JPH10210966A - Culture vessel - Google Patents

Culture vessel

Info

Publication number
JPH10210966A
JPH10210966A JP1570597A JP1570597A JPH10210966A JP H10210966 A JPH10210966 A JP H10210966A JP 1570597 A JP1570597 A JP 1570597A JP 1570597 A JP1570597 A JP 1570597A JP H10210966 A JPH10210966 A JP H10210966A
Authority
JP
Japan
Prior art keywords
culture
cells
culture medium
vessel
culture vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1570597A
Other languages
Japanese (ja)
Inventor
Hiroshi Sawai
博 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP1570597A priority Critical patent/JPH10210966A/en
Publication of JPH10210966A publication Critical patent/JPH10210966A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps

Abstract

PROBLEM TO BE SOLVED: To prevent the destruction of the agglutinated lumps formed by agglutinating many cells in order to culture the cells in the state approximate to the in-vivo state by the flowing force of a culture medium at the time of charging the culture medium and to prevent the inadvertent exertion of an adverse influence on the cells by contact by rapidly executing the exchange of the culture medium in order to minimize the temporally changes of the environment, such as the presence or absence of the culture medium, temp. and humidity and atm. components, which occur at the time of executing the exchange of the culture medium. SOLUTION: The inside surface of the culture vessel existing between a culture surface or the base of the vessel and the aperture of the culture vessel is at least partly provided with a difference in level or projecting part 1. This projecting part is so formed that the difference in level from the surface of the culture vessel 2 or the height up to the projecting part 1 attains 0.1 to 50mm, more preferably 0.5 to 5mm to decelerate the velocity at which a soln. flows or to disperse the flow of the soln. as compared to the case there are no differences in level or the projecting parts 1 when the liquid is charged along the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、細胞培養の容器に
関するものである。
TECHNICAL FIELD The present invention relates to a cell culture container.

【0002】[0002]

【従来の技術】細胞培養技術は、生体の構成要素である
細胞を生体外で生存、増殖させる技術であり、研究上の
利用のみならず、有用物質の産生や臨床検査などの産業
上、医療上の広い分野にて応用、利用されている。また
近年の培養技術の発展により、動物の細胞をより生体内
に近い状態で培養する為に、生体内と類似の環境で培養
を行う条件、方法が編み出されてきている。これにより
支持体を必要とする接着性細胞を培養する時、従来の培
養方法では培養容器の表面上で単層の形態で培養されて
いたのが、細胞の形態もより生体内に近い形態で培養す
ることが可能となってきている。
2. Description of the Related Art Cell culture technology is a technology for living and growing cells, which are components of a living body, in vitro. It is used not only for research but also for industrial and medical applications such as production of useful substances and clinical tests. It is applied and used in the above wide fields. With the recent development of culture technology, conditions and methods for culturing cells in an environment similar to that of a living body have been devised in order to culture animal cells in a state closer to the living body. Thus, when culturing adherent cells requiring a support, in the conventional culture method, the cells were cultured in a monolayer form on the surface of the culture vessel, but the cells are also in a form closer to the living body. It is becoming possible to culture.

【0003】たとえば、特開平3-4780号公報、特開平4-
4686号公報に培養面に細胞間基質に類似の物質の層を設
けたり、特殊な表面処理を施すことにより、生体内で3
次元的な集合体で組織、器官を形成する肝実質細胞また
は脾上皮細胞等の細胞を多数集合させ凝集塊を形成させ
て培養する方法が開示されている。また、特開平5-2369
51号公報は球状集塊に形成させた肝実質細胞を培養液中
に浮遊させた培養方法を開示している。これらの方法で
は、生体内の組織器官と比較してある程度の組織構築を
再現し、その細胞の特異的な分化機能の活性レベルは従
来の単層で培養された細胞よりも高く、生体内と同等の
レベルに達している場合もあり、また培養期間も長期に
行うことが出来る。
For example, JP-A-3-4780, JP-A-4-4780
By providing a layer of a substance similar to the intercellular matrix on the culture surface in Japanese Patent No. 4686, or applying a special surface treatment,
A method is disclosed in which a large number of cells such as hepatic parenchymal cells or spleen epithelial cells that form tissues and organs in a dimensional aggregate are aggregated to form an aggregate and cultured. Also, Japanese Patent Application Laid-Open No. 5-2369
No. 51 discloses a culture method in which hepatic parenchymal cells formed into spherical clumps are suspended in a culture solution. These methods reproduce a certain degree of tissue organization compared to tissue organs in the living body, and the level of specific differentiation function of the cells is higher than that of cells cultured in a conventional monolayer. In some cases, the level has reached the same level, and the culture period can be extended.

【0004】しかし、生体の構成要素である細胞を生体
外で培養が行う場合の培養環境は、細胞にとって多くの
悪影響を有した環境である。本来、生体内において細胞
は、周囲の細胞、組織あるいは生体全体との相互作用に
よってその生命活動の種々の機能が発揮されており、特
に細胞は生体内に存在することで生存環境は常に一定に
保たれ、様々な外部からの悪影響より保護されている。
一方、生体外で培養を行う条件下における細胞は、機能
については前述のように様々な培養方法が開発されてお
り生体内と同様な生命活動の種々の機能を再現しつつあ
るが、培養環境については細胞を生体の外界に対して剥
き出しの状態にしているため、培養環境の微妙な変化に
敏感に反応し、様々な外部からの悪影響を直接受け、場
合によっては死滅してしまう場合もある。生体外で培養
を行う条件下において有する細胞への悪影響の一つとし
て、顕微鏡観察や測定分析を行う為の処理、特に培養液
の交換を行う時に発生する、一時的な環境の変化が考え
られる。
[0004] However, a culture environment in which cells, which are components of a living body, are cultured in vitro is an environment having many adverse effects on cells. Essentially, cells in a living body exhibit various functions of their life activities by interacting with surrounding cells, tissues, or the whole living body. Especially, the existence of cells in the living body keeps the living environment constant. Are protected and protected from various external adverse effects.
On the other hand, as for cells under conditions of culturing in vitro, various culturing methods have been developed for the functions as described above, and various functions of life activity similar to those in vivo are being reproduced. Because the cells are exposed to the outside of the living body, they are sensitive to subtle changes in the culture environment, are directly affected by various external influences, and may even die. . One of the adverse effects on cells under conditions of culturing in vitro is a temporary environmental change that occurs when performing microscopic observation or measurement analysis, especially when changing the culture medium. .

【0005】通常の細胞培養を行う場合、その細胞に適
した培養基材、培養液、温度・湿度、大気成分等を最適
な条件に調節し維持するが、培養液に含まれる細胞に必
要な栄養素等は消費され、細胞からは分泌物や老廃物等
が培養液中に排出されるため、一定期間毎に培養液を交
換する必要がある。このとき細胞の入った培養容器を無
菌的な室内環境下に取り出さなければならず、さらに新
規な培養液を投入する前にそれまで使用していた古い培
養液を排除すると、培養細胞の周囲から培養液が無くな
るので、細胞は全く不適な環境下に置かれることにな
る。このため、細胞の周囲の環境は一時的に全く異なっ
た環境に変化し、細胞に多大な悪影響を及ぼすことにな
る。
[0005] When performing normal cell culture, the culture medium, culture solution, temperature / humidity, atmospheric components, etc., which are suitable for the cell are adjusted and maintained under optimum conditions. Since nutrients and the like are consumed and secretions and wastes are discharged from the cells into the culture solution, the culture solution needs to be replaced at regular intervals. At this time, the culture vessel containing the cells must be taken out in a sterile indoor environment, and if the old culture solution that has been used before is removed before the addition of a new culture solution, the surrounding culture cells will be removed. Since the culture medium is lost, the cells will be placed in a totally unsuitable environment. For this reason, the environment surrounding the cell temporarily changes to a completely different environment, which has a great adverse effect on the cell.

【0006】上記のような一時的な環境の変化を最小限
にするため、培養液を連続的に供給可能な装置を用い閉
鎖された系で培養を行ったり、培養液の排除投入を行う
場合は、ポンプの加減圧による吸引吐出可能なピペット
などを用いて、迅速に培養液の交換を行うようにしてい
る。しかし、培養液を連続的に供給可能な装置は培養の
目的や条件毎に装置を設計しなければならず、多岐にわ
たる目的の培養や一般の研究者に対しての汎用性はあま
りなく、装置も高価である。一般にはシャーレ、培養フ
ラスコ、マルチウエルプレート等を用いて細胞の培養を
行い、培養容器中の培養液をピペットを用いて交換する
方法が行われているが、長期培養を行う場合には数回以
上繰り返す必要があり、更に要領よく培養液の交換を行
えなかったり操作を誤った場合には培養が一時的に中断
してしまい、細胞を長時間にわたり全く不適な環境下に
置くことになる。また、培養操作において誤ってピペッ
ト先端を培養面に接触させた場合には、接触した部分の
細胞は押しつぶされてしまうという機械的な損傷を与え
てしまう。
[0006] In order to minimize the above-mentioned temporary changes in the environment, culture is performed in a closed system using a device capable of continuously supplying a culture solution, or when the culture solution is removed and charged. Uses a pipette or the like capable of sucking and discharging by pressurization and decompression of a pump, so that the culture solution can be quickly exchanged. However, a device that can continuously supply a culture solution must be designed for each purpose and condition of culture, and it is not very versatile for various purposes of culture or general researchers. Is also expensive. Generally, a method of culturing cells using a Petri dish, a culture flask, a multi-well plate, etc., and exchanging a culture solution in a culture container using a pipette is performed. It is necessary to repeat the above, and if the culture medium cannot be exchanged in a satisfactory manner or the operation is erroneously performed, the culture is temporarily interrupted, and the cells are placed in a completely unsuitable environment for a long time. Also, if the tip of the pipette is accidentally brought into contact with the culture surface during the culturing operation, mechanical damage is caused such that cells in the contacted portion are crushed.

【0007】さらに前述したような生体内で3次元的な
集合体で組織、器官を形成する細胞を多数集合させ凝集
塊を形成させて培養する方法においては、細胞は周囲の
細胞同士と接着して固定されており、従来の細胞を培養
表面上に接着させ単層にして培養する方法に比べて強く
培養容器に固定されていないので、凝集塊は剪断する様
な力を受けると破壊されやすい。これにより培養液を投
入するときに流れによる剪断力で細胞の凝集塊を破壊し
ないように慎重に行わなければならず、迅速に培養液の
交換を行うことが出来ない。特に培養フラスコの様に容
器の開口部が狭い場合、マルチウェルプレートの様に容
器を一定の向きにして培養操作を行う場合には、投入さ
れる培養液の投入箇所や流れ方は毎回の培養液の交換で
ほぼ一定になり、特定部位の細胞に集中して剪断力によ
る損傷を与えることになる。影響を受けた細胞は修復す
ることなく死滅するのが一般的で、その際、死滅細胞よ
り放出される酵素等により更に周りの影響を受けていな
い正常な細胞に影響を及ぼすことが知られている。また
このような培養方法を行う場合、培養は長期間実施され
るため何度も培養液の交換を行う必要がある。この結果
として細胞を反復かつ長時間にわたり全く不適な環境下
に置くことになる。よって細胞をより生体内に近い状態
で培養して研究開発に利用する研究者には特に卓越した
培養操作技術が要求される。
Further, in the above-mentioned method of culturing a large number of cells forming tissues and organs in a living body in a three-dimensional aggregate to form an aggregate, the cells adhere to surrounding cells. Agglomerates tend to be broken when subjected to shearing force because they are not strongly fixed to the culture vessel compared to the conventional method in which cells are adhered to the culture surface and cultured in a single layer. . Therefore, when the culture solution is introduced, it must be performed carefully so as not to destroy the cell aggregates due to the shear force due to the flow, and the culture solution cannot be exchanged quickly. In particular, when the opening of the container is narrow like a culture flask, or when the culture operation is performed with the container in a fixed direction like a multi-well plate, the location and flow of the culture solution to be charged are always changed. It becomes almost constant by exchanging the liquid, and concentrates on cells at a specific site, causing damage by shearing force. Affected cells generally die without repair, and at that time, enzymes released from the dead cells are known to affect normal cells that are not further affected by surrounding cells. I have. In the case of performing such a culture method, the culture is performed for a long period of time, so that it is necessary to exchange the culture medium many times. This results in repeated and prolonged periods of time in totally unsuitable environments. Thus, researchers who use cells for research and development by culturing cells in a state closer to the living body need particularly excellent culture operation techniques.

【0008】[0008]

【発明が解決しようとする課題】すなわち本発明の目的
は、培養液の交換を行う時に発生する培養液の有無、温
度湿度、大気成分等の一時的な環境の変化を最小限に抑
えるため迅速に培養液の交換を行うことができ、細胞を
より生体内に近い状態で培養するために細胞を多数集合
させた凝集塊が培養液を投入するときの流れによる剪断
力に破壊されることなく、また誤って細胞に接触による
機械的な損傷を与えてしまうことを防止することであ
る。前述の培養液分注時の液によるせん断力は溶液の吐
出量と吐出する範囲により決定し、吐出量が多く吐出す
る範囲が狭いほど流速が大きくなり大きなせん断力がか
かる。従って、吐出量を少なくすること、吐出範囲を大
きくすることがせん断力を下げる方法である。しかし、
吐出量を下げることは本来の培養液の交換の意味から自
由にコントロールできないので、吐出範囲を広げること
のみがせん断力を低減できる唯一の方法である。吐出範
囲を広げるためには、吐出口を大きくすることが最も簡
単な方法であるが、そうするとヒ゜ヘ゜ット等で溶液の量を正
確に計ることができない。従って、分注装置ではなく、
培養器側で吐出範囲を広げるための工夫が必要になる。
That is, an object of the present invention is to provide a method for minimizing temporary changes in the environment such as the presence or absence of a culture medium, temperature, humidity, and atmospheric components that occur when a culture medium is exchanged. The culture medium can be exchanged at a time, and agglomerated masses of cells to be cultured in a state closer to the living body are not destroyed by the shear force due to the flow when the culture medium is injected. Another object of the present invention is to prevent cells from being mechanically damaged by contact. The shearing force due to the liquid at the time of dispensing the culture solution is determined by the amount of solution discharged and the range of discharge. The larger the amount of discharge and the narrower the range of discharge, the greater the flow rate and the greater the shearing force. Therefore, reducing the discharge amount and increasing the discharge range are methods for reducing the shearing force. But,
Since lowering the discharge volume cannot be freely controlled in the sense of the original exchange of the culture solution, expanding the discharge range is the only method that can reduce the shearing force. The easiest way to widen the discharge range is to make the discharge port larger, but in such a case, the amount of the solution cannot be accurately measured with a head or the like. Therefore, not a dispensing device,
A device for expanding the discharge range on the incubator side is required.

【0009】[0009]

【課題を解決するための手段】本発明は、培養面もしく
は容器底面部と培養器開口部の間の容器内面の少なくと
も一部に段差もしくは凸部を設けたことを特徴とする培
養容器である。
The present invention relates to a culture vessel characterized in that a step or a projection is provided on at least a part of the culture surface or the inner surface of the vessel between the bottom of the vessel and the opening of the culture vessel. .

【0010】[0010]

【発明の実施の形態】以下、図1〜7をもとに詳細な説
明を記す。本発明を用いる対象となる主な培養方法は、
培養する細胞としてHeLa細胞、PC12細胞等の株
化細胞や肝実質細胞、血管内皮細胞、繊維芽細胞等の接
着性動物細胞を用い、培養容器に固定させて培養を行う
方法である。さらに、接着性細胞をビーズ等の微少担体
に固定して培養液に浮遊させる方法、細胞のみで多数集
合させ凝集塊を形成し培養液に浮遊させる方法、或いは
赤血球等の浮遊性細胞を培養液に浮遊させる方法等の培
養においても有効である。培養容器は従来公知の形状の
物を特に制限なく用いることができる。本発明での、段
差もしくは凸部(1)を構成する部材には特に制限はな
く、段差もしくは凸部(1)の付設手段にも特に制限は
ないが、好ましくは培養容器(2)と同じ材料を用い、
培養容器(2)を作製するときに同時に設けると加工の
手間を簡略化できるのでよい。例えば、ポリスチレン製
のディスポーザブル培養容器(2)は金型を用いた射出
成形により作製されるが、段差もしくは凸部(1)が設
けられた金型を用い射出成形を行うことで作製すること
が可能である。また段差もしくは凸部(1)の付設する
位置、高さや幅などのサイズ、形状には特に制限はな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A detailed description will be given below with reference to FIGS. The main culture method to be used by the present invention is
This is a method in which cell lines such as HeLa cells and PC12 cells and adherent animal cells such as hepatocytes, vascular endothelial cells, and fibroblasts are fixed as cells to be cultured and cultured in a culture vessel. Furthermore, a method in which adherent cells are fixed to microcarriers such as beads and suspended in a culture solution, a method in which a large number of cells alone are aggregated to form aggregates and suspended in the culture solution, or a method in which floating cells such as red blood cells are cultured in a culture solution It is also effective in cultivation such as a method of suspending in a medium. As the culture vessel, a conventionally known one can be used without any particular limitation. In the present invention, there is no particular limitation on the member constituting the step or the projection (1), and there is no particular limitation on the means for attaching the step or the projection (1), but it is preferably the same as the culture vessel (2). Using materials,
When the culture vessel (2) is provided at the same time as the production, the labor for processing can be simplified. For example, the disposable culture vessel (2) made of polystyrene is produced by injection molding using a mold, but can be produced by performing injection molding using a mold provided with a step or a convex portion (1). It is possible. Further, there is no particular limitation on the position where the step or the convex portion (1) is provided, and the size and shape such as height and width.

【0011】しかし、培養容器(2)の面から段差もし
くは凸部(1)までの高さ(3)が低すぎては溶液の流
れる速度を減速させたり溶液の流れを分散する効果を得
ることができず、高すぎては段差もしくは凸部(1)に
培養液を残したり培養操作を行う上で支障をきたすの
で、高さ(3)は0.1〜20mmであるのが適当であり、更
に好ましくは0.5〜5mmであるのがよい。培養液の流れる
方向に対しての幅(4)は、できるだけ大きい方が液を
分散させられるし、本発明の効果を得て培養液を投入す
ることができる箇所が広くなり培養操作性が向上するの
で、培養容器(2)の大きさに合わせて可能な限り大き
くするのが適当である。しかし、図5のように幅(4)
が小さい場合でも複数の段差もしくは凸部(1)を組み
合わせることにより、溶液の流れを十分に分散させるこ
とが可能である。これより段差もしくは凸部(1)の幅
(4)についてはそれぞれの培養容器の種類、大きさや
製造方法に応じて大きさを選択するのがよい。
However, if the height (3) from the surface of the culture vessel (2) to the step or the projection (1) is too low, the effect of reducing the flow speed of the solution or dispersing the flow of the solution is obtained. The height (3) is preferably 0.1 to 20 mm, since it is difficult to leave the culture solution on the step or the projection (1) or to perform the culturing operation if it is too high. Preferably, it is 0.5 to 5 mm. As for the width (4) with respect to the direction in which the culture solution flows, the larger the width is, the more the liquid can be dispersed, and the area where the culture solution can be introduced with the effect of the present invention is widened and the culture operability is improved. Therefore, it is appropriate to increase the size as much as possible according to the size of the culture vessel (2). However, as shown in FIG.
Is small, it is possible to sufficiently disperse the flow of the solution by combining a plurality of steps or projections (1). From this, it is preferable to select the size of the step or the width (4) of the projection (1) according to the type and size of each culture container and the manufacturing method.

【0012】また培養液の流れを効率よく分散させるた
めに、図6のように段差もしくは凸部(1)に角度を付
け溶液の一部を誘導して溶液の流れを任意な方向に変え
ても良い。さらに培養液の流れを十分に減速させるた
め、図7のように溶液が流れる方向に段差もしくは凸部
(1)を二つ以上設けて溶液を繰り返し減速させても良
い。これらは培養容器の種類、大きさや製造方法に応じ
て適当な選択をするのがよい。さらに、本発明によると
容器内面の段差もしくは凸部(1)がピペットの引っか
かりになる。これにより培養操作時にピペット先端を培
養面に接触してしまうことで、培養面上の細胞や細胞間
基質に類似の物質の層、特殊な表面処理に与える傷害を
少なくすることができる。以下、実施例をあげて本発明
を説明する。
In order to efficiently disperse the flow of the culture solution, the step or the projection (1) is angled as shown in FIG. 6 to guide a part of the solution to change the flow of the solution in an arbitrary direction. Is also good. Further, in order to sufficiently slow down the flow of the culture solution, two or more steps or projections (1) may be provided in the direction in which the solution flows as shown in FIG. 7, and the solution may be repeatedly slowed down. It is preferable to make an appropriate selection according to the type, size and production method of the culture vessel. Further, according to the present invention, the step or the projection (1) on the inner surface of the container becomes caught by the pipette. This makes it possible to reduce damage to a layer of a substance similar to cells or an intercellular matrix on the culture surface and damage to a special surface treatment by bringing the tip of the pipette into contact with the culture surface during the culture operation. Hereinafter, the present invention will be described with reference to examples.

【0013】[0013]

【実施例】ディスポーザブルタイプで6穴タイプのポリ
スチレン製マルチウェルプレートの試作用金型を、ウェ
ル内面を型どる金型の円柱径が35φ、33φと2段に
なるように加工した。次にこの金型を用いてポリスチレ
ンを射出成形し、表面処理と滅菌を施して、本発明にし
たがう培養容器を得た。上記方法により得られたマルチ
ウェルプレートを用い、特開平3-4780号公報の処方に従
って、肝実質細胞をコラーゲンのゲル層上で凝集塊に形
成させて3次元培養を行った。培養液の交換を行うと培
養液は段差を伝って左右に分散し、培養面へ静かに注が
れた。また細胞が凝集塊を形成した後、2週間以上にわ
たり凝集塊は全く破壊されることなく培養することが図
8のように観察された。一方、通常のマルチウェルプレ
ートを用いた場合では、培養液の交換を行うと図9のよ
うに培養液はそのまま培養面に注がれていくので慎重に
投入することを要し、上記培養容器を用いた場合に比べ
室内環境中に長時間取り出していた。また凝集塊を形成
した数日後に、培養液を投入した部分より細胞の凝集塊
が破壊されて行くのが図10のように観察された。
EXAMPLE A trial mold for a disposable, 6-hole polystyrene multiwell plate was machined so that the cylindrical diameter of the mold for modeling the inner surface of the well was two steps of 35φ and 33φ. Next, polystyrene was injection-molded using this mold, subjected to surface treatment and sterilization, to obtain a culture vessel according to the present invention. Using the multiwell plate obtained by the above method, liver parenchymal cells were formed into aggregates on the collagen gel layer according to the prescription of JP-A-3-4780, and three-dimensional culture was performed. When the culture medium was exchanged, the culture medium was dispersed right and left along the step, and was gently poured onto the culture surface. Moreover, after the cells formed aggregates, it was observed that the aggregates were cultured without being destroyed for at least two weeks as shown in FIG. On the other hand, when a normal multi-well plate is used, when the culture medium is exchanged, the culture medium is poured directly into the culture surface as shown in FIG. Was taken out into the indoor environment for a long time as compared with the case of using. Further, several days after the formation of the aggregates, it was observed as shown in FIG. 10 that the aggregates of the cells were destroyed from the portion where the culture solution was charged.

【0014】[0014]

【発明の効果】本発明に従うと、培養液の交換を行う時
に発生する培養液の有無、温度湿度、大気成分等の一時
的な環境の変化を最小限に抑えるため迅速に培養液の交
換を行うことができ、細胞をより生体内に近い状態で培
養するために細胞を多数集合させた凝集塊が培養液を投
入するときに培養液の流れる力に破壊されることなく、
また誤って細胞に接触による損傷を与えてしまうことを
防止することが可能である。
According to the present invention, the culture medium can be quickly exchanged to minimize the temporary changes in the environment such as the presence or absence of the culture medium, temperature, humidity, and atmospheric components that occur when the culture medium is exchanged. It can be performed, without being destroyed by the flowing force of the culture solution when the culture solution is thrown into the aggregate where a large number of cells are aggregated in order to culture the cells in a state closer to the living body,
In addition, it is possible to prevent cells from being damaged by contact accidentally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例となる培養容器の構成を示す
図である。
FIG. 1 is a diagram showing a configuration of a culture vessel according to one embodiment of the present invention.

【図2】本発明の一実施例となる培養容器の使用状態を
示す図である。
FIG. 2 is a view showing a use state of a culture vessel according to one embodiment of the present invention.

【図3】本発明の一実施例となる培養容器の使用状態を
示す図である。
FIG. 3 is a diagram showing a use state of a culture vessel according to one embodiment of the present invention.

【図4】本発明の一実施例となる培養容器の構成を示す
部分拡大図である。
FIG. 4 is a partially enlarged view showing the configuration of a culture vessel according to one embodiment of the present invention.

【図5】本発明の一実施例となる培養容器の構成と使用
状態を示す図である。
FIG. 5 is a diagram showing a configuration and a use state of a culture vessel according to one embodiment of the present invention.

【図6】本発明の一実施例となる培養容器の構成と使用
状態を示す図である。
FIG. 6 is a diagram showing a configuration and a use state of a culture vessel according to one embodiment of the present invention.

【図7】本発明の一実施例となる培養容器の構成と使用
状態を示す図である。
FIG. 7 is a diagram showing a configuration and a use state of a culture vessel according to one embodiment of the present invention.

【図8】本発明の一実施例となる培養容器で培養を行っ
たときの凝集塊の状態を示す分布図である。
FIG. 8 is a distribution diagram showing a state of an aggregate when culturing is performed in a culture vessel according to an embodiment of the present invention.

【図9】本発明の比較例となる培養容器の使用状態を示
す図である。
FIG. 9 is a diagram showing a use state of a culture vessel as a comparative example of the present invention.

【図10】本発明の比較例となる培養容器で培養を行っ
たときの凝集塊の状態を示す分布図である。
FIG. 10 is a distribution diagram showing a state of an aggregate when cultured in a culture vessel as a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1. 段差もしくは凸部 2. 培養容器 3. 高さ 4. 幅 5. 複数の段差もしくは凸部により構成される部位 6. 多段の段差もしくは凸部により構成される部位 10.ピペット 11.培養液及び培養液の流れ方 20.マルチウェルプレートのウェルの平面図 21.凝集塊を形成後、14日目の時点で凝集塊を維持
していた範囲 22.凝集塊を形成後、7日目の時点で凝集塊が破壊さ
れた範囲 23.凝集塊を形成後、14日目の時点で凝集塊が破壊
された範囲
1. Steps or protrusions 2. Culture vessel 3. Height 4. Width 5. 5. A portion composed of a plurality of steps or projections 9. Site composed of multiple steps or projections Pipette 11. Culture solution and flow of culture solution 20. 21. Plan view of well of multi-well plate The range in which the aggregate was maintained on day 14 after the formation of the aggregate. 22. Range in which aggregate was broken on day 7 after aggregate formation After the formation of the aggregate, the area where the aggregate was broken on the 14th day

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 培養面もしくは容器底面部と培養容器開
口部の間の培養容器内面の少なくとも一部に段差もしく
は凸部を設けたことを特徴とする培養容器。
1. A culture vessel characterized in that a step or a projection is provided on at least a part of the culture vessel or the inner surface of the culture vessel between the vessel bottom and the culture vessel opening.
【請求項2】 培養容器の面から段差もしくは凸部の高
さが0.1〜50mmmである請求項1記載の培養容器。
2. The culture vessel according to claim 1, wherein the height of the step or the projection from the surface of the culture vessel is 0.1 to 50 mm.
JP1570597A 1997-01-29 1997-01-29 Culture vessel Pending JPH10210966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1570597A JPH10210966A (en) 1997-01-29 1997-01-29 Culture vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1570597A JPH10210966A (en) 1997-01-29 1997-01-29 Culture vessel

Publications (1)

Publication Number Publication Date
JPH10210966A true JPH10210966A (en) 1998-08-11

Family

ID=11896195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1570597A Pending JPH10210966A (en) 1997-01-29 1997-01-29 Culture vessel

Country Status (1)

Country Link
JP (1) JPH10210966A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019014627A1 (en) * 2017-07-14 2019-01-17 Corning Incorporated Handling features for microcavity cell culture vessel
JP2020527345A (en) * 2017-07-14 2020-09-10 コーニング インコーポレイテッド Cell culture vessel
JP2022501002A (en) * 2018-07-13 2022-01-06 コーニング インコーポレイテッド Microcavity dish with sidewalls including liquid medium delivery surface
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11970682B2 (en) 2022-05-03 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
CN111094534A (en) * 2017-07-14 2020-05-01 康宁股份有限公司 Processing features for microcavity cell culture vessels
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
WO2019014627A1 (en) * 2017-07-14 2019-01-17 Corning Incorporated Handling features for microcavity cell culture vessel
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
JP2020526217A (en) * 2017-07-14 2020-08-31 コーニング インコーポレイテッド Handling feature structure for microcavity cell culture vessels
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
JP2020527345A (en) * 2017-07-14 2020-09-10 コーニング インコーポレイテッド Cell culture vessel
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
EP3649226B1 (en) * 2018-07-13 2022-04-06 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
JP2022501002A (en) * 2018-07-13 2022-01-06 コーニング インコーポレイテッド Microcavity dish with sidewalls including liquid medium delivery surface
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11976263B2 (en) 2022-03-10 2024-05-07 Corning Incorporated Cell culture insert
US11970682B2 (en) 2022-05-03 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange

Similar Documents

Publication Publication Date Title
US7919319B2 (en) Cultured cell and method and apparatus for cell culture
Stathopoulos et al. Shear stress effects on human embryonic kidney cells in vitro
KR101746864B1 (en) Cell storage method and cell transport method
WO2023020599A1 (en) Organoid culture chip and organoid culture method
JP5607535B2 (en) Cell culture kit, screening method, and method for producing cell culture kit
US20050054101A1 (en) Automated cell culture system and process
JP6021802B2 (en) Culture method and drug screening method
JPH10210966A (en) Culture vessel
Sequeira et al. Microfluidic systems for assisted reproductive technologies: Advantages and potential applications
Charwat et al. The third dimension in cell culture: From 2D to 3D culture formats
JPH0870847A (en) Vessel for cell suspension culture
Kamei Cutting-edge microfabricated biomedical tools for human pluripotent stem cell research
Lan Levengood et al. Biomaterials for high-throughput stem cell culture
Comley Progress made in applying 3D cell culture technologies
US20230416664A1 (en) Open-well microcavity plate
US20230078423A1 (en) Three-dimensional cell culture
KR20240052866A (en) Cell culture device, cell culture method using the same, cell culture incubator including the same, and use of the cell culture device
EP3098304A1 (en) Hybrid cell detachment-free cell expansion system for adherent cell culturing and related proceeding protocol
Keshavarz et al. Cell culture techniques in microfluidic chips
IT202100025460A1 (en) LAB-ON-CHIP DEVICE TO STUDY CELLULAR MIGRATION IN THREE-DIMENSIONAL SYSTEMS AND RELATED METHOD OF USE
Felder et al. Automated cell culture system and process
Gruhl Cell biology and microsystems-what a combination
Kim et al. Nanobiotechnology for Stem Cell Culture and Maintenance
Nováková et al. Spheroids as 3D Cell Models for Testing of Drugs