプBの水酸化ニ
ツケル粉末を用いた以外は、実施例1と同様にして、水
素化物二次電池を作製した。
Example 2 A hydride secondary battery was produced in the same manner as in Example 1 except that nickel hydroxide powder of type B was used as the nickel hydroxide powder of the positive electrode.

【0047】比較例1 正極の水酸化ニツケル粉末として、市販の水酸化ニツケ
ル粉末を用い、かつ、正極シ―トの作製時に、基材の一
部をつぶさずにペ―ストを充填させ、またアルカリ水溶
液への浸漬処理を行わなかつた以外は、実施例1と同様
にして、厚さが0.43mmの正極シ―トを作製した。ま
た、厚さが0.25mmとなる以外は、実施例1と同様に
して、負極シ―トを作製した。
COMPARATIVE EXAMPLE 1 A commercially available nickel hydroxide powder was used as the nickel hydroxide powder for the positive electrode, and a paste was filled without crushing a part of the base material during the preparation of the positive electrode sheet. A positive electrode sheet having a thickness of 0.43 mm was produced in the same manner as in Example 1 except that the immersion treatment in the aqueous alkali solution was not performed. Also, a negative electrode sheet was produced in the same manner as in Example 1 except that the thickness became 0.25 mm.

【0048】このように作製した負極シ―トと正極シ─
トを用い、実施例1と同様にして、直径2.5mmの断面
円形の棒を巻回軸として、厚さが0.15mmのポリアミ
ド不織布からなるセパレ─タを介して渦巻状に巻回し、
正極の巻き数を2.75回とし、最外周部が負極で巻き
終わる巻回構造の電極体を作製した。正極の上記巻き数
2.75回は、正極の厚さを負極の1.7倍、正極の巻
き数を2〜3回とし、電極体をその巻回中心と電池缶の
中心とをずらさないで電池缶に挿入する条件下では、電
池容量が最大となる正極の巻き数である。
The thus prepared negative and positive electrode sheets
In the same manner as in Example 1, using a rod having a circular cross section with a diameter of 2.5 mm as a winding axis, a spiral winding is performed through a separator made of a nonwoven polyamide fabric having a thickness of 0.15 mm.
The number of turns of the positive electrode was set to 2.75, and an electrode body having a wound structure in which the outermost peripheral portion was wound around the negative electrode was manufactured. When the number of turns of the positive electrode is 2.75, the thickness of the positive electrode is 1.7 times that of the negative electrode, and the number of turns of the positive electrode is two to three times, and the center of the electrode body is not shifted from the center of the battery can. Under the condition of being inserted into the battery can, the number of turns of the positive electrode at which the battery capacity is maximized.

【0049】このようにして作製した電極体を、巻回軸
を抜き取つたのち、単4サイズの内径9.4mmの電池缶
に、電極体の巻回中心と電池缶の中心とが一致するよう
に収容した。この状態での電極体の断面を、図10に模
式的に示した。この図10において、1は正極、2は負
極、3はセパレ―タ、4は巻回構造の電極体、5は電池
缶である。同図では、電極体4の巻回中心と電池缶5の
中心とを一致させているので、各中心は図示していな
い。このように正極の巻き数を2.75回とし、かつ電
極体4の巻回中心と電池缶5の中心とを一致させた状態
では、正極1や負極2の厚さを前記以上に厚くすること
はできなかつた。これ以外は、実施例1と同様にして、
水素化物二次電池を作製した。
After the winding body of the electrode body thus manufactured is taken out, the winding center of the electrode body and the center of the battery can coincide with the size of the AAA-size battery can having an inner diameter of 9.4 mm. So housed. A cross section of the electrode body in this state is schematically shown in FIG. In FIG. 10, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an electrode body having a wound structure, and 5 is a battery can. In the same figure, since the center of the winding of the electrode body 4 and the center of the battery can 5 coincide, each center is not shown. In the state where the number of turns of the positive electrode is set to 2.75 and the center of the electrode body 4 and the center of the battery can 5 are aligned, the thickness of the positive electrode 1 and the negative electrode 2 is made larger than the above. I can't do it. Except for this, in the same manner as in Example 1,
A hydride secondary battery was manufactured.

【0050】なお、用いた市販の水酸化ニツケル粉末に
ついて、SEM(倍率1,000倍)により観察した結
果は、図3に示されるとおりであり、平均粒径以上の粒
子は球状であつたが、平均粒径以下の粒子はダンゴ状で
いびつな形状であつた。また、マイクロトラツプ法によ
り粒度分布を調べた結果は、図6に示されるとおりであ
り、粒度が0.4〜96μm、平均粒径が12μmで、
粒度分布幅の広いものであつた。さらに、BET吸着法
により細孔半径を測定した結果は、図7の曲線−7cに
示されるとおりであり、7〜8Åにピ─クがみられた
が、5〜6Åにピ─クはみられなかつた。また、BET
吸着法による比表面積は20m2/g、細孔容積は0.0
30cc/g、平均細孔半径は35Åであつた。
The results obtained by observing the commercially available nickel hydroxide powder by SEM (1,000-fold magnification) are as shown in FIG. 3, and particles having an average particle diameter or more were spherical. The particles having an average particle size or less had a dango-like and irregular shape. The result of examining the particle size distribution by the micro trap method is as shown in FIG. 6, where the particle size is 0.4 to 96 μm, the average particle size is 12 μm,
The particle size distribution was wide. Further, the result of measuring the pore radius by the BET adsorption method is as shown by a curve -7c in FIG. 7, where a peak was observed at 7 to 8 °, but a peak was observed at 5 to 6 °. It wasn't. In addition, BET
Specific surface area by adsorption method is 20 m 2 / g, pore volume is 0.0
30 cc / g and the average pore radius was 35 °.

【0051】比較例2 正極の水酸化ニツケル粉末として、比較例1で用いた市
販の水酸化ニツケル粉末を用いた以外は、実施例1と同
様にして、水素化物二次電池を作製した。
Comparative Example 2 A hydride secondary battery was produced in the same manner as in Example 1 except that the commercially available nickel hydroxide powder used in Comparative Example 1 was used as the nickel hydroxide powder for the positive electrode.

【0052】上記の実施例1,2および比較例1,2の
各水素化物二次電池について、電極体作製時(巻回時)
の割れ発生率、正極の利用率、充電容量および電池容量
を調べた。これらの結果を表1に示した。
Each of the hydride secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2 was manufactured at the time of manufacturing the electrode body (at the time of winding).
The crack occurrence rate, the utilization rate of the positive electrode, the charging capacity and the battery capacity were examined. The results are shown in Table 1.

【0053】 [0053]

【0054】上記の結果から、本発明の実施例1,2の
水素化物二次電池は、表1に示すように、電極体の巻回
中心と電池缶の中心とをずらして、断面形状が円形から
ずれていびつになつた電極体と断面形状が円形の電池缶
との空隙を小さくし、また特定の水酸化ニツケル粉末を
用いて、巻回時の割れを抑制し、かつ正極の利用率を1
0%程度高めたことにより、従来の水酸化ニツケル粉末
を用いた比較例1の水素化物二次電池に比べて、電池容
量が約30%以上も高くなつている。
From the above results, as shown in Table 1, the hydride secondary batteries of Examples 1 and 2 of the present invention have different cross-sectional shapes by shifting the center of the electrode body and the center of the battery can. The gap between the rounded electrode body and the battery can with round cross section is reduced, and the specific nickel hydroxide powder is used to suppress cracking during winding and to increase the utilization rate of the positive electrode. 1
By increasing the value by about 0%, the battery capacity is increased by about 30% or more as compared with the hydride secondary battery of Comparative Example 1 using the conventional nickel hydroxide powder.

【0055】一方、電極体の巻回中心と電池缶の中心と
をずらしてはいるが、従来の水酸化ニツケル粉末を用い
た比較例2の水素化物二次電池では、巻回時の割れ発生
率が高くかつ正極の利用率も低いため、比較例1に比べ
て電池容量の向上効果は認められるが、実施例1,2ほ
どの電池容量は得られていない。
On the other hand, although the winding center of the electrode body is shifted from the center of the battery can, in the hydride secondary battery of Comparative Example 2 using the conventional nickel hydroxide powder, cracking occurs during winding. Since the efficiency is high and the utilization rate of the positive electrode is low, the effect of improving the battery capacity is recognized as compared with Comparative Example 1, but the battery capacity of Examples 1 and 2 is not obtained.

【0056】[0056]

【発明の効果】以上のように、本発明は、水酸化ニツケ
ル粉末として特定性状のものを用い、かつ巻回構造の電
極体の巻回中心と電池缶の中心とをずらす構成としたこ
とにより、従来に比べて高容量であつて、電池の小型化
に十分に対応できる水素化物二次電池とその製造方法を
提供することができる。
As described above, the present invention provides a structure in which nickel hydroxide powder having specific properties is used and the winding center of the wound electrode body is shifted from the center of the battery can. Further, it is possible to provide a hydride secondary battery having a higher capacity than the conventional one and capable of sufficiently coping with the miniaturization of the battery, and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いたタイプAの水酸化ニツケル粉
末の粒子構造を示す走査型電子顕微鏡(倍率1,000
倍)写真である。
FIG. 1 is a scanning electron microscope (1,000 magnification) showing the particle structure of a nickel hydroxide powder of type A used in Example 1.
Photo).

【図2】実施例2で用いたタイプBの水酸化ニツケル粉
末の粒子構造を示す走査型電子顕微鏡(倍率1,000
倍)写真である。
FIG. 2 is a scanning electron microscope (1,000 magnification) showing a particle structure of a nickel hydroxide powder of type B used in Example 2.
Photo).

【図3】比較例1で用いた市販の水酸化ニツケル粉末の
粒子構造を示す走査型電子顕微鏡(倍率1,000倍)
写真である。
FIG. 3 is a scanning electron microscope (1,000 times magnification) showing the particle structure of a commercially available nickel hydroxide powder used in Comparative Example 1.
It is a photograph.

【図4】実施例1で用いたタイプAの水酸化ニツケル粉
末の粒度分布図である。
FIG. 4 is a particle size distribution diagram of a nickel hydroxide powder of type A used in Example 1.

【図5】実施例2で用いたタイプBの水酸化ニツケル粉
末の粒度分布図である。
FIG. 5 is a particle size distribution diagram of type B nickel hydroxide powder used in Example 2.

【図6】比較例1で用いた市販の水酸化ニツケル粉末の
粒度分布図である。
FIG. 6 is a particle size distribution diagram of a commercially available nickel hydroxide powder used in Comparative Example 1.

【図7】実施例1,2で使用したタイプA,Bの水酸化
ニツケル粉末と比較例1で使用した市販の水酸化ニツケ
ル粉末の細孔半径を示す特性図である。
FIG. 7 is a characteristic diagram showing pore radii of nickel hydroxide powders of types A and B used in Examples 1 and 2 and a commercially available nickel hydroxide powder used in Comparative Example 1.

【図8】実施例1の水素化物二次電池における巻回構造
の電極体を電池缶に収容した状態を模式的に示す断面図
である。
FIG. 8 is a cross-sectional view schematically showing a state in which an electrode body having a wound structure in a hydride secondary battery of Example 1 is accommodated in a battery can.

【図9】実施例1の水素化物二次電池を模式的に示す断
面図である。
FIG. 9 is a cross-sectional view schematically showing a hydride secondary battery of Example 1.

【図10】比較例1の水素化物二次電池における巻回構
造の電極体を電池缶に収容した状態を模式的に示す断面
図である。
FIG. 10 is a cross-sectional view schematically showing a state in which an electrode body having a wound structure in a hydride secondary battery of Comparative Example 1 is housed in a battery can.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレ―タ 4 電極体 4a 電極体の巻回中心 5 電池缶 5a 電池缶の中心 7a 実施例1で用いたタイプAの水酸化ニツケル粉末 7b 実施例2で用いたタイプBの水酸化ニツケル粉末 7c 比較例1で用いた市販の水酸化ニツケル粉末 Reference Signs List 1 positive electrode 2 negative electrode 3 separator 4 electrode body 4a winding center of electrode body 5 battery can 5a center of battery can 7a type A nickel hydroxide powder of type A used in example 1 7b type B used in example 2 Nickel hydroxide powder 7c Commercial nickel hydroxide powder used in Comparative Example 1

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Ryu Nagai 1-1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニツケルを活物質とする正極と水
素吸蔵合金よりなる負極をセパレ―タを介して渦巻状に
巻回した電極体を電池缶に収容し、かつアルカリ水溶液
よりなる電解液を注入し、可逆ベントを持つ封止体によ
り密閉した水素化物二次電池において、上記の水酸化ニ
ツケルは粒度が2〜40μm、平均粒径が8±2μmの
粉末で、この粉末は平均粒径以上の粒子が球状でかつ平
均粒径以下の粒子の95重量%以上も球状であり、かつ
上記の電極体の巻回中心と電池缶の中心とがずれている
ことを特徴とする水素化物二次電池。
1. An electrolyte comprising an alkaline aqueous solution containing an electrode body obtained by spirally winding a positive electrode comprising nickel hydroxide as an active material and a negative electrode comprising a hydrogen storage alloy via a separator in a battery can. And the nickel hydroxide is a powder having a particle size of 2 to 40 μm and an average particle size of 8 ± 2 μm in the hydride secondary battery sealed with a sealed body having a reversible vent. The above hydride is characterized in that the above particles are spherical and at least 95% by weight of the particles having an average particle size or less are spherical, and the winding center of the electrode body and the center of the battery can are shifted. Next battery.
【請求項2】 水酸化ニツケル粉末は、細孔半径が少な
くとも7〜8Åのピ―クと5〜6Åのピ─クを有すると
ともに、7〜8Åのピ―クの強度(la)と5〜6Åの
ピ―クの強度(lb)との比(la:lb)が100:
50以上である請求項1に記載の水素化物二次電池。
2. The nickel hydroxide powder has a peak having a pore radius of at least 7 to 8 ° and a peak of 5 to 6 °, and has a peak intensity (la) of 7 to 8 ° and 5 to 5 °. The ratio (la: lb) to the peak intensity (lb) of 6 ° is 100:
The hydride secondary battery according to claim 1, which is 50 or more.
【請求項3】 水酸化ニツケル粉末は、BET吸着法に
よる比表面積が5〜20m2/g、細孔容積が0.015
〜0.030cc/g、平均細孔半径が25〜50Åであ
る請求項1または2に記載の水素化物二次電池。
3. Nickel hydroxide powder has a specific surface area of 5 to 20 m 2 / g and a pore volume of 0.015 by a BET adsorption method.
The hydride secondary battery according to claim 1, wherein the hydride secondary battery has an average pore radius of 25 to 50 °.
【請求項4】 正極中に導電助剤としてコバルト粉末を
含ませてなる請求項1〜3のいずれかに記載の水素化物
二次電池。
4. The hydride secondary battery according to claim 1, wherein the positive electrode contains cobalt powder as a conductive additive.
【請求項5】 電極体の巻回中心と電池缶の中心とのず
れ距離が電池缶の内径の4%以上である請求項1〜4の
いずれかに記載の水素化物二次電池。
5. The hydride secondary battery according to claim 1, wherein the distance between the center of the electrode body and the center of the battery can is 4% or more of the inner diameter of the battery can.
【請求項6】 正極または負極の一部に厚さの薄い部分
を設け、この厚さの薄い部分を電極体の巻き終わり部分
が存在する方向のどこかに配置することにより、電極体
の断面の最短径と最長径との比を1に近づける構成とし
た請求項1〜5のいずれかに記載の水素化物二次電池。
6. A cross section of an electrode body by providing a thin part in a part of a positive electrode or a negative electrode and arranging the thin part somewhere in a direction in which a winding end part of the electrode body exists. The hydride secondary battery according to any one of claims 1 to 5, wherein the ratio of the shortest diameter to the longest diameter is set to be close to 1.
【請求項7】 電極体の中心部における空洞部の断面の
径が最も長くなる方向と電極体の巻き終わり部分が存在
する方向を一致させないことにより、電極体の断面の最
短径と最長径との比を1に近づける構成とした請求項1
〜5のいずれかに記載の水素化物二次電池。
7. The shortest diameter and the longest diameter of the cross section of the electrode body are not matched by making the direction in which the diameter of the cross section of the hollow portion at the center of the electrode body becomes the longest coincide with the direction in which the winding end portion of the electrode body exists. 2. The configuration of claim 1, wherein the ratio of
6. The hydride secondary battery according to any one of claims 1 to 5.
【請求項8】 水酸化ニツケルを活物質とする正極と水
素吸蔵合金よりなる負極をセパレ―タを介して渦巻状に
巻回した電極体を電池缶に収容し、かつアルカリ水溶液
よりなる電解液を注入し、可逆ベントを持つ封止体によ
り密閉した水素化物二次電池の製造方法において、上記
の水酸化ニツケルとして、粒度が2〜40μm、平均粒
径が8±2μmであつて、平均粒径以上の粒子が球状で
かつ平均粒径以下の粒子の95重量%以上も球状である
粉末を使用し、この水酸化ニツケル粉末を含むペ─スト
を導電性多孔基材に担持させ、乾燥したのち、圧縮成形
して、正極を作製し、この正極と水素吸蔵合金よりなる
負極をセパレ―タを介して渦巻状に巻回した電極体を、
その巻回中心と電池缶の中心とがずれるように、電池缶
に収容することを特徴とする水素化物二次電池の製造方
法。
8. An electrolytic solution comprising an electrode body in which a positive electrode comprising nickel hydroxide as an active material and a negative electrode comprising a hydrogen storage alloy are spirally wound via a separator to be contained in a battery can, and comprising an alkaline aqueous solution. In the hydride secondary battery sealed with a sealed body having a reversible vent, the nickel hydroxide has a particle size of 2 to 40 μm, an average particle size of 8 ± 2 μm, Particles having a diameter of at least 95% by weight of particles having an average particle diameter or less are spherical, and a paste containing the nickel hydroxide powder is supported on a conductive porous substrate and dried. After that, compression molding is performed to produce a positive electrode, and an electrode body in which this positive electrode and a negative electrode made of a hydrogen storage alloy are spirally wound via a separator,
A method for manufacturing a hydride secondary battery, wherein the winding center and the center of the battery can are accommodated in the battery can so as to be displaced from each other.
【請求項9】 正極の作製にあたり、水酸化ニツケル粉
末のペ─ストに平均粒径1.5μm以下のコバルト粉末
を添加し、圧縮成形後にアルカリ水溶液中に浸漬する工
程を付加する請求項8に記載の水素化物二次電池の製造
方法。
9. The method according to claim 8, wherein a step of adding a cobalt powder having an average particle diameter of 1.5 μm or less to the paste of the nickel hydroxide powder and immersing the paste in an aqueous alkali solution after compression molding is performed. A method for producing the hydride secondary battery according to the above.
JP9018105A 1997-01-31 1997-01-31 Hydride secondary battery and its manufacture Withdrawn JPH10214637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9018105A JPH10214637A (en) 1997-01-31 1997-01-31 Hydride secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9018105A JPH10214637A (en) 1997-01-31 1997-01-31 Hydride secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH10214637A true JPH10214637A (en) 1998-08-11

Family

ID=11962354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9018105A Withdrawn JPH10214637A (en) 1997-01-31 1997-01-31 Hydride secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH10214637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008092A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery
US9647246B2 (en) 2012-07-31 2017-05-09 Gs Yuasa International Ltd. Battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647246B2 (en) 2012-07-31 2017-05-09 Gs Yuasa International Ltd. Battery
JP2015008092A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery

Similar Documents

Publication Publication Date Title
JP2001217000A (en) Nickel-hydrogen secondary battery
JP3805876B2 (en) Nickel metal hydride battery
WO2020054307A1 (en) Positive electrode for alkali secondary batteries, and alkali secondary battery including said positive electrode
US20210305559A1 (en) Positive electrode for alkaline secondary battery, and alkaline secondary battery
US11355753B2 (en) Negative electrode for nickel metal hydride secondary battery, method of manufacturing the negative electrode, and nickel metal hydride secondary battery using the negative electrode
JPH10172558A (en) Hydride secondary battery
JPH10214637A (en) Hydride secondary battery and its manufacture
JP6996960B2 (en) Nickel metal hydride rechargeable battery
JP2001118597A (en) Alkaline secondary cell
JP2001357872A (en) Nickel-hydrogen secondary battery
US20230411622A1 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery having the same
EP1229598A2 (en) Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP6049048B2 (en) Nickel metal hydride secondary battery
JP2005108816A (en) Hydrogen storage alloy for alkaline accumulator, its manufacturing method and alkaline accumulator
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP4059357B2 (en) Hydride secondary battery and manufacturing method thereof
JP2022041906A (en) Hydrogen storage alloy, negative electrode containing hydrogen storage alloy, and nickel-metal hydride secondary battery containing negative electrode
JPH11297353A (en) Manufacture of nickel-hydrogen secondary battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
CN115411265A (en) Hydrogen storage alloy negative electrode and nickel-hydrogen secondary battery comprising hydrogen storage alloy negative electrode
JP3742149B2 (en) Alkaline secondary battery
JP3213684B2 (en) Manufacturing method of alkaline secondary battery
JPH10284078A (en) Hydride secondary battery and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406