JPH10212251A - Production of metaxylene - Google Patents

Production of metaxylene

Info

Publication number
JPH10212251A
JPH10212251A JP9018494A JP1849497A JPH10212251A JP H10212251 A JPH10212251 A JP H10212251A JP 9018494 A JP9018494 A JP 9018494A JP 1849497 A JP1849497 A JP 1849497A JP H10212251 A JPH10212251 A JP H10212251A
Authority
JP
Japan
Prior art keywords
xylene
catalyst
meta
isomerization
ortho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9018494A
Other languages
Japanese (ja)
Inventor
Hiroshi Horiuchi
裕志 堀内
Nobuhachi Konuma
伸八 小沼
Hideo Hasegawa
英雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP9018494A priority Critical patent/JPH10212251A/en
Publication of JPH10212251A publication Critical patent/JPH10212251A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2729Changing the branching point of an open chain or the point of substitution on a ring
    • C07C5/2732Catalytic processes
    • C07C5/2737Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production process of m-xylene by isomerization of o-xylene in which the catalyst does not cause deterioration in its catalytic activity even in the case that the regeneration of the catalyst is repeated. SOLUTION: A catalyst containing ZSM-4 and/or ω-zeolite, a kind of crystalline aluminosilicate zeolite, is used to isomerize o-xylene in the vapor or liquid phase to produce m-xylene. In this case, the catalyst of which isomerization activity is deteriorated is regenerated in an oxygen-containing gas at a temperature of <=400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オルソキシレンを
原料としてメタキシレンを製造する方法に関する。
[0001] The present invention relates to a method for producing meta-xylene from ortho-xylene.

【0002】[0002]

【従来の技術】キシレン異性体はパラキシレン、メタキ
シレン、オルソキシレン及びエチルベンゼンからなり、
パラキシレンはポリエステル繊維、ポリエステルフィル
ム等の原料として、メタキシレンは耐熱性アラミド繊
維、アルキッド樹脂等の原料として、オルソキシレンは
可塑剤等の原料として、エチルベンゼンはポリスチレン
等の原料として、夫々工業的に重要な化学品である。そ
れらの中、メタキシレンは、近年これをイソフタル酸ク
ロライドとしてメタフェニレンジアミンとの縮重合反応
によって得られる耐熱性繊維の原料として、その需要が
著しく高まりつつある。
BACKGROUND OF THE INVENTION Xylene isomers consist of para-xylene, meta-xylene, ortho-xylene and ethylbenzene,
Para-xylene is used as a raw material for polyester fibers, polyester films, etc., meta-xylene is used as a raw material for heat-resistant aramid fibers, alkyd resins, etc., ortho-xylene is used as a raw material for plasticizers, etc., and ethylbenzene is used as a raw material for polystyrene, etc., respectively. It is an important chemical. Among them, meta-xylene has recently been significantly increased in demand as a raw material for heat-resistant fibers obtained by subjecting it to isophthalic chloride by a condensation polymerization reaction with meta-phenylenediamine.

【0003】メタキシレンは従来、前述のキシレン異性
体が主成分である混合キシレンから、メタキシレンを錯
体形成によって選択的に抽出して製造されていた。この
製造方法は、低温、低圧下で反応させることができるた
め設備がコンパクトにできる特徴がある。
Conventionally, meta-xylene has been produced by selectively extracting meta-xylene by complex formation from mixed xylene containing the aforementioned xylene isomer as a main component. This manufacturing method is characterized in that the reaction can be carried out at a low temperature and a low pressure, so that the equipment can be made compact.

【0004】しかしながら、この製造方法は、抽出工程
及び異性化工程において極めて腐蝕性の高いフッ化水素
−三フッ化硼素錯体を用いる液相均一反応であり、触媒
を回収する工程が必要であることから、設備上のコスト
が高くなる点、さらに通常の混合キシレンを用いる場
合、エチルベンゼンを除去するための精密蒸留工程を必
要とする点、パラキシレンあるいはオルソキシレンを併
産しない場合異性化工程への内部循環量が著しく増大し
て多量のエネルギーを必要とする点で重大な欠点があ
る。
[0004] However, this production method is a liquid phase homogeneous reaction using a highly corrosive hydrogen fluoride-boron trifluoride complex in the extraction step and the isomerization step, and requires a step of recovering the catalyst. From the point that the equipment cost is high, furthermore, when using normal mixed xylene, a precision distillation step for removing ethylbenzene is required, and when not producing para-xylene or ortho-xylene together, the process is There is a significant drawback in that the amount of internal circulation is significantly increased and requires a large amount of energy.

【0005】一方、石油改質油あるいは分解ガソリンか
ら得られる混合キシレン中には熱力学的平衡組成に近い
量のメタキシレンが含有されている。しかしこれら原料
の中から蒸留法、晶析法によってメタキシレンを分離す
ることは、キシレン異性体間の沸点/融点の数値を鑑み
るに著しく困難である。
On the other hand, mixed xylene obtained from petroleum reformate or cracked gasoline contains meta-xylene in an amount close to the thermodynamic equilibrium composition. However, it is extremely difficult to separate meta-xylene from these raw materials by a distillation method or a crystallization method in view of the numerical value of the boiling point / melting point between xylene isomers.

【0006】すなわち、蒸留法においてはオルソキシレ
ン(沸点144.41℃)及びエチルベンゼン(沸点1
36.19℃)からメタキシレンを分離することは可能
であるが、メタキシレン(沸点139.10℃)とパラ
キシレン(沸点138.35℃)を分離することが困難
である。又、オルソキシレン(融点−25.17℃)、
エチルベンゼン(融点−94.98℃)を分離した後の
残余のメタキシレン(融点−47.87℃)とパラキシ
レン(融点13.26℃)の混合物を冷却することによ
ってパラキシレンを高濃度で結晶化分離することはでき
るが、残余の濾液から高純度のメタキシレンを回収する
ことは困難である。
That is, in the distillation method, ortho-xylene (boiling point: 144.41 ° C.) and ethylbenzene (boiling point: 1
Although it is possible to separate meta-xylene from 36.19 ° C.), it is difficult to separate meta-xylene (boiling point 139.10 ° C.) and para-xylene (boiling point 138.35 ° C.). Ortho-xylene (melting point −25.17 ° C.)
The mixture of para-xylene (melting point: 13.26 ° C.) and meta-xylene (melting point: −47.87 ° C.) after the separation of ethylbenzene (melting point: −94.98 ° C.) is cooled to crystallize para-xylene at a high concentration. However, it is difficult to recover high-purity meta-xylene from the remaining filtrate.

【0007】かかる問題を解決する別の製造方法とし
て、オルソキシレンのメタキシレンへの選択的異性化
を、ZSM−4、オメガ、及びホージャサイトからなる
群から選ばれた少なくとも一種の結晶性アルミナシリケ
ートゼオライトを含有する触媒の存在下、気相又は液相
で接触させることにより実施する方法が提案された(特
公平6−62456号公報)。この方法によれば、触媒
と接触させた生成物を蒸留分離することによってオルソ
キシレン及び軽質分・重質分を分離して少量のパラキシ
レンを含むメタキシレンが得られ、必要ならばさらに吸
着精製法により高純度のメタキシレンを得ることができ
る。
[0007] As another production method for solving such a problem, the selective isomerization of ortho-xylene to meta-xylene is performed by using at least one crystalline alumina silicate selected from the group consisting of ZSM-4, omega, and faujasite. A method has been proposed in which the contact is carried out in a gas phase or a liquid phase in the presence of a zeolite-containing catalyst (Japanese Patent Publication No. 6-62456). According to this method, ortho-xylene and light / heavy components are separated by distilling and separating the product brought into contact with the catalyst to obtain meta-xylene containing a small amount of para-xylene. High purity meta-xylene can be obtained by the method.

【0008】本方法によれば、高転化率でオルソキシレ
ンがメタキシレンへ異性化され、メタキシレンの二次的
異性化によるパラキシレンの生成は極度に抑制できるた
め、高純度のメタキシレンを高収率で製造することがで
き、触媒に腐蝕性がなく回収プロセスも不要である等の
理由によりエネルギーコスト及び設備費の安いプロセス
を提供することが可能になる。
According to this method, ortho-xylene isomerized to meta-xylene at a high conversion rate, and the production of para-xylene by secondary isomerization of meta-xylene can be extremely suppressed. It is possible to provide a process with low energy cost and equipment cost because the catalyst can be produced in a high yield, the catalyst is not corrosive, and a recovery process is unnecessary.

【0009】しかし、本方法は、例えばZSM−4又は
オメガゼオライトのカチオンサイトをプロトンで置き換
えた触媒を用いてオルソキシレンを異性化せしめると、
時間の経過に伴い生成する重質物、すなわちコークが触
媒上に蓄積し、オルソキシレンの転化率が経時的に低下
する問題がある。このため、一定時間経過後、活性が低
下した触媒を酸素含有雰囲気下高温にて処理し、触媒を
再生する必要がある。
[0009] However, the present method is intended to provide a method for isomerizing ortho-xylene using a catalyst in which the cation site of ZSM-4 or omega zeolite is replaced with a proton, for example.
There is a problem that a heavy substance generated as time elapses, that is, coke, accumulates on the catalyst, and the conversion of ortho-xylene decreases with time. For this reason, after a certain period of time, it is necessary to regenerate the catalyst by treating the catalyst whose activity has been reduced at a high temperature in an oxygen-containing atmosphere.

【0010】しかしながら、触媒再生を何回も繰り返す
と触媒にダメージを与えるため次第に触媒再生後の触媒
活性が低下し、ついには低いオルソキシレン転化率しか
得られなくなることがわかった。このように活性が低下
した触媒は交換を実施する必要があり、触媒交換による
稼働率および触媒コストへ与える影響は大きい。
However, it has been found that if the regeneration of the catalyst is repeated many times, the catalyst is damaged, so that the catalyst activity after the regeneration of the catalyst gradually decreases, and finally a low orthoxylene conversion can be obtained. It is necessary to replace the catalyst whose activity has been reduced in this way, and the replacement of the catalyst has a large effect on the operation rate and the catalyst cost.

【0011】触媒再生による触媒活性の低下はオルソキ
シレンの異性化のみならず、ゼオライトを用いた触媒プ
ロセスの構築に共通の問題であり、これを改善する幾つ
かの方法が開示されている。
The reduction in catalytic activity due to catalyst regeneration is a common problem not only in the isomerization of ortho-xylene, but also in the construction of a catalytic process using zeolite, and several methods for improving this are disclosed.

【0012】例えば、特開昭64−80443号公報に
は、活性の低下した水素型ゼオライト触媒をアンモニウ
ム塩水溶液と接触させ、次いで洗浄・乾燥・加熱脱水し
さらには400〜650℃でか焼することを特徴とする
触媒再生方法が開示されている。
For example, JP-A-64-80443 discloses that a hydrogen-type zeolite catalyst having reduced activity is brought into contact with an aqueous ammonium salt solution, then washed, dried, heated and dehydrated, and further calcined at 400 to 650 ° C. A catalyst regeneration method characterized by the above is disclosed.

【0013】また、特開平5−15784号公報には、
使用済み結晶性シリケート触媒の再生において、水分が
0.2vol%以下の乾燥酸素含有ガスを400℃〜6
00℃の条件下で触媒に接触させることを特徴とする方
法が開示されている。
[0013] Also, Japanese Patent Application Laid-Open No. H5-15784 discloses that
In the regeneration of the used crystalline silicate catalyst, a dry oxygen-containing gas having a water content of 0.2 vol% or less
A method characterized by contacting with a catalyst under the condition of 00 ° C. is disclosed.

【0014】しかしながら、前者の方法では反応器に充
填している触媒を一旦抜出すか、あるいは腐蝕性の高い
アンモニウム塩水溶液を反応器に流通させる必要があ
り、加えて操作も繁雑という欠点がある。
However, in the former method, it is necessary to once withdraw the catalyst filled in the reactor, or to flow an aqueous solution of ammonium salt having high corrosivity through the reactor, and in addition, the operation is complicated. .

【0015】また、オメガゼオライトによるオルソキシ
レン異性化反応において後者の方法を実施したところ、
依然として再生を実施するに従い活性が次第に低下する
ことが見出された。
Further, when the latter method was carried out in the orthoxylene isomerization reaction with omega zeolite,
It was still found that the activity gradually decreased as the regeneration was performed.

【0016】以上のとおり、オメガゼオライトによるオ
ルソキシレン異性化反応においては有効な触媒再生の方
法がこれまで見出されていなかった。
As described above, in the orthoxylene isomerization reaction with omega zeolite, no effective catalyst regeneration method has been found.

【0017】[0017]

【発明が解決しようとする課題】本発明は上記問題を鑑
みてなされたものであり、その目的の一つは高純度のメ
タキシレンを選択的かつ高収率で製造できる方法を提供
することにある。さらに本発明のもう一つの目的は設備
的及びエネルギー的にコストの安いメタキシレン製造方
法を提供することにある。さらに本発明の別の目的は、
触媒を長期間使用することによる稼働率の向上及び触媒
コストの低減を達成が可能なメタキシレンの製造方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and one of its objects is to provide a method for selectively producing high-purity meta-xylene in a high yield. is there. Still another object of the present invention is to provide a method for producing meta-xylene which is inexpensive in terms of equipment and energy. Still another object of the present invention is to provide
An object of the present invention is to provide a method for producing meta-xylene, which can achieve an improvement in operation rate and a reduction in catalyst cost by using a catalyst for a long period of time.

【0018】[0018]

【課題を解決するための手段】本発明は、ZSM−4及
び/又はオメガゼオライトを含有する触媒を使用し、気
相又は液相でオルソキシレンを異性化することによりメ
タキシレンを製造する方法において、異性化反応の活性
が低下した該触媒を、酸素含有ガス中にて、400℃以
下で処理して再生することを特徴とするメタキシレンの
製造方法である。
SUMMARY OF THE INVENTION The present invention provides a method for producing meta-xylene by isomerizing orthoxylene in a gas or liquid phase using a catalyst containing ZSM-4 and / or omega zeolite. A method for producing meta-xylene, characterized in that the catalyst having reduced isomerization activity is treated in an oxygen-containing gas at 400 ° C. or lower to regenerate it.

【0019】本発明を次に詳述する。本発明の方法にお
ける触媒は、結晶性アルミノシリケートゼオライトの一
種であるZSM−4及び/又はオメガゼオライトをその
構成成分とする。
The present invention will be described in detail below. The catalyst in the method of the present invention contains ZSM-4, which is a kind of crystalline aluminosilicate zeolite, and / or omega zeolite.

【0020】ZSM−4及びオメガゼオライトは構造的
には類似したものであり天然にはマッザイトとして産出
する。これらの合成は英国特許1,117,568号明
細書及び英国特許1,178,186号明細書に詳述さ
れているが、通常、ナトリウム及びテトラメチルアンモ
ニウムイオンの存在下に合成される。その構造はC軸に
沿って結びついたグメリナイト・ケージからなり、C軸
に平行なチャンネルシステムの開口径は0.75nmの
大きさを有している。通常、結晶性アルミノシリケート
ゼオライトを触媒の活性成分として使用する場合、その
触媒としての機能を増すためにゼオライトの構成成分で
あるAlO2 -に由来するカチオンサイトをプロトン(H
+)で置き換えることが行われている。その方法として
は、合成後のゼオライトをプロトン供給源である塩酸、
硝酸のような鉱酸水溶液と接触させるか、もしくは塩化
アンモニウム、アンモニア水のようなアンモニウムカチ
オン供給源と接触させた後、乾燥、焼成によってアンモ
ニアを脱離させて上記カチオンサイトにプロトンを発生
させるという公知の方法が用いられる。本発明において
はZSM−4及び/又はオメガゼオライトのカチオンサ
イトを基準としたプロトン占有率は70%以上が好まし
く、90%以上がさらに好ましい。残余のカチオンサイ
トはアルカリ金属イオン、アルカリ土類金属イオン、遷
移金属イオン、ランタニド金属イオン等によって占めら
れていてもよい。
ZSM-4 and omega zeolites are structurally similar and naturally occur as mazzite. These syntheses are detailed in GB 1,117,568 and GB 1,178,186 and are usually synthesized in the presence of sodium and tetramethylammonium ions. The structure consists of a gmelinite cage tied along the C-axis, and the aperture diameter of the channel system parallel to the C-axis has a size of 0.75 nm. Usually, when using a crystalline aluminosilicate zeolite as the active component of the catalyst, AlO 2 is a component of the zeolite to increase its function as a catalyst - proton cation sites derived from the (H
+ ) Is being replaced. As the method, the synthesized zeolite is converted to a proton source hydrochloric acid,
After contacting with a mineral acid aqueous solution such as nitric acid, or contacting with an ammonium cation supply source such as ammonium chloride and aqueous ammonia, drying and calcination desorb ammonia to generate protons at the cation sites. A known method is used. In the present invention, the proton occupancy based on the cation site of ZSM-4 and / or omega zeolite is preferably 70% or more, more preferably 90% or more. The remaining cation sites may be occupied by alkali metal ions, alkaline earth metal ions, transition metal ions, lanthanide metal ions, and the like.

【0021】本発明における触媒はその形状を問わない
が、実用上の観点から成型品であることが好ましい。成
型する際には粘土、アルミナ、シリカ等の結合剤を用い
ることが好ましい。
The catalyst in the present invention may have any shape, but is preferably a molded product from a practical viewpoint. When molding, it is preferable to use a binder such as clay, alumina and silica.

【0022】本発明において用いられる異性化反応の反
応温度は50〜400℃が好ましく、100〜300℃
がさらに好ましい。反応温度が50℃より低いと原料の
転化率が十分でなく、一方反応温度が400℃より高い
と逐次異性化反応および不均化反応によりキシレンがト
ルエン及びトリメチルベンゼンに不均化するうえ、パラ
キシレン濃度が高まるので、メタキシレンの収率が低下
する。
The reaction temperature of the isomerization reaction used in the present invention is preferably 50 to 400 ° C., and 100 to 300 ° C.
Is more preferred. If the reaction temperature is lower than 50 ° C., the conversion of the raw materials is not sufficient, while if the reaction temperature is higher than 400 ° C., xylene is disproportionated to toluene and trimethylbenzene by sequential isomerization and disproportionation. Since the xylene concentration increases, the yield of meta-xylene decreases.

【0023】本発明においては前記触媒と原料オルソキ
シレンとの接触を気相または液相にて任意に実施するこ
とができる。その際重量時間空間速度(WHSV)を
0.01〜10hr-1の範囲で行うことができる。
In the present invention, the contact between the catalyst and the starting orthoxylene can be carried out arbitrarily in a gas phase or a liquid phase. The weight hourly space velocity (WHSV) can be set in the range of 0.01 to 10 hr -1 .

【0024】反応圧力は減圧、常圧、加圧のいずれでも
よいが、通常はゲージ圧で0〜5MPaの圧力で実施さ
れることが好ましい。特に液相にて実施する場合には反
応温度に応じて反応容器を加圧にすることが好ましい。
反応容器を加圧する方法としては加圧ガスを用いる方法
が好ましく、かかる加圧ガスの種類としては水素、窒
素、ヘリウム、アルゴン等の異性化反応に不活性なガス
が好ましく挙げられる。
The reaction pressure may be any of reduced pressure, normal pressure and pressurized pressure, but it is usually preferable to carry out the reaction at a gauge pressure of 0 to 5 MPa. In particular, when the reaction is carried out in a liquid phase, it is preferable to pressurize the reaction vessel according to the reaction temperature.
As a method for pressurizing the reaction vessel, a method using a pressurized gas is preferable, and as the kind of the pressurized gas, a gas inert to the isomerization reaction such as hydrogen, nitrogen, helium, or argon is preferably used.

【0025】オルソキシレンを原料として、前記の如く
得られた生成物は、ベンゼン、トルエン等の軽質芳香族
炭化水素、未反応のオルソキシレン、異性化反応の結果
生成するメタキシレンと若干のパラキシレン及びトリメ
チルベンゼン等の重質芳香族炭化水素を含んでいる。該
生成物からメタキシレンを分離するには、特公平6−6
2456公報に記載の如く、軽質留分を蒸留分離した後
の残余の液をさらに蒸留分離し、必要なメタキシレン純
度によってはさらに吸着等の方法により精製することに
よって達成される。
Using ortho-xylene as a raw material, the products obtained as described above include light aromatic hydrocarbons such as benzene and toluene, unreacted ortho-xylene, meta-xylene produced as a result of the isomerization reaction, and some para-xylene. And heavy aromatic hydrocarbons such as trimethylbenzene. To separate meta-xylene from the product,
As described in Japanese Patent No. 2456, this can be achieved by further distilling and separating the remaining liquid after distilling and separating the light fraction, and further purifying by a method such as adsorption depending on the required purity of meta-xylene.

【0026】本発明の触媒再生方法においては、コーク
の付着した使用済みのZSM−4及び/又はオメガゼオ
ライトを含有する触媒(以下単に使用済み触媒と称する
ことがある)と酸素含有ガスとを、温度が400℃以下
の条件で接触させる。酸素含有ガス中の酸素濃度は任意
であるが、触媒床温度が400℃以下にコントロール可
能な程度にコークを燃焼させるという観点から、0.5
〜30体積%が好ましい。この酸素含有ガス中の酸素以
外の成分としては、窒素、アルゴン、炭酸ガス、ヘリウ
ム等の不活性ガスが好ましい。かかる酸素含有ガスは、
空気、空気を不活性ガスで適量希釈したガス、又は酸素
ガスに不活性ガスを適量混合したガスとして得ることが
できる。使用済み触媒の再生における処理圧力は任意に
選ぶ事ができる。
In the catalyst regenerating method of the present invention, a catalyst containing used ZSM-4 and / or omega zeolite to which coke is attached (hereinafter may be simply referred to as used catalyst) and an oxygen-containing gas are used. The contact is performed at a temperature of 400 ° C. or less. The oxygen concentration in the oxygen-containing gas is arbitrary, but from the viewpoint of burning the coke to such an extent that the catalyst bed temperature can be controlled to 400 ° C. or less, 0.5
-30% by volume is preferred. As a component other than oxygen in the oxygen-containing gas, an inert gas such as nitrogen, argon, carbon dioxide, and helium is preferable. Such an oxygen-containing gas is
It can be obtained as air, a gas obtained by diluting an appropriate amount of air with an inert gas, or a gas obtained by mixing an appropriate amount of an inert gas with an oxygen gas. The processing pressure in the regeneration of the used catalyst can be arbitrarily selected.

【0027】本発明においては、異性化反応器中にある
使用済み触媒を取り出すことなく前述の触媒再生方法を
適用するのが好ましいが、異性化反応器より使用済み触
媒を取り出し、これを別の燃焼反応器に充填して触媒再
生を実施し、再び異性化反応器に充填することもでき
る。
In the present invention, it is preferable to apply the above-mentioned catalyst regeneration method without taking out the used catalyst in the isomerization reactor. However, the used catalyst is taken out from the isomerization reactor, and this is separated into another. It is also possible to charge the combustion reactor to regenerate the catalyst, and then charge the isomerization reactor again.

【0028】[0028]

【実施例】次に実施例を掲げて本発明を具体的に説明す
る。
Next, the present invention will be described specifically with reference to examples.

【0029】[実施例1]オメガゼオライト(東ソー
(株)製)50gを、10%塩化アンモニウム水溶液5
00ml中に投入し、還流下一昼夜保持してイオン交換
を実施した。この操作をさらに3回繰り返した後、濾過
し水洗を行い、得られた粉体を90℃で一晩乾燥するこ
とによって水素型オメガゼオライトを得た。
[Example 1] 50 g of omega zeolite (manufactured by Tosoh Corporation) was added to a 10% aqueous ammonium chloride solution 5
The mixture was charged into 00 ml, and kept under reflux for one day to perform ion exchange. After repeating this operation three more times, the mixture was filtered and washed with water, and the obtained powder was dried at 90 ° C. overnight to obtain a hydrogenated omega zeolite.

【0030】得られた水素型オメガゼオライトに等重量
のゲル状γ−アルミナ(触媒化成製ACP−1)を加え
充分混合した後10〜20メッシュの大きさに成型し
た。成型物を500℃、空気流通下で電気炉中焼成し、
このうちの5gをアップフロー式ガラス製縦型反応管に
充填した。水素を常圧下流通させつつ触媒床温度を14
0℃とした後、オルソキシレンを2.5g/hrの流速
で供給し、オルソキシレンの異性化反応を実施した。通
油後240時間後に得られた生成物を捕集し成分分析し
た。
To the obtained hydrogen-type omega zeolite was added an equal weight of gel-like γ-alumina (ACP-1 manufactured by Catalyst Chemicals Co., Ltd.), and the mixture was sufficiently mixed and molded into a size of 10 to 20 mesh. The molded product is fired in an electric furnace at 500 ° C. under air flow,
5 g of this was filled in an upflow glass vertical reaction tube. While flowing hydrogen under normal pressure, the catalyst bed temperature was raised to 14
After the temperature was reduced to 0 ° C., ortho-xylene was supplied at a flow rate of 2.5 g / hr to carry out an isomerization reaction of ortho-xylene. The product obtained 240 hours after oil passing was collected and analyzed for components.

【0031】続いて、480時間通油した後、オルソキ
シレンの流通を停止した。窒素を流通させて水素および
有機物をパージした後、常圧にて空気を20ml/mi
nの流速で流通させ、触媒床温度を徐々に上げて350
℃とし、350℃で48時間流通させることによって触
媒の再生を実施した。
Subsequently, after passing the oil for 480 hours, the flow of ortho-xylene was stopped. After purging with hydrogen and organic matter by flowing nitrogen, air is blown at 20 ml / mi at normal pressure.
n, and gradually raise the catalyst bed temperature to 350
° C and the catalyst was regenerated by flowing at 350 ° C for 48 hours.

【0032】触媒再生後、系内を水素置換し、再び上記
と同じオルソキシレン異性化反応を480時間実施し
た。
After the regeneration of the catalyst, the inside of the system was replaced with hydrogen, and the same orthoxylene isomerization reaction was carried out again for 480 hours.

【0033】上記の操作を繰り返して、反応を5サイク
ル、触媒再生を4回実施し、240時間後の生成物の分
析値を比較した。結果を表1に示す。
By repeating the above operation, the reaction was repeated 5 times and the catalyst was regenerated 4 times, and the analysis values of the products after 240 hours were compared. Table 1 shows the results.

【0034】[比較例1]触媒再生温度を500℃とし
た他は実施例1と同じ方法でオルソキシレン異性化反応
及び触媒再生を実施した。結果を表1に示す。表1の結
果によれば。触媒再生を繰り返す毎に活性が次第に低下
していくことは明らかである。
Comparative Example 1 An orthoxylene isomerization reaction and catalyst regeneration were carried out in the same manner as in Example 1 except that the catalyst regeneration temperature was set at 500 ° C. Table 1 shows the results. According to the results in Table 1. It is clear that the activity gradually decreases as the catalyst regeneration is repeated.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】以上述べた本発明によれば、安定した性
能を長時間発揮しながら高純度のメタキシレンを製造す
ることが可能になる。
According to the present invention described above, it becomes possible to produce high-purity meta-xylene while exhibiting stable performance for a long time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ZSM−4及び/又はオメガゼオライト
を含有する触媒を使用し、気相又は液相でオルソキシレ
ンを異性化することによりメタキシレンを製造する方法
において、異性化反応の活性が低下した該触媒を、酸素
含有ガス中にて、400℃以下で処理して再生すること
を特徴とするメタキシレンの製造方法。
1. A process for producing meta-xylene by isomerizing ortho-xylene in a gas phase or a liquid phase using a catalyst containing ZSM-4 and / or omega zeolite, wherein the activity of the isomerization reaction is reduced. A method for producing meta-xylene, comprising regenerating the catalyst by treating the catalyst in an oxygen-containing gas at 400 ° C. or lower.
【請求項2】 該異性化反応を100℃〜300℃の範
囲の温度で行うことを特徴とする請求項1に記載のメタ
キシレンの製造方法。
2. The method for producing meta-xylene according to claim 1, wherein the isomerization reaction is performed at a temperature in the range of 100 ° C. to 300 ° C.
JP9018494A 1997-01-31 1997-01-31 Production of metaxylene Pending JPH10212251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9018494A JPH10212251A (en) 1997-01-31 1997-01-31 Production of metaxylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9018494A JPH10212251A (en) 1997-01-31 1997-01-31 Production of metaxylene

Publications (1)

Publication Number Publication Date
JPH10212251A true JPH10212251A (en) 1998-08-11

Family

ID=11973182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9018494A Pending JPH10212251A (en) 1997-01-31 1997-01-31 Production of metaxylene

Country Status (1)

Country Link
JP (1) JPH10212251A (en)

Similar Documents

Publication Publication Date Title
US4341914A (en) Transalkylation process with recycle of C10 hydrocarbons
RU2514423C1 (en) Method for xylene and ethylbenzene isomerisation using uzm-35
US4642406A (en) High severity process for xylene production employing a transalkylation zone for xylene isomerization
TW200914415A (en) Xylene production processes and apparatus with integrated feedstock treatment
US6355852B1 (en) Selective aromatics transalkylation
KR0145694B1 (en) Preparation of a dimethyltetralin
RU2448937C2 (en) Method of converting ethylbenzene and method of producing para-xylene
US10358401B2 (en) Process for recovering para-xylene using a metal organic framework adsorbent in a simulated moving-bed process
US4766264A (en) Aromatization of paraffins
US5132479A (en) Mordenite-based catalyst containing at least one metal from group viii and its use for isomerizing a c8 aromatic fraction
NO146056B (en) PROCEDURE FOR VAPOR PHASE ISOMERIZATION OF A MIXTURE OF ALKYLAROMATIC COMPOUNDS FOR P-XYLENE PREPARATION
US4061690A (en) Method of catalytic conversion of butane
US11845718B2 (en) Process for producing p-xylene and ethylbenzene from C8 aromatic containing ethylbenzene
US4139571A (en) C8 Alkyl aromatic hydrocarbon isomerization by recycling benzene and toluene
JPS63196528A (en) Manufacture of xylene by use of both isomerizing/transalkylating zone
CN112573986B (en) From C 8 Method for producing paraxylene from aromatic hydrocarbon
JPH10212251A (en) Production of metaxylene
JPH06287151A (en) Isomerization of dimethylnaphthalene
US4902843A (en) Process for producing M-xylene from O-xylene
EP3389858B1 (en) Catalyst composition, its preparation and process using such composition
RU2233260C2 (en) Selective isomerization of xylenes and conversion of ethylbenzene
KR810000478B1 (en) Process for the producing p-xylene
JPH1160516A (en) Production of meta-xylene
JPS6092225A (en) Isomerization of xylene
JPH01199917A (en) Production of 2-methylnaphthalene