JPH10212101A - Catalyst for producing hydrogen and oxygen and production of the same by thermal decomposition of water - Google Patents

Catalyst for producing hydrogen and oxygen and production of the same by thermal decomposition of water

Info

Publication number
JPH10212101A
JPH10212101A JP9029727A JP2972797A JPH10212101A JP H10212101 A JPH10212101 A JP H10212101A JP 9029727 A JP9029727 A JP 9029727A JP 2972797 A JP2972797 A JP 2972797A JP H10212101 A JPH10212101 A JP H10212101A
Authority
JP
Japan
Prior art keywords
furnace vessel
oxygen
temperature
hydrogen
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9029727A
Other languages
Japanese (ja)
Other versions
JP3939389B2 (en
Inventor
Manabu Sasaki
學 佐々木
Noriyuki Yoshida
範行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ION KANZAI KK
Original Assignee
ION KANZAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ION KANZAI KK filed Critical ION KANZAI KK
Priority to JP02972797A priority Critical patent/JP3939389B2/en
Publication of JPH10212101A publication Critical patent/JPH10212101A/en
Application granted granted Critical
Publication of JP3939389B2 publication Critical patent/JP3939389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To lower the reaction temp. and to miniaturize the equipment by charging a mineral consisting essentially of silicon dioxide and another one consisting essentially of titanium oxide to a furnace vessel, reducing the pressure, injecting a pure water before or after reducing the pressure and simultaneously increasing stepwise the temp. of the inside of the furnace vessel and after reaching a specific final objective temp., keeping at the temp. under heating and additionally injecting the pure water. SOLUTION: The furnace vessel having a heat source capable of controlling the temp. and capable of rotating, vibrating and stirring is used. The quantity of the pure water to be initially injected is controlled to equal to or above that of the mineral. The starting temp. of the furnace vessel is setted to 100-200 deg.C, the final objective temp. is setted to 350-700 deg.C and the temp is increased so that the difference of the temp. at >=10min intervals from the starting temp is at least <=100 deg.C. After reaching the final objective temp., the temp. of the furnace vessel is maintained under heating so as not to be lowered to <=350 deg.C and the pure water is additionally injected so that the quantity of the pure water present in the furnace vessel is equal to or above that of the mineral.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水の熱分解による水素
と酸素の製造方法に関する。
The present invention relates to a method for producing hydrogen and oxygen by pyrolysis of water.

【0002】[0002]

【従来の技術】これまで、一般的には、水素と酸素の製
造は高校の教科書等に記述されている水の電気分解によ
って得る方法の他、メタンガスに700℃〜800℃に
加熱された水蒸気と反応させて得る水蒸気改質法が一般
的に良く知られている。また1000℃以上の高温下で
鉄等の触媒存在下で水が水素と酸素に分解することは公
知とされている。しかし、電気分解法は我が国のように
電気料金が高い国には今やほとんど普及しておらず、電
気エネルギーよりも効率の良い重油等の熱源を選べる水
蒸気改質法の方が普及していると言ってよい。しかし、
水蒸気改質法は、反応温度が前述のように高いことと、
地球温暖化の原因となる二酸化炭素の放出を伴う問題点
があり、電気分解法にも言えるが、設備が大規模化する
という欠点があった。これらの他に、本発明人が注目す
る旭化成工業が出願している特願平−165765にお
いては、その特許請求範囲の中で、「平均粒径2ミクロン以
下の珪素の微粉末と水を接触させることを特徴とする水
素の製造方法」とあったが、反応温度が常温よりわずか
数10℃高い温度であること、珪素を単に超微粉化した
だけであることから、本発明人の発明内容とは別個のも
のであることは明白である。例えば、本発明人の発明内
容は、後述するように銀の如き貴金属のように貴電位の
酸化還元電位(正の電極電位)を取る天然の珪素酸化物
の物質の状態から鉄や亜鉛の如き卑金属のように卑電位
の酸化還元電位(負の電極電位)まで低下させた触媒を
製造した点が大きく異なる所である。また、実施例でも
述べるが、本発明人の方法による水素発生率は、実用的
な程度に大きいことでも、旭化成工業の水素製造方法と
は似て非なるものであるが、珪素の微粉末を水に接触さ
せることで、有意な量の水素を発生させていることは注
目に値するものである。しかし、前述の旭化成工業の発
明の中で、珪素と水との接触のさせ方は撹拌や振とうさ
せること、珪素の粉末を超微粉化させることが、水素の
発生速度を向上させることについては、本発明人も全く
その通りと考えるものである。また、水素製造に用いる
水は必ずしも純水である必要はなく、水道水や工業用水
でよいと述べているが、本発明人の経験でも、確かにそ
の通りである。但し、水を高い効率で分解する水素と酸
素製造用の珪素酸化物やチタン酸化物の触媒は、後述す
るが、純水を使用しなければ製造が容易でないことも確
かである。
2. Description of the Related Art In general, hydrogen and oxygen are generally produced by a method in which water and hydrogen are produced by electrolysis of water described in high school textbooks or the like. A steam reforming method obtained by reacting with benzene is generally well known. It is known that water decomposes into hydrogen and oxygen in the presence of a catalyst such as iron at a high temperature of 1000 ° C. or higher. However, the electrolysis method has hardly spread in countries where electricity rates are high like Japan, and the steam reforming method, which can select a heat source such as heavy oil that is more efficient than electric energy, has spread. You can say. But,
In the steam reforming method, the reaction temperature is high as described above,
There is a problem with emission of carbon dioxide which causes global warming, and it can be said that it is an electrolysis method, but it has a disadvantage that equipment becomes large-scale. In addition to these, in Japanese Patent Application No. 165765 filed by Asahi Kasei Kogyo which the inventor of the present invention pays attention, in the claims, "contacting fine powder of silicon having an average particle diameter of 2 μm or less with water. The method of producing hydrogen is characterized by the fact that the reaction temperature is only several tens of degrees Celsius higher than room temperature, and that silicon is merely micronized. It is clear that this is separate from For example, the inventor's invention is based on the fact that, as described later, a natural silicon oxide substance that takes a noble potential oxidation-reduction potential (positive electrode potential) like a noble metal such as silver or the like such as iron or zinc. This is a major difference in that a catalyst whose base potential has been reduced to the oxidation-reduction potential (negative electrode potential) of a base potential, such as a base metal, is manufactured. Further, as described in Examples, the hydrogen generation rate by the method of the present inventor is similar to the hydrogen production method of Asahi Kasei Kogyo even if it is as large as practical, but the fine powder of silicon is used. It is noteworthy that the contact with water produces a significant amount of hydrogen. However, in the above-mentioned invention of Asahi Kasei Kogyo, the method of bringing silicon into contact with water is stirring or shaking, and the ultrafine powdering of silicon powder improves the rate of hydrogen generation. The inventor of the present invention believes that this is exactly the case. In addition, it is stated that the water used for hydrogen production is not necessarily pure water, but may be tap water or industrial water. However, according to the inventor's experience, this is true. However, a silicon oxide or titanium oxide catalyst for producing hydrogen and oxygen, which decomposes water with high efficiency, will be described later, but it is certain that the production is not easy unless pure water is used.

【0003】[0003]

【発明が解決しようとする課題】本発明による水素と酸
素の製造方法は、従来良く知られている水蒸気改質法に
比べて、反応温度を下げると共に、製造設備の小型化を
解決目標とする。
The method for producing hydrogen and oxygen according to the present invention aims at lowering the reaction temperature and miniaturizing the production equipment as compared with the conventionally well-known steam reforming method. .

【0004】[0004]

【課題を解決するための手段】前述の課題を解決するた
めに、水素と酸素製造用触媒の製造方法は、天然ゼオラ
イト、珪石等の二酸化珪素を主成分とする粉砕された鉱
物、及びルチル鉱石等の二酸化チタンを主成分とする粉
砕された鉱物を温度制御可能な熱源を有する回転若しく
は振動或いは撹拌可能な炉容器にあらかじめ投入して、
前記炉容器(以下、「炉容器」という)を回転若しくは
振動或いは炉容器内を撹拌させながら、炉容器内を真空
状態に真空引きし、その真空引き前後に、前記鉱物と同
等程度以上の重量の純水を注入すると共に、前記炉容器
内の出発温度を100℃〜200℃及び前記炉容器内の
最終目標温度約350℃〜700℃に設定して、炉容器
内温度を前記出発温度から約10分間以上の時間間隔で
少なくとも約100℃以下の温度差で温度上昇させる如
く、炉容器内温度を段階的に上昇させて、前記最終目標
温度に到達後、炉容器内温度が350℃以下にならない
よう加熱保持しながら、炉容器内に存在する純水量が前
記鉱物と同等程度以上の重量であるように追加注入する
ことによって、酸化物からの脱酸及びその脱酸による水
からの水素と酸素への分解による酸素濃度上昇が継続的
に起こり、炉容器内の酸素濃度の平衡状態への到達時或
いはその前後、前記炉容器内を真空状態まで真空引きす
ることによる水素や酸素及び水蒸気の排出を繰り返すこ
とによって、当該触媒の酸化還元電位を十分に下げた
後、ることで、純水からの水素及び酸素への分解反応に
係る反応速度を向上させることを特徴とする。また、水
素及び酸素の製造方法は、温度制御可能な熱源を有する
回転若しくは振動或いは撹拌可能な炉容器に、請求項1
記載の触媒をあらかじめ投入して純水と接触させて、継
続的に効率よく水素と酸素を純水から分解して製造する
ために、炉容器内に存在する純水量が前記触媒重量と同
等程度以上を保持できるように、随時注入すると共に、
前記炉容器(以下、「炉容器」という)を回転若しくは
振動或いは炉容器内を撹拌させながら、炉容器内を真空
状態に真空引きし、その真空引き前後に、前記炉容器内
の出発温度を100℃〜200℃及び前記炉容器内の最
終目標温度を約350℃〜700℃に設定して、炉容器
内温度を前記出発温度から約10分間以上の時間間隔で
少なくとも約100℃以下の温度差で温度上昇させる如
く、炉容器内温度を段階的に上昇させて、前記最終目標
温度に到達後、炉容器内温度が350℃以下にならない
よう加熱保持しながら、酸化物からの脱酸及びその脱酸
による水からの水素と酸素への分解による酸素濃度上昇
が起こり、炉容器内の酸素濃度の平衡状態への到達時或
いはその前後、純水から水素と酸素への分解反応速度を
向上させるため、前記炉容器内を真空状態まで真空引き
することによる水素や酸素及び水蒸気の回収を繰り返す
ことを特徴とする。前記の触媒重量は、前記炉容器の容
積に対し、概ね1重量%以上、例えば、容器の容積が1
0リットルであれば、100g以上あればよいが、触媒の劣
化を考慮して、長期間の連続運転を可能とするために
は、触媒重量は多い方が好ましく、前記容積比10重量
%程度〜50重量%あった方が望ましい。
In order to solve the above-mentioned problems, a method for producing a catalyst for producing hydrogen and oxygen includes a method for producing a pulverized mineral mainly composed of silicon dioxide such as natural zeolite and silica, and a rutile ore. Pulverized mineral containing titanium dioxide as a main component such as is previously charged into a rotatable or vibrating or stirrable furnace vessel having a temperature controllable heat source,
While the furnace vessel (hereinafter referred to as "furnace vessel") is rotated or vibrated or the inside of the furnace vessel is stirred, the inside of the furnace vessel is evacuated to a vacuum state, and before and after the evacuation, the weight is equal to or greater than that of the mineral. And the starting temperature in the furnace vessel is set to 100 ° C. to 200 ° C. and the final target temperature in the furnace vessel to about 350 ° C. to 700 ° C., and the temperature in the furnace vessel is reduced from the starting temperature. The temperature inside the furnace vessel is gradually increased so that the temperature inside the furnace vessel is raised at a temperature difference of at least about 100 ° C. or less at a time interval of about 10 minutes or more, and after reaching the final target temperature, the temperature inside the furnace vessel is 350 ° C. or less. By additionally injecting such that the amount of pure water present in the furnace vessel is equal to or greater than the weight of the mineral, while heating and holding so as not to be deoxidized, deoxidation from oxides and hydrogen from water due to the deoxidation are performed. And oxygen Oxygen concentration increase due to the decomposition of the gas occurs continuously, and at or around the time when the oxygen concentration in the furnace container reaches an equilibrium state, the discharge of hydrogen, oxygen, and water vapor by evacuating the furnace container to a vacuum state is performed. By repeating the process, the oxidation-reduction potential of the catalyst is sufficiently reduced, and then the reaction rate of the decomposition reaction of pure water into hydrogen and oxygen is improved. The method for producing hydrogen and oxygen is provided in a furnace container having a heat source capable of controlling the temperature, which can be rotated, vibrated, or stirred.
The catalyst described above is charged in advance and brought into contact with pure water, and in order to continuously and efficiently decompose hydrogen and oxygen from pure water to produce the pure water, the amount of pure water present in the furnace vessel is about the same as the catalyst weight. Injecting at any time so that the above can be maintained,
While the furnace vessel (hereinafter referred to as "furnace vessel") is rotated or vibrated or stirred in the furnace vessel, the inside of the furnace vessel is evacuated to a vacuum state, and before and after the evacuation, the starting temperature in the furnace vessel is reduced. 100 ° C. to 200 ° C. and a final target temperature in the furnace vessel set at about 350 ° C. to 700 ° C., and a temperature in the furnace vessel at a temperature interval of at least about 100 ° C. or less at a time interval of about 10 minutes or more from the starting temperature. In order to raise the temperature by the difference, the temperature inside the furnace vessel is increased stepwise, and after reaching the final target temperature, while heating and holding the temperature inside the furnace vessel so as not to be 350 ° C. or less, deoxidation from oxides and Oxygen concentration rises due to the decomposition of water into hydrogen and oxygen by the deoxidation, and the decomposition reaction rate of pure water to hydrogen and oxygen is improved before and after reaching the equilibrium state of the oxygen concentration in the furnace vessel. To make The serial furnace vessel and repeating the recovery of hydrogen and oxygen and water vapor by drawing a vacuum to a vacuum state. The weight of the catalyst is about 1% by weight or more based on the volume of the furnace vessel.
If it is 0 liters, it is sufficient that the amount is 100 g or more. However, in consideration of the deterioration of the catalyst, in order to enable continuous operation for a long period of time, it is preferable that the weight of the catalyst is large, and the volume ratio is about 10 wt% It is desirable that the content be 50% by weight.

【0005】実用的な程度に、純水からの水素と酸素へ
の分解反応速度が向上した請求項1記載の鉱物を触媒と
した当該触媒の酸化還元電位(電極電位ともいう)の実
測値は実施例にも後述するが最も低いものは−700m
V程度あり、その計測法は次の通りである。大気開放下
の常温25℃で、当該触媒粉体を、底部ガラスフィルタ
ーが設けられた細いガラス管内に封入し、またその当該
ガラス管は純水の入った容器内に浸漬され、その当該粉
体中に差し込まれた白金電極が、飽和カロメル電極(H
g・Hg2Cl2/KCl飽和)を参照電極(即ち、当該
白金電極が飽和塩化カリウムを寒天に溶解して作られた
塩橋を介して、当該参照電極と液絡されている)とした
電位差を、両者の電極間に接続した高い内部抵抗を有す
る電位差計(エレクトロメータ)の読み値とした電極電
位としている。具体的な計測方法は、例えば、技報堂出
版発行の藤嶋昭ら著「電気化学測定法(上)」に記述さ
れている。この鉱物の色は、薄黒い濃い灰色であること
からも、この鉱物は二酸化珪素と一酸化珪素の混合物
(以下、「シリカ酸化物」という)と考えられる。ちな
みに、使用前の前記鉱物については、鉱物の種類によっ
ても多少異なるが、電極電位は+数100mV程度であ
り、鉱物の色は、白若しくは、淡い灰色、又は淡いベー
ジュ色等である。前述の通り、当該触媒が収められた炉
容器に純水を注入しながら加熱焼成処理することによっ
て、純水から分解される水素と酸素の排気回数が多いほ
ど、当該触媒の電極電位を低くすることができる。電極
電位が低くなった触媒ほど、純水から水素と酸素への分
解反応速度が向上するのは後述する実施例の結果から疑
いのない事実であるので、当該触媒は、純水から水素と
酸素への分解反応を促進させる触媒としての機能を有す
ることが明らかである。請求項2の純水を分解する水素
と酸素の製造方法において、請求項1の触媒を純水に接
触させて、炉容器内温度を段階的に上昇させる理由は、
触媒の使用寿命を長くするためであり、炉容器内温度上
昇幅はできる限り小さくした方が望ましい。請求項2に
おいて、炉容器内温度を約350℃まで急激に上昇させ
ても、もちろん、純水が水素と酸素に分解することは当
然のことである。しかし、その弊害は経験的には、触媒
が納められた炉容器内温度の上昇が急勾配であるほど、
触媒の粉体の比表面積が小さくなる。即ち、触媒が粉体
状から、塊状になる場合が多いためであり、このような
場合、純水が水素と酸素への分解反応速度を低下させる
原因になるため、不都合である。同様のことが触媒製造
方法にも言えることであり、請求項2の出発温度は、で
きるだけ低い約100℃程度とし、最終目標温度を約5
00℃〜約700℃まで、前記出発温度から約10分〜
20分間の時間間隔で約50℃程度の温度差でゆっくり
温度上昇させる如く、炉容器内温度を段階的に上昇させ
て、前記最終目標温度に到達後、炉容器内温度が350
℃以下にならないよう加熱保持しながら、前記鉱物重量
と同等重量以上にあらかじめ注入された純水が炉容器内
に残留するように、随時注入することによって、酸化物
からの脱酸又はその脱酸による水からの水素と酸素への
分解による酸素濃度上昇が起こり、炉容器内の酸素濃度
の平衡状態への到達時、前記炉容器内を真空状態まで真
空引きすることによる水素や酸素及び水蒸気の排出を繰
り返して得られる薄黒い濃い灰色の鉱物の粉体を取り出
して、当該粉体の粒度が大きければ少なくとも数10ミ
クロン以下に微粉砕する等できるだけ小さい粒度に揃え
ることが望ましい。また、過度に還元反応が進行して当
該粉体に塊状の金属シリカが生成して混入した場合、金
属シリカが触媒として作用する純水の還元反応に寄与す
る比表面積は二酸化珪素及び一酸化珪素のシリカ酸化物
に比べて小さいため、これを除去した方が好ましい。ま
た、請求項1及び請求2において、「酸化物からの脱酸
及びその脱酸による水からの水素と酸素への分解による
酸素濃度上昇が起こり、炉容器内の酸素濃度の平衡状態
への到達時或いはその前後、純水から水素と酸素への分
解反応速度を向上させるため、前記炉容器内を真空状態
まで真空引きすることによる水素や酸素及び水蒸気の回
収を繰り返す」という記述は、炉容器内を常時真空ポン
プを動作させて真空引きしてもエネルギー効率的に得策
でないという判断があるからで、純水の水素と酸素への
分解反応速度に係る触媒の性能に応じたエネルギー効率
的に最も有利な真空ポンプの運転モードを選べばよい。
また、請求項1及び2において、触媒の製造や当該触媒
による純水から水素と酸素への分解について、純水では
なく、水道水等を使用した場合、電極電位の低い所定の
性能を満足させる触媒の製造が経験的に困難であった
が、本触媒から、水素と酸素を製造することには何ら問
題はなかった。しかし、水道水等の使用は純水に比べて
設備の腐食の問題が発生しやすい点からも設備の保守管
理上、必ずしも都合が良いとは言えない。このため請求
項2の水素と酸素製造用の原料に用いる水は純水と指定
したものである。尚、本発明の方法は、水素と酸素及び
水蒸気との混合ガスが純水から分解して得られるため、
この混合ガスから高純度の水素ガスを分離する必要性が
あるが、その方法は、ここでは詳細説明はせず、与野書
房発行の大角泰章著「水素貯蔵合金データブック」等の
関連文献にゆずるが、水素だけを選択的に吸蔵する水素
貯蔵合金による分離回収法、ゼオライトや活性炭等に吸
着効率の差を利用して酸素等の不純物を除去する吸着法
(PSA)等が知られている。
The measured value of the oxidation-reduction potential (also referred to as electrode potential) of the catalyst using the mineral as a catalyst according to claim 1, wherein the decomposition reaction rate of hydrogen from pure water to hydrogen and oxygen is improved to a practical extent. The lowest one is -700 m as will be described later in Examples.
V, and the measuring method is as follows. At room temperature of 25 ° C. under the open air, the catalyst powder is sealed in a thin glass tube provided with a bottom glass filter, and the glass tube is immersed in a container containing pure water, and the powder is dried. The platinum electrode inserted inside is a saturated calomel electrode (H
g · Hg 2 Cl 2 / KCl saturated) as a reference electrode (that is, the platinum electrode is liquid junction with the reference electrode via a salt bridge formed by dissolving saturated potassium chloride in agar), The electrode potential is defined as a read value of a potentiometer (electrometer) having a high internal resistance connected between the two electrodes. The specific measurement method is described in, for example, "Electrochemical Measurement Method (1)" by Akira Fujishima et al., Published by Gihodo Shuppan. Since the color of this mineral is dark dark gray, it is considered that this mineral is a mixture of silicon dioxide and silicon monoxide (hereinafter, referred to as “silica oxide”). Incidentally, the mineral before use is slightly different depending on the kind of the mineral, but the electrode potential is about + several hundred mV, and the color of the mineral is white, light gray, light beige or the like. As described above, by heating and baking while injecting pure water into a furnace container containing the catalyst, the greater the number of evacuations of hydrogen and oxygen decomposed from the pure water, the lower the electrode potential of the catalyst. be able to. The fact that the lower the electrode potential is, the higher the decomposition reaction rate of pure water to hydrogen and oxygen with the catalyst is, without doubt, from the results of Examples described later. It is clear that the compound has a function as a catalyst for accelerating the decomposition reaction into methane. In the method for producing hydrogen and oxygen for decomposing pure water according to claim 2, the reason for bringing the catalyst according to claim 1 into contact with pure water and increasing the temperature inside the furnace vessel stepwise is as follows.
In order to prolong the service life of the catalyst, it is desirable that the temperature rise in the furnace vessel be as small as possible. In claim 2, even when the temperature inside the furnace vessel is rapidly increased to about 350 ° C., it goes without saying that pure water is decomposed into hydrogen and oxygen. However, the adverse effect is empirically found that as the temperature in the furnace vessel containing the catalyst rises steeply,
The specific surface area of the catalyst powder is reduced. That is, the catalyst often changes from a powdery state to a massive state. In such a case, the pure water causes a reduction in the rate of the decomposition reaction into hydrogen and oxygen, which is inconvenient. The same can be said for the catalyst production method. The starting temperature in claim 2 is set to be as low as about 100 ° C., and the final target temperature is set to about 5 ° C.
From about 00 ° C. to about 700 ° C., from about 10 minutes
The temperature inside the furnace vessel is gradually increased so as to gradually increase the temperature by about 50 ° C. at a time interval of 20 minutes, and after reaching the final target temperature, the temperature inside the furnace vessel becomes 350 ° C.
Deoxidation from oxides or its deoxidation by injecting as necessary so that the pure water previously injected to the same weight or more as the mineral weight remains in the furnace vessel while heating and holding so as not to be below ℃. Oxygen concentration rises due to decomposition of hydrogen and oxygen from water by water, and when reaching an equilibrium state of oxygen concentration in the furnace vessel, hydrogen, oxygen, and water vapor by evacuation of the furnace vessel to a vacuum state It is desirable to take out the powder of the dark dark gray mineral obtained by repeating the discharge, and if the particle size of the powder is large, make it as small as possible such as finely pulverizing it to at least several tens of microns or less. Further, when the reduction reaction proceeds excessively to generate and mix agglomerated metal silica in the powder, the specific surface area of the metal silica that contributes to the reduction reaction of pure water acting as a catalyst is silicon dioxide and silicon monoxide. Since it is smaller than the silica oxide, it is preferable to remove it. Further, in claim 1 and claim 2, "the deoxidation from the oxide and the increase in the oxygen concentration due to the decomposition of water into hydrogen and oxygen by the deoxidation occur, and the oxygen concentration in the furnace vessel reaches the equilibrium state. At or before or after, in order to improve the decomposition reaction rate of pure water into hydrogen and oxygen, the recovery of hydrogen, oxygen and water vapor by evacuating the furnace vessel to a vacuum state is repeated. " There is a judgment that it is not energy-efficient to operate the vacuum pump constantly to evacuate the inside of the pump, so it is not energy-efficient to perform the reaction according to the catalyst performance related to the decomposition reaction rate of pure water to hydrogen and oxygen. The most advantageous operation mode of the vacuum pump may be selected.
Further, in claim 1 and 2, regarding the production of the catalyst and the decomposition of pure water into hydrogen and oxygen by the catalyst, when tap water is used instead of pure water, a predetermined performance with a low electrode potential is satisfied. Although production of the catalyst was empirically difficult, there was no problem in producing hydrogen and oxygen from the catalyst. However, the use of tap water or the like is not always convenient in terms of maintenance and management of the equipment because the problem of corrosion of the equipment is more likely to occur than with pure water. Therefore, the water used as the raw material for producing hydrogen and oxygen according to claim 2 is designated as pure water. In the method of the present invention, a mixed gas of hydrogen, oxygen, and steam is obtained by decomposing pure water,
It is necessary to separate high-purity hydrogen gas from this mixed gas, but the method is not described in detail here, and is given to relevant literature such as "Hydrogen Storage Alloy Data Book" by Yasuaki Osado published by Yono Shobo. However, there are known a separation and recovery method using a hydrogen storage alloy that selectively stores only hydrogen, and an adsorption method (PSA) that removes impurities such as oxygen by utilizing a difference in adsorption efficiency between zeolite and activated carbon.

【発明の実施の形態】以下、添付の図表を参照すること
等により、本発明の実施例について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0006】図1は、本発明の純水から水素と酸素に熱
分解する試験装置の系統図である。表1及び表2は、そ
れぞれ天然ゼオライトのシリカ酸化物及び珪石のシリカ
酸化物を原料として、本発明の水の熱分解による水素と
酸素の製造用触媒を製造した運転試験データの第一実施
例及び第二実施例である。下記の通り純水の還元反応進
行につれて、製造した触媒は一酸化珪素の配合割合が増
加した二酸化珪素と一酸化珪素の混合物であると推定さ
れる。製造される触媒に関するシリカ酸化物の酸化還元
反応及び純水の還元反応は次式のようであると考えられ
る。 触媒の還元反応: SiO2=SiO+O 純水の還元反応: H2O+O=H2+O2 触媒の酸化反応: SiO+1/2O2=SiO2 また、表3は、チタン酸化物を原料として、本発明の水
の熱分解による水素と酸素の製造用触媒を製造した運転
試験データの第三実施例である。下記の通り純水の還元
反応進行につれて、製造した触媒は一酸化チタンの配合
割合が増加した二酸化チタンと一酸化チタンとの混合物
であると推定される。製造される触媒に関するチタン酸
化物の酸化還元反応及び純水の還元反応は次式のようで
あると考えられる。 触媒の還元反応: TiO2=TiO+O 純水の還元反応: H2O+O=H2+O2 触媒の酸化反応: TiO+1/2O2=TiO2 尚、表1〜表3の実施例は、経過時間の進行につれて、
触媒の性能向上により、純水から水素と酸素に熱分解す
る反応速度が向上していることが分かる。従って、純水
から熱分解して得る水素と酸素の製造方法に関する運転
試験データの実施例は、経過時間が十分に大きい触媒を
使用すればよく、同様の運転試験データが得られるので
割愛している。表1〜表3の実施例はステンレス製炉容
器(以下、「炉容器」という)内をあらかじめ、0.1
気圧未満の絶対圧まで真空引きした後、水を約2リットル注
入して、入口弁と出口弁を閉止して、但し出口弁は1.
5気圧以上で開となる圧力調整弁が設けられている。そ
の後炉容器を加熱しながら、発生する酸素については酸
素濃度のオンライン計測を実施しているので、高精度な
データが得られているが、水素濃度についてはガステッ
クの水素ガス検知管によるバッチ計測を実施したもので
あるので、実験中のオンライン計測ができず、試験終了
間際に採取したデータであり、測定データの精度は酸素
濃度のオンライン計測データに比べあまり良くない。炉
容器の加熱時、当初はその炉容器内には、大部分が水で
あって、わずかの空気が存在するのみであるが、炉容器
内温度の上昇につれ、概ね350℃以上から酸素濃度等
が急上昇することが分かる。表1における酸素濃度(体
積%)の約1倍〜2倍の数値が水素濃度(体積%)で、
更に、水蒸気濃度は100%からその酸素濃度と水素濃
度の和(体積%)を差し引いた数値にほぼ等しい。以
下、請求項1のシリカ酸化物、チタン酸化物を触媒に用
いて、水から水素と酸素に分解する下記試験条件で実施
した試験結果を表1〜表3まで示す。但し、酸素濃度と
水素濃度は常温で測定している。別紙の表は、経過時間
が大きくなるについて、炉容器内の酸素濃度の上昇率が
高くなっていることが分かる。例えば、表1の場合は、
78分において、炉容器内を真空状態にすると同時に、
純水を注入して、80分において、酸素濃度が上昇して
いる。同様に、800分から802分にかけても同様で
あるが、経過時間が大きい程、酸素濃度の上昇率が高く
なっている。更に、表2の場合は、78分において、炉
容器内を真空状態にすると同時に、純水を注入して、8
0分において、酸素濃度が上昇している。同様に150
0分から1506分にかけても同様であるが、経過時間
が大きい程、酸素濃度の上昇率が高くなっている。表3
の場合も、78分において、炉容器内を真空状態にする
と同時に、純水を注入して、80分において、酸素濃度
が上昇している。同様に1000分から1002分にか
けても同様であるが、経過時間が大きい程、酸素濃度の
上昇率が高くなっている。別紙の表1のように、同一元
素の当該触媒間では、当該触媒の電極電位が低いものが
純水から水素と酸素への分解効率が高く、反応終了後の
当該触媒における純水の水素と酸素への分解効率は、反
応終了直前の運転試験データにほぼ等しい(経過時間8
00分から802分までの分解反応を示す。)はずであ
るから、この場合の酸素と水素の発生率は、ボイル・シ
ャルルの法則から、酸素:0.3Nm3/h、水素:
0.45Nm3/hと計算される。この時の使用電力量
は、約2kWh程度である。従って、水素の製造効率
は、従来の水の電気分解法や前記水蒸気改質法の場合、
水素1Nm3当り、約6kwh程度の電力量が必要と言
われるが、これらに比べても、決して劣ることはないと
考えられる。
FIG. 1 is a system diagram of a test apparatus for thermally decomposing pure water into hydrogen and oxygen according to the present invention. Tables 1 and 2 show the first example of the operation test data for producing the catalysts for producing hydrogen and oxygen by pyrolysis of water of the present invention, respectively, using silica oxides of natural zeolite and silica oxide as raw materials. And a second embodiment. As described below, as the pure water reduction reaction proceeds, the produced catalyst is estimated to be a mixture of silicon dioxide and silicon monoxide in which the blending ratio of silicon monoxide has increased. The oxidation-reduction reaction of silica oxide and the reduction reaction of pure water with respect to the produced catalyst are considered to be as follows. Reduction reaction of catalyst: SiO2 = SiO + O Reduction reaction of pure water: H2O + O = H2 + O2 Oxidation reaction of catalyst: SiO + 1 / 2O2 = SiO2 Table 3 shows that titanium oxide is used as a raw material, and hydrogen is generated by thermal decomposition of water of the present invention. It is a 3rd Example of the operation test data which produced the catalyst for oxygen production. As described below, as the reduction reaction of pure water progresses, it is estimated that the produced catalyst is a mixture of titanium dioxide and titanium monoxide in which the mixing ratio of titanium monoxide has increased. The oxidation-reduction reaction of titanium oxide and the reduction reaction of pure water with respect to the produced catalyst are considered to be as follows. Reduction reaction of catalyst: TiO2 = TiO + O Reduction reaction of pure water: H2O + O = H2 + O2 Oxidation reaction of catalyst: TiO + 1 / 2O2 = TiO2 In Examples of Tables 1 to 3, as the elapsed time elapses,
It can be seen that the reaction rate for thermally decomposing pure water into hydrogen and oxygen is improved by improving the performance of the catalyst. Therefore, in the embodiment of the operation test data relating to the method for producing hydrogen and oxygen obtained by thermal decomposition from pure water, it is sufficient to use a catalyst having a sufficiently long elapsed time, and the same operation test data can be obtained. I have. In Examples of Tables 1 to 3, the inside of a stainless steel furnace vessel (hereinafter, referred to as a "furnace vessel") was previously set to 0.1 mm.
After evacuating to an absolute pressure less than atmospheric pressure, about 2 liters of water are injected, and the inlet and outlet valves are closed, except for the outlet valve which is 1.
A pressure regulating valve that opens at 5 atmospheres or more is provided. After that, while heating the furnace vessel, online measurement of the oxygen concentration of the generated oxygen was carried out, so high-precision data was obtained, but for the hydrogen concentration, batch measurement using a gas tech hydrogen gas detector tube Therefore, the on-line measurement during the experiment cannot be performed, and the data is collected immediately before the end of the test. The accuracy of the measurement data is not so good as compared with the on-line measurement data of the oxygen concentration. At the time of heating the furnace vessel, initially, most of the water is in the furnace vessel and only a small amount of air is present. Is seen to rise rapidly. The hydrogen concentration (vol%) is about 1 to 2 times the value of the oxygen concentration (vol%) in Table 1,
Further, the water vapor concentration is substantially equal to a value obtained by subtracting the sum (volume%) of the oxygen concentration and the hydrogen concentration from 100%. Hereinafter, Tables 1 to 3 show test results obtained by using the silica oxide and titanium oxide of claim 1 as catalysts and decomposing water into hydrogen and oxygen under the following test conditions. However, the oxygen concentration and the hydrogen concentration were measured at room temperature. The table on the separate sheet shows that the rate of increase in the oxygen concentration in the furnace vessel increases as the elapsed time increases. For example, in the case of Table 1,
At 78 minutes, the inside of the furnace vessel was evacuated,
Oxygen concentration is increased 80 minutes after pure water is injected. Similarly, the same applies from 800 minutes to 802 minutes, but the greater the elapsed time, the higher the rate of increase in the oxygen concentration. Furthermore, in the case of Table 2, at 78 minutes, the inside of the furnace vessel was evacuated, and simultaneously,
At 0 minutes, the oxygen concentration is increasing. Similarly 150
The same applies to the period from 0 minute to 1506 minutes, but the longer the elapsed time, the higher the oxygen concentration increase rate. Table 3
In the case of (1), the inside of the furnace vessel was evacuated at 78 minutes and pure water was injected at the same time, and the oxygen concentration increased at 80 minutes. Similarly, the same applies from 1000 minutes to 1002 minutes, but the longer the elapsed time, the higher the rate of increase in the oxygen concentration. As shown in Table 1 of the attached sheet, among the catalysts of the same element, those having a low electrode potential have a high decomposition efficiency of pure water to hydrogen and oxygen, and the hydrogen of pure water in the catalyst after the reaction is completed. The decomposition efficiency to oxygen is almost equal to the operation test data immediately before the end of the reaction (elapsed time 8
The decomposition reaction from 00 minutes to 802 minutes is shown. ), The oxygen and hydrogen generation rates in this case are determined by Boyle-Charles' law as follows: oxygen: 0.3 Nm 3 / h, hydrogen:
It is calculated to be 0.45 Nm3 / h. The amount of power used at this time is about 2 kWh. Therefore, the production efficiency of hydrogen, in the case of the conventional water electrolysis method and the steam reforming method,
It is said that about 6 kWh of electric power is required per 1 Nm3 of hydrogen, but it is considered that it is not inferior to these.

【0007】次の表1〜表3の試験条件は、明細書の頁
の最後の末尾に掲げた
The test conditions in the following Tables 1 to 3 are listed at the end of the page of the specification.

【表1】〜[Table 1] ~

【表3】の実施例に対応するものである。 (表1の試験条件) ステンレス製炉容器体積:13リットル 貯留タンク容積:26リットル 抽出配管容積:3リットル 触媒の種類:天然ゼオライト 触媒重量:500g 反応開始前の触媒の電極電位(実測値):+200mV 反応終了後の触媒の電極電位(実測値):−700mV (表2の試験条件) ステンレス製炉容器体積:13リットル 貯留タンク容積:26リットル 抽出配管容積:3リットル 触媒の種類:石英 触媒重量:500g 反応開始前の触媒の電極電位(実測値):+200mV 反応終了後の触媒の電極電位(実測値):−100mV (表3の試験条件) ステンレス製炉容器体積:13リットル 貯留タンク容積:26リットル 抽出配管容積:3リットル 触媒の種類:ルチル鉱石 触媒重量:500g 反応開始前の触媒の電極電位(実測値):+400mV 反応終了後の触媒の電極電位(実測値):+50mVThis corresponds to the example of Table 3. (Test conditions in Table 1) Stainless steel furnace container volume: 13 liters Storage tank volume: 26 liters Extraction pipe volume: 3 liters Catalyst type: natural zeolite Catalyst weight: 500 g Electrode potential of the catalyst before the start of the reaction (actual value): +200 mV Electrode potential of catalyst after completion of reaction (actual measurement value): -700 mV (test conditions in Table 2) Stainless steel furnace container volume: 13 liter Storage tank volume: 26 liter Extraction pipe volume: 3 liter Catalyst type: quartz Catalyst weight : 500 g Electrode potential of catalyst before start of reaction (actual value): +200 mV Electrode potential of catalyst after reaction (actual value): -100 mV (Test conditions in Table 3) Stainless steel furnace container volume: 13 liter Storage tank volume: 26 liters Extraction pipe volume: 3 liters Catalyst type: rutile ore Catalyst weight: 500 g Catalyst before the start of reaction Electrode potential (actual value): +400 mV Electrode potential of catalyst after completion of reaction (actual value): +50 mV

【0008】[0008]

【発明の効果】現在、水素は化学工業、半導体素子製
造、金属冶金、食品加工等幅広い産業分野で大量に使用
されているのは周知の通りである。以上説明したよう
に、本発明によれば、前述の通り、従来良く知られてい
る水蒸気改質法等に比べて、反応温度が低く、設備も小
型化が可能である。また、水蒸気改質法と違って原料は
純水だけである点、昨今、地球温暖化による炭酸ガスの
排出規制が世界的に行われようとしている中、炭酸ガス
の排出量が極めて少なくなるのも重要な利点と考えられ
る。その他、何よりも純水が水素と酸素に分解する反応
温度が概ね350℃程度と低いため、火力発電所や原子
力発電所のタービンの廃熱利用や市町村のゴミ焼却場の
焼却炉の廃熱利用による水素製造も可能である。このた
め、大幅な水素の製造コスト低減がはかられると見られ
る。これらによりこれまで水素ガスは大規模な事業所で
なければ製造不可能であったが、小規模事業所での製造
可能性が生まれ、将来的に、本発明人が切に望む、ガソ
リンや軽油を燃料とする自動車に比べて環境負荷が小さ
い水素自動車の普及にも資することができる。
At present, it is well known that hydrogen is used in large quantities in a wide range of industrial fields such as the chemical industry, semiconductor device manufacturing, metallurgy and food processing. As described above, according to the present invention, as described above, the reaction temperature is lower and the equipment can be reduced in size as compared with a conventionally well-known steam reforming method or the like. Also, unlike the steam reforming method, the only raw material is pure water.In recent years, carbon dioxide emissions have become extremely low as carbon dioxide emissions are being regulated worldwide due to global warming. Are also considered important advantages. Above all, the reaction temperature at which pure water decomposes into hydrogen and oxygen is as low as about 350 ° C, so waste heat from turbines in thermal power plants and nuclear power plants and waste heat from incinerators in municipal incineration plants Hydrogen production is also possible. For this reason, it is expected that the production cost of hydrogen can be significantly reduced. In the past, hydrogen gas could not be produced unless it was a large-scale business establishment.However, the possibility of producing hydrogen gas at a small-scale business establishment has been created.In the future, gasoline and light oil It can also contribute to the spread of hydrogen vehicles, which have a lower environmental impact than vehicles using hydrogen as fuel.

【0009】[0009]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水を熱分解して得る水素と酸素の製
造装置の系統図である。
FIG. 1 is a system diagram of an apparatus for producing hydrogen and oxygen obtained by thermally decomposing pure water according to the present invention.

【符号の説明】[Explanation of symbols]

1 炉容器 2 電気ヒーター 3 混合ガス貯留容器 4 純水貯蔵容器 5 真空ポンプ 6 熱電対温度制御装置 7 酸素濃度計 8 循環ポンプ(触媒と水の注入及び戻し用) 9 入口弁 10 出口弁 11 隔離弁 DESCRIPTION OF SYMBOLS 1 Furnace container 2 Electric heater 3 Mixed gas storage container 4 Pure water storage container 5 Vacuum pump 6 Thermocouple temperature control device 7 Oxygen meter 8 Circulation pump (for injection and return of catalyst and water) 9 Inlet valve 10 Outlet valve 11 Isolation valve

【0010】[0010]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 経過時間(分)|温度(℃)|注入量(リットル)|圧力(気圧)|酸素濃度(%)|水素濃度(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 0| 15| 2| 0.1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 13| 100| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 26| 150| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 39| 200| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 52| 250| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 65| 300| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 78| 350| 0.3| 0.1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 80| 350| 0| 0.5| 2| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 以下、途中の経過時間の試験データを割愛する。 ・・・・・・・・・・・・・・・・・・・・・・・・ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 800| 350| 0.3| 0.2| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 802| 350| 0| 1.6| 21| 約30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 1 Elapsed time (minutes) | Temperature (° C) ------------------------------------------- | Injection volume (liter) | Pressure (atmospheric pressure) | Oxygen concentration (%) | Hydrogen concentration (%) -------------------------------------- −−−−−−−−− 0 | 15 | 2 | 0.1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−− 13 | 100 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −26− 150 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 39 | 200 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 52 | 250 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−− 65 | 300 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− 78 | 350 | 0.3 | 0.1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− 80 | 350 | 0 | 0.5 | 2 | −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− Hereinafter, the test data of the elapsed time in the middle is omitted. .....................-------------------------------------------------------------------------------------------------------- −−−−−−−−−−− 800 | 350 | 0.3 | 0.2 | 0 | −−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− 802 | 350 | 0 | 1.6 | 21 | Approx. 30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−

【0011】[0011]

【表2】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 経過時間(分)|温度(℃)|注入量(リットル)|圧力(気圧)|酸素濃度(%)|水素濃度(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 0| 15| 2| 0.1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 13| 100| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 26| 150| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 39| 200| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 52| 250| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 65| 300| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 78| 350| 0.3| 0.1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 80| 350| 0| 0.5| 1| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 以下、途中の経過時間の試験データを割愛する。 ・・・・・・・・・・・・・・・・・・・・・・・・ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1500| 350| 0.3| 0.2| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1506| 350| 0| 0.9| 18| 約20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 2 Elapsed time (minutes) | Temperature (° C)------------------------------ | Injection volume (liter) | Pressure (atmospheric pressure) | Oxygen concentration (%) | Hydrogen concentration (%) -------------------------------------- −−−−−−−−− 0 | 15 | 2 | 0.1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−− 13 | 100 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −26− 150 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 39 | 200 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 52 | 250 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−− 65 | 300 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− 78 | 350 | 0.3 | 0.1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− 80 | 350 | 0 | 0.5 | 1 | −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− Hereinafter, the test data of the elapsed time in the middle is omitted. .....................-------------------------------------------------------------------------------------------------------- −−−−−−−−−− 1500 | 350 | 0.3 | 0.2 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−− 1506 | 350 | 0 | 0.9 | 18 | Approx. 20 --------------------------------------------------------- −−−−−−−−−−−−

【0012】[0012]

【表3】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 経過時間(分)|温度(℃)|注入量(リットル)|圧力(気圧)|酸素濃度(%)|水素濃度(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 0| 15| 2| 0.1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 13| 100| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 26| 150| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 39| 200| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 52| 250| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 65| 300| 0| 1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 78| 350| 0.3| 0.1| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 80| 350| 0| 0.5| 1| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 以下、途中の経過時間の試験データを割愛する。 ・・・・・・・・・・・・・・・・・・・・・・・・ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1000| 350| 0.3| 0.2| 0| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1002| 350| 0| 0.8| 14| 約20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 3 Elapsed time (minutes) | Temperature (° C) ------------------------------------------- | Injection volume (liter) | Pressure (atmospheric pressure) | Oxygen concentration (%) | Hydrogen concentration (%) -------------------------------------- −−−−−−−−− 0 | 15 | 2 | 0.1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−− 13 | 100 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −26− 150 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 39 | 200 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 52 | 250 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−− 65 | 300 | 0 | 1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− 78 | 350 | 0.3 | 0.1 | 0 | −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− 80 | 350 | 0 | 0.5 | 1 | −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− Hereinafter, the test data of the elapsed time in the middle is omitted. .....................-------------------------------------------------------------------------------------------------------- −−−−−−−−−−− 1000 | 350 | 0.3 | 0.2 | 0 | −−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− 1002 | 350 | 0 | 0.8 | 14 | about 20 −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】天然ゼオライト、珪石等の二酸化珪素を主
成分とする粉砕された鉱物、及びルチル鉱石等の二酸化
チタンを主成分とする粉砕された鉱物(以下、両者の粉
砕された鉱物を「鉱物」という)を温度制御可能な熱源
を有する回転若しくは振動或いは撹拌可能な炉容器にあ
らかじめ投入して、前記炉容器(以下、「炉容器」とい
う)を回転若しくは振動或いは炉容器内を撹拌させなが
ら、炉容器内を真空状態に真空引きし、その真空引き前
後に、前記鉱物と同等程度以上の重量の純水を注入する
と共に、前記炉容器内の出発温度を100℃〜200℃
及び前記炉容器内の最終目標温度約350℃〜700℃
に設定して、炉容器内温度を前記出発温度から約10分
間以上の時間間隔で少なくとも約100℃以下の温度差
で温度上昇させる如く、炉容器内温度を段階的に上昇さ
せて、前記最終目標温度に到達後、炉容器内温度が35
0℃以下にならないよう加熱保持しながら、炉容器内に
存在する純水量が前記鉱物と同等程度以上の重量である
ように追加注入することによって、酸化物からの脱酸
(酸素が離脱することを言う、以下同じ)及びその脱酸
による水からの水素と酸素への分解による酸素濃度上昇
が継続的に起こり、炉容器内の酸素濃度の平衡状態への
到達時或いはその前後、前記炉容器内を真空状態まで真
空引きすることによる水素や酸素及び水蒸気の排出を繰
り返すことによって、当該鉱物の酸化還元電位を下げる
ことで、純水からの水素及び酸素への分解反応に係る反
応速度を向上させることを特徴とする水素と酸素製造用
触媒の製造方法。
1. A crushed mineral mainly composed of silicon dioxide such as natural zeolite and silica stone, and a crushed mineral mainly composed of titanium dioxide such as rutile ore (hereinafter, both crushed minerals are referred to as "mineral"). Minerals) are previously charged into a rotatable, vibrating, or stirrable furnace vessel having a temperature controllable heat source, and the furnace vessel (hereinafter, referred to as a "furnace vessel") is rotated, vibrated, or stirred inside the furnace vessel. While the inside of the furnace container was evacuated to a vacuum state, before and after the evacuation, pure water having a weight equal to or more than that of the mineral was injected, and the starting temperature in the furnace container was set to 100 ° C. to 200 ° C.
And a final target temperature in the furnace vessel of about 350 ° C to 700 ° C.
The temperature inside the furnace vessel is increased stepwise so that the temperature inside the furnace vessel is raised from the starting temperature by a temperature difference of at least about 100 ° C. at a time interval of about 10 minutes or more, and the final temperature is increased. After reaching the target temperature, the temperature inside the furnace
Deoxidation from oxides (oxygen desorption) by additionally injecting so that the amount of pure water present in the furnace vessel is equal to or greater than the weight of the mineral while heating and maintaining the temperature not to be below 0 ° C. The same shall apply hereinafter) and the deoxygenation of water to decompose water into hydrogen and oxygen to continuously increase the oxygen concentration, and at or before and after the oxygen concentration in the furnace reaches an equilibrium state, By reducing the oxidation-reduction potential of the mineral by repeatedly discharging hydrogen, oxygen, and water vapor by evacuating the inside to a vacuum state, the reaction rate for the decomposition reaction of pure water into hydrogen and oxygen is improved. A method for producing a catalyst for producing hydrogen and oxygen.
【請求項2】温度制御可能な熱源を有する回転若しくは
振動或いは撹拌可能な炉容器に、請求項1記載の触媒を
あらかじめ投入して純水と接触させることで、継続的に
効率よく水素と酸素を純水から分解して製造するため
に、炉容器内に存在する純水量が前記触媒重量と同等程
度以上を保持できるように、随時注入すると共に、前記
炉容器(以下、「炉容器」という)を回転若しくは振動
或いは炉容器内を撹拌させながら、炉容器内を真空状態
に真空引きし、その真空引き前後に、前記炉容器内の出
発温度を100℃〜200℃及び前記炉容器内の最終目
標温度を約350℃〜700℃に設定して、炉容器内温
度を前記出発温度から約10分間以上の時間間隔で少な
くとも約100℃以下の温度差で温度上昇させる如く、
炉容器内温度を段階的に上昇させて、前記最終目標温度
に到達後、炉容器内温度が350℃以下にならないよう
加熱保持しながら、酸化物からの脱酸及びその脱酸によ
る水からの水素と酸素への分解による酸素濃度上昇が起
こり、炉容器内の酸素濃度の平衡状態への到達時或いは
その前後、純水から水素と酸素への分解反応速度を向上
させるため、前記炉容器内を真空状態まで真空引きする
ことによる水素や酸素及び水蒸気の回収を繰り返すこと
を特徴とする水素及び酸素の製造方法。
2. The catalyst according to claim 1 is previously charged into a rotatable, vibrating or agitating furnace vessel having a heat source whose temperature can be controlled and brought into contact with pure water, so that hydrogen and oxygen can be continuously and efficiently obtained. In order to decompose the catalyst from pure water and to produce the same, the amount of pure water present in the furnace vessel can be maintained at a level equivalent to or greater than the weight of the catalyst, and at any time, the furnace vessel (hereinafter, referred to as “furnace vessel”). ) Is evacuated to a vacuum state while rotating or vibrating or stirring the inside of the furnace container, and before and after the evacuation, the starting temperature in the furnace container is set to 100 ° C. to 200 ° C. A final target temperature is set at about 350 ° C. to 700 ° C., and the temperature in the furnace vessel is raised from the starting temperature by a temperature difference of at least about 100 ° C. at time intervals of about 10 minutes or more,
After the temperature inside the furnace vessel is increased stepwise, and after reaching the final target temperature, deoxidation from oxides and water from the water by the deoxidation are performed while heating and holding the temperature inside the furnace vessel so as not to be 350 ° C. or lower. Oxygen concentration increase due to decomposition into hydrogen and oxygen occurs, and at or before and after reaching an equilibrium state of oxygen concentration in the furnace vessel, to improve the rate of decomposition reaction from pure water to hydrogen and oxygen in the furnace vessel, A method for producing hydrogen and oxygen, comprising repeating the recovery of hydrogen, oxygen and water vapor by evacuating to a vacuum state.
JP02972797A 1997-01-28 1997-01-28 Catalyst for producing hydrogen and oxygen and method for producing hydrogen and oxygen by thermal decomposition of water Expired - Lifetime JP3939389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02972797A JP3939389B2 (en) 1997-01-28 1997-01-28 Catalyst for producing hydrogen and oxygen and method for producing hydrogen and oxygen by thermal decomposition of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02972797A JP3939389B2 (en) 1997-01-28 1997-01-28 Catalyst for producing hydrogen and oxygen and method for producing hydrogen and oxygen by thermal decomposition of water

Publications (2)

Publication Number Publication Date
JPH10212101A true JPH10212101A (en) 1998-08-11
JP3939389B2 JP3939389B2 (en) 2007-07-04

Family

ID=12284144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02972797A Expired - Lifetime JP3939389B2 (en) 1997-01-28 1997-01-28 Catalyst for producing hydrogen and oxygen and method for producing hydrogen and oxygen by thermal decomposition of water

Country Status (1)

Country Link
JP (1) JP3939389B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051612A1 (en) * 1997-05-13 1998-11-19 Yosohiro Sugie Method and apparatus for generating hydrogen gas by direct thermal decomposition of water
WO2001087769A1 (en) * 2000-05-15 2001-11-22 Yosohiro Sugie Hydrogen gas generating method
JP2006151731A (en) * 2004-11-29 2006-06-15 Hitachi Ltd Water decomposition method and its apparatus, and catalyst for decomposing water
JP2008524101A (en) * 2004-12-16 2008-07-10 アイピーシー インターナショナル パワー コンサルティング リミテッド Reactor for simultaneous separation of hydrogen and oxygen from water
JP2010131553A (en) * 2008-12-05 2010-06-17 Yasuo Ishikawa Hydrogen-generating catalyst
WO2010084790A1 (en) 2009-01-20 2010-07-29 Ishikawa Yasuo Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator
JP2013112576A (en) * 2011-11-30 2013-06-10 Yasuo Ishikawa Method and apparatus for generating hydrogen
JP2015218099A (en) * 2014-05-21 2015-12-07 株式会社デンソー Method and apparatus for decomposing water
US9376317B2 (en) 2010-01-06 2016-06-28 Yasuo Ishikawa Method of generating hydrogen
JP2018025375A (en) * 2016-07-31 2018-02-15 寛治 泉 Constitution method for engine burning hydrogen and oxygen

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051612A1 (en) * 1997-05-13 1998-11-19 Yosohiro Sugie Method and apparatus for generating hydrogen gas by direct thermal decomposition of water
WO2001087769A1 (en) * 2000-05-15 2001-11-22 Yosohiro Sugie Hydrogen gas generating method
US6630119B1 (en) 2000-05-15 2003-10-07 Yosohiro Sugie Hydrogen gas generating method
EP1245531A4 (en) * 2000-05-15 2004-07-28 Yosohiro Sugie Hydrogen gas generating method
JP4671398B2 (en) * 2004-11-29 2011-04-13 株式会社日立製作所 Water decomposition method and apparatus, and water decomposition catalyst
JP2006151731A (en) * 2004-11-29 2006-06-15 Hitachi Ltd Water decomposition method and its apparatus, and catalyst for decomposing water
JP2008524101A (en) * 2004-12-16 2008-07-10 アイピーシー インターナショナル パワー コンサルティング リミテッド Reactor for simultaneous separation of hydrogen and oxygen from water
JP2010131553A (en) * 2008-12-05 2010-06-17 Yasuo Ishikawa Hydrogen-generating catalyst
WO2010084790A1 (en) 2009-01-20 2010-07-29 Ishikawa Yasuo Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator
KR20110107378A (en) 2009-01-20 2011-09-30 야스오 이시가와 Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator
US8845998B2 (en) 2009-01-20 2014-09-30 Yasuo Ishikawa Catalyst for generating hydrogen, method of generating hydrogen and apparatus for generating hydrogen
US9376317B2 (en) 2010-01-06 2016-06-28 Yasuo Ishikawa Method of generating hydrogen
JP2013112576A (en) * 2011-11-30 2013-06-10 Yasuo Ishikawa Method and apparatus for generating hydrogen
JP2015218099A (en) * 2014-05-21 2015-12-07 株式会社デンソー Method and apparatus for decomposing water
JP2018025375A (en) * 2016-07-31 2018-02-15 寛治 泉 Constitution method for engine burning hydrogen and oxygen

Also Published As

Publication number Publication date
JP3939389B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
Rukini et al. Metals production and metal oxides reduction using hydrogen: a review
Li et al. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3
JPH10212101A (en) Catalyst for producing hydrogen and oxygen and production of the same by thermal decomposition of water
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
CN103132100B (en) Technological method for producing pure hydrogen and carbon dioxide from coals
CN102600878A (en) Method for preparing TiC-TiO2 core-shell type nanometer material
CN110342586A (en) A kind of defective phosphorus doping CoFe of tool2O4The preparation and electro-catalysis application of nano-powder
Cheng et al. Application of a solid polymer electrolyte reactor to remove nitrate ions from wastewater
JPS59190380A (en) Hydrogen sulfide decomposition cell and catalyst substance therefor
Kamali Clean production and utilisation of hydrogen in molten salts
CN109772403B (en) Method for catalytic decomposition of hydrogen sulfide by using coated catalyst
CN107583945A (en) A kind of method of organic polluted soil production fired brick
Yang et al. Selective CO2 Electroreduction with enhanced oxygen evolution efficiency in affordable borate-mediated molten electrolyte
CN109759005A (en) A kind of quick response Pd-TiO2The preparation method of the quick material of nano particle hydrogen
CN109364659A (en) The purification of thallium and recovery method and device in a kind of flue gas during smelting
JP2002193601A (en) Method and device for water decomposition
CN104411638A (en) Gas production device and method
JPH10263397A (en) Catalyst for production of hydrogen or oxygen
CN106629836B (en) The method that POROUS TITANIUM surface oxidation prepares porous silica titanium block material
Eladeb et al. Electrochemical extraction of oxygen using PEM electrolysis technology
Novoselova et al. Modern State and Prospects of Electrochemical CO2 Conversion in Molten Salts
CN108258254A (en) A kind of surface modified graphite electrode and its preparation method and application
Hermawan et al. Fundamentals, rational catalyst design, and remaining challenges in electrochemical NOx reduction reaction
JP2011195420A (en) Method for producing metal oxide fine particle
CN113351008A (en) Application of perovskite composite oxide material in low-temperature carbonyl sulfide hydrolysis reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term