JPH10209808A - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter

Info

Publication number
JPH10209808A
JPH10209808A JP2587897A JP2587897A JPH10209808A JP H10209808 A JPH10209808 A JP H10209808A JP 2587897 A JP2587897 A JP 2587897A JP 2587897 A JP2587897 A JP 2587897A JP H10209808 A JPH10209808 A JP H10209808A
Authority
JP
Japan
Prior art keywords
filter
resonance
mode
phase
group delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2587897A
Other languages
Japanese (ja)
Inventor
Naoto Kushima
直人 串間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2587897A priority Critical patent/JPH10209808A/en
Publication of JPH10209808A publication Critical patent/JPH10209808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resonance synthesis type SAW filter in which a group delay time of a pass band is improved. SOLUTION: The resonance synthesis SAW filter is configured by placing two longitudinal connection triple mode SAW filters A, B on a piezoelectric substrate and connecting them in parallel electrically. In this case, let four resonance peak frequencies cased by mis-matching the termination impedance of the filter be F1, F2, F3, F4 in the descending order, then relations of (F3-F4)≈(F1-F2) and 2.0<=F2-F3)/(F1-F2) are in existence.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は弾性表面波フィルタ
に関し、特に縦結合多重モードフィルタを電気的に並列
接続して構成した共振合成型表面波フィルタの群遅延時
間を平坦化したフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave filter, and more particularly, to a filter having a flattened group delay time of a resonance combined type surface acoustic wave filter formed by electrically connecting longitudinally coupled multimode filters in parallel.

【0002】[0002]

【従来の技術】近年、弾性表面波フィルタ(以下、SA
Wフィルタと称す)は小型化、高周波化、量産性等に優
れているため、携帯電話をはじめとする無線機のRF及
びIF段のフィルタとして多く利用されている。特に最
近のGSM、CDMA等のデジタル通信方式の無線機の
第一IFフィルタ用には広帯域フィルタの条件に加え、
群遅延時間の平坦なSAWフィルタが要求されている。
2. Description of the Related Art Recently, a surface acoustic wave filter (hereinafter referred to as SA) has been developed.
W filters) are excellent in miniaturization, higher frequency, mass productivity, and the like, and are therefore often used as RF and IF stage filters for wireless devices such as mobile phones. In particular, in addition to the conditions of the wideband filter, the first IF filter of a digital communication radio such as recent GSM and CDMA is used.
There is a demand for a SAW filter having a flat group delay time.

【0003】広帯域SAWフィルタを構成する手段とし
て2つの結合型多重モードSAWフィルタを電気的に並
列接続する所謂共振合成型SAWフィルタが提案されて
いる。図4(a)はこのような従来の共振合成型SAW
フィルタの模式的電極パターンを示す平面図であって、
圧電基板20の主面上に表面波の伝搬方向に沿って2個
のIDT21a、21cとその両側に反射器22a、2
2bを配置し、更に、前記入出力IDT21aと21c
の間にミドルグレーティング21bを配置する。前記反
射器22aと22bとの間で表面波の音響結合の結果生
ずる3個のモードを利用して縦結合三重モードフィルタ
A(フィルタA)を構成する。IDT21aと21cは
それぞれ互いに間挿し合う複数本の電極指を有する一対
のくし形電極により構成されており、IDT21a、2
1cを構成する一方のくし型電極はアース電位端子に接
続され、他方のくし形電極は入力または出力端子に電気
的に接続されている。また、ミドルグレーティング21
bは接地する。周知のように、音響結合の結果生ずる3
個の縦モードを低次モードからA1(1次)、A2(2
次)及びA3(3次)とし、それぞれの共振周波数をF
a1、Fa2及びFa3とすると、 Fa3<Fa2<
Fa1という大小関係になる。即ち、縦結合多重モード
フィルタにおいては高次モードになるに従いその共振点
は低い周波数に現れることとなる。
A so-called resonance-combined SAW filter in which two coupled multi-mode SAW filters are electrically connected in parallel has been proposed as means for constructing a wide band SAW filter. FIG. 4A shows such a conventional resonance combined type SAW.
It is a plan view showing a schematic electrode pattern of the filter,
Two IDTs 21a and 21c are arranged on the main surface of the piezoelectric substrate 20 along the propagation direction of the surface wave, and reflectors 22a and
2b, and the input / output IDTs 21a and 21c
The middle grating 21b is arranged between the two. A longitudinally-coupled triple-mode filter A (filter A) is constructed using three modes generated as a result of acoustic coupling of surface waves between the reflectors 22a and 22b. Each of the IDTs 21a and 21c includes a pair of comb-shaped electrodes having a plurality of electrode fingers interposed therebetween.
One interdigital electrode constituting 1c is connected to the ground potential terminal, and the other interdigital electrode is electrically connected to the input or output terminal. Also, the middle grating 21
b is grounded. As is well known, the acoustic coupling results in 3
A1 (primary), A2 (2)
Next) and A3 (Third order), and each resonance frequency is F
If a1, Fa2, and Fa3, Fa3 <Fa2 <
The magnitude relationship is Fa1. That is, in the longitudinally-coupled multimode filter, as the mode becomes higher, the resonance point appears at a lower frequency.

【0004】更に、圧電基板20の主面上に表面波の伝
搬方向に沿って2個のIDT23a、23cとその両側
に配置した反射器24a、24bと前記入出力IDT2
4aと24cの間に配置したミドルグレーティング23
bとからなる。縦結合三重モードフィルタB(フィルタ
B)をフィルタAと並列に配置する。このとき該フィル
タBの3個のモードを低次モードからB1(1次)、B
2(2次)及びB3(3次)とし、それぞれの共振周波
数をFb1、Fb2及びFb3とする。尚、その大小関
係はFb3<Fb2<Fb1である。そしてこのフィル
タAのIDT21a、21cのフィルタBよりのくし形
電極とフィルタBのIDT23a、23cのフィルタA
よりのくし形電極とをそれぞれ接続し、一方を入力端子
(IN)、他方を出力端子(OUT)とすると共に各I
DTの外側のくし形電極を接地する。
Further, two IDTs 23a and 23c and reflectors 24a and 24b disposed on both sides of the IDTs 23a and 23c on the main surface of the piezoelectric substrate 20 along the propagation direction of the surface wave and the input / output IDT
Middle grating 23 arranged between 4a and 24c
b. A vertically coupled triple mode filter B (filter B) is arranged in parallel with filter A. At this time, the three modes of the filter B are changed from the low order mode to B1 (first order), B1
2 (secondary) and B3 (tertiary), and their respective resonance frequencies are Fb1, Fb2, and Fb3. The magnitude relationship is Fb3 <Fb2 <Fb1. Then, the comb-shaped electrodes of the IDTs 21a and 21c of the filter A from the filter B and the filters A of the IDTs 23a and 23c of the filter B
Are connected to one another as an input terminal (IN) and the other as an output terminal (OUT).
The comb electrodes outside the DT are grounded.

【0005】上記フィルタAとBとの位相関係が逆相、
即ち対応するモード同士、例えば前記モードA1とB1
の位相が互いに逆位相になるようにフィルタAのIDT
21cに対し、フィルタBのIDT23cの電極をλ/
2だけ反射器24b方向へずらして構成する。図4
(b)はフィルタAのみを取りだし終端条件をフィルタ
Aの適正終端インピーダンスから極めて小さいインピー
ダンス(一般に終端をミスマッチさせると称す)にした
伝送特性α(周波数−Loss)と位相特性β(周波数
−Phase)であり、このようにミスマッチさせるこ
とによって伝送特性のグラフには縦モードのA1(1
次)、A2(2次)及びA3(3次)モードの共振周波
数に相当する3個の共振ピークが現れることが観察でき
る。上記モードの位相関係は、A1(1次)モードの位
相を0度とすると、A2(2次)モードは180度、A
3(3次)モードは0度となっている。
The phase relationship between the filters A and B is opposite,
That is, corresponding modes, for example, the modes A1 and B1
Of the filter A so that the phases of
The electrode of the IDT 23c of the filter B is set to λ /
It is configured to be shifted by two in the direction of the reflector 24b. FIG.
(B) shows a transmission characteristic α (frequency-Loss) and a phase characteristic β (frequency-Phase) in which only the filter A is taken out and the terminating condition is changed from an appropriate terminating impedance of the filter A to an extremely small impedance (generally, terminating is mismatched). Thus, by making the mismatch as described above, the graph of the transmission characteristic shows A1 (1
It can be observed that three resonance peaks corresponding to the resonance frequencies of the (second), A2 (secondary) and A3 (third) modes appear. The phase relationship between the above modes is as follows: if the phase of the A1 (primary) mode is 0 degree, the phase of the A2 (secondary) mode is 180 degrees;
The third (tertiary) mode is at 0 degrees.

【0006】図4(c)はフィルタBのみを取りだし、
その終端インピーダンスをミスマッチさせた伝送特性と
位相特性であり、同(b)と同様に伝送特性のグラフに
は縦モードのB1(1次)、B2(2次)及びB3(3
次)モードの共振周波数に相当する3個の共振ピークが
現れることが観察できる。これらのモードの位相は、B
1(1次)モードの位相は180度となり、B2(2
次)は0度、B3(3次)は180度の位相となる。更
に、フィルタAとBの共振周波数の配列関係を図2
(b)、(c)に示すようにFa2=Fb3、Fa1=
Fb2となるようにIDTの電極指の周期を設定し、フ
ィルタAとBとを電気的に並列接続して構成したものが
所謂共振合成型SAWフィルタCである。
FIG. 4C shows only the filter B,
The transmission characteristics and the phase characteristics with their terminal impedances mismatched are shown in the graph of the transmission characteristics in the same manner as in (b), in which the longitudinal modes B1 (primary), B2 (secondary) and B3 (3
It can be observed that three resonance peaks corresponding to the resonance frequency of the (second) mode appear. The phase of these modes is B
The phase of the first (first-order) mode is 180 degrees, and B2 (2
Next) has a phase of 0 degrees, and B3 (third order) has a phase of 180 degrees. FIG. 2 shows an arrangement relationship between the resonance frequencies of the filters A and B.
As shown in (b) and (c), Fa2 = Fb3, Fa1 =
The so-called resonance-combined SAW filter C is configured by setting the period of the electrode fingers of the IDT so as to be Fb2 and electrically connecting the filters A and B in parallel.

【0007】図4(d)は共振合成型SAWフィルタC
の終端インピーダンスをミスマッチさせた場合の伝送特
性と位相特性であり、伝送特性には4つの共振ピークが
現れ、4次のフィルタであることがわかる。該フィルタ
に適切な終端を施すことにより上記4つの共振ピークを
包含する広い通過帯域幅を有するバンドパス・フィルタ
が得られる。図5は米国のディジタル携帯電話PCSの
第1IFフィルタ用に、中心周波数250MHz、帯域
幅260kHz以上、群遅延偏差1μs以下を満たすべ
く試作した共振合成型SAWフィルタの通過帯域特性D
と群遅延時間特性Eである。このときの試作条件は圧電
基板に水晶を用い、フィルタAのIDT対数を411
対、ミドルグレーティングピッチを1.006、フィル
タBのIDT対数を333対、ミドルグレーティングピ
ッチを1.006、ミドルグレーティング本数を20
本、反射器本数60本としたものである。ここで、ミド
ルグレーティングピッチとはミドルグレーティングのピ
ッチに対するIDTのピッチの比を云う。
FIG. 4D shows a resonance combined type SAW filter C.
Are transmission characteristics and phase characteristics in the case where the terminal impedances of the above are mismatched. Four resonance peaks appear in the transmission characteristics, and it is understood that the filter is a fourth-order filter. By properly terminating the filter, a bandpass filter having a wide pass bandwidth including the above four resonance peaks can be obtained. FIG. 5 shows a passband characteristic D of a resonance-combined SAW filter prototyped to satisfy a center frequency of 250 MHz, a bandwidth of 260 kHz or more, and a group delay deviation of 1 μs or less for a first IF filter of a digital cellular phone PCS in the United States.
And the group delay time characteristic E. At this time, the prototype conditions were such that quartz was used for the piezoelectric substrate, and the IDT logarithm of the filter A was 411.
The middle grating pitch is 1.006, the IDT logarithm of the filter B is 333 pairs, the middle grating pitch is 1.006, and the number of middle gratings is 20.
The number of the reflectors is 60. Here, the middle grating pitch refers to the ratio of the pitch of the IDT to the pitch of the middle grating.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記の従
来の共振合成型SAWフィルタおいては、図5の曲線E
に示すように通過帯域の群遅延時間特性が通過帯域の両
端で大きく湾曲し、群遅延偏差が1μsを越えデジタル
通信方式の第1IFの要求を満たさないという欠点があ
った。本発明は上記欠点を解決するためになされたもの
であって、通過帯域の群遅延時間を改善した共振合成型
SAWフィルタを提供することを目的とする。
However, in the above-mentioned conventional resonance combined type SAW filter, the curve E in FIG.
As shown in (1), there is a disadvantage that the group delay time characteristic of the pass band is greatly curved at both ends of the pass band, and the group delay deviation exceeds 1 μs, which does not satisfy the requirement of the first IF of the digital communication system. The present invention has been made in order to solve the above-mentioned drawbacks, and an object of the present invention is to provide a resonance combined type SAW filter having an improved group delay time of a pass band.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る共振合成型SAWフィルタの請求項1記
載の発明は、圧電基板上に表面波の伝搬方向に沿って2
個のIDTとその両側に反射器を配置し更に前記IDT
の間にミドルグレーティングを配置して構成した縦結合
三重モードSAWフィルタを2個併置し電気的に並列接
続して構成した共振合成型SAWフィルタにおいて、該
フィルタの4つの共振点の周波数を高い方からF1、F
2、F3及びF4としたとき、(F3−F4)と(F1
−F2)とをほぼ等しく、且つ2.0≦(F2−F3)
/(F1−F2)としたことを特徴とする弾性表面波フ
ィルタである。
According to a first aspect of the present invention, there is provided a resonance-combination type SAW filter according to the present invention.
IDTs and reflectors on both sides thereof,
In a resonance-combined SAW filter in which two longitudinally coupled triple-mode SAW filters each having a middle grating arranged between them and electrically connected in parallel, the frequencies of the four resonance points of the filter are set to be higher. From F1, F
2, F3 and F4, (F3-F4) and (F1
−F2) and 2.0 ≦ (F2−F3)
/ (F1-F2) is a surface acoustic wave filter.

【0010】[0010]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1(a)は本発明に
係る共振合成型SAWフィルタの第1の実施例を示す模
式的平面図であって、圧電基板1の主面上に表面波の伝
搬方向に沿って2個のIDT2a、2cとその両側に反
射器3a、3bを配置し、更に前記入出力IDT2a、
2bの間にミドルグレーティング2bを配置して縦結合
三重モードSAWフィルタ(フィルタA)を構成する。
IDT2aと2cはそれぞれ互いに間挿し合う複数本の
電極指を有する一対のくし形電極により構成されてお
り、IDT2a、2cを構成する一方のくし型電極はア
ース電位端子に接続され、他方のくし形電極は入力また
は出力端子に電気的に接続されている。また、ミドルグ
レーティング2bは接地する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1A is a schematic plan view showing a first embodiment of a resonance-combination type SAW filter according to the present invention. IDTs 2a and 2c and reflectors 3a and 3b on both sides thereof are further provided.
The middle grating 2b is disposed between the two gratings 2b to form a longitudinally coupled triple mode SAW filter (filter A).
Each of the IDTs 2a and 2c is composed of a pair of comb-shaped electrodes having a plurality of electrode fingers interposed therebetween. One of the IDTs 2a and 2c is connected to a ground potential terminal, and the other is shaped as a comb. The electrodes are electrically connected to input or output terminals. The middle grating 2b is grounded.

【0011】フィルタAと同様に、圧電基板1上に表面
波の伝搬方向に沿って3個のIDT4a、4cとその両
側に反射器5a、5bを配置し、更に前記入出力IDT
4a、4cの間にミドルグレーティング4bを配置して
縦結合三重モードSAWフィルタ(フィルタB)を構成
する。
As in the case of the filter A, three IDTs 4a and 4c and reflectors 5a and 5b on both sides thereof are arranged on the piezoelectric substrate 1 along the propagation direction of the surface acoustic wave.
A middle grating 4b is arranged between 4a and 4c to form a longitudinally coupled triple mode SAW filter (filter B).

【0012】上記フィルタAとBとの位相関係が逆相に
なるようにフィルタAのIDTに対し、フィルタBのI
DTの電極指を配慮して配置する。図1(b)はフィル
タAの終端インピーダンスをミスマッチさせた伝送特性
α(周波数−Loss)と位相特性β(周波数−Pha
se)であり、縦モードのA1(1次)、A2(2次)
及びA3(3次)モードの共振周波数に相当する3個の
共振ピークが現れている。上記モードの位相関係は、A
1(1次)モードの位相を0度とすると、A2(2次)
モードは180度、A3(3次)モードは0度となって
いる。図2(c)はフィルタBの終端インピーダンスを
ミスマッチさせた伝送特性αと位相特性βであり、同
(b)と同様に縦モードのB1(1次)、B2(2次)
及びB3(3次)モードの共振周波数に相当する3個の
共振ピークが現れる。これらのモードの位相は、前記フ
ィルタAの対応するモードの位相と逆相になるように電
極指の極性を考慮して配置してあるため、B1(1次)
モードの位相は180度となり、B2(2次)は0度、
B3(3次)は180度の位相となる。更に、フィルタ
AとBの共振周波数の配列関係を図2(b)、(c)に
示すようにほぼFa2=Fb3、Fa1=Fb2となる
ようにIDTの電極指の周期を設定し、フィルタAとB
とを電気的に並列接続して共振合成型SAWフィルタを
構成する。
The IDT of the filter B and the IDT of the filter B are set so that the phase relationship between the filters A and B is opposite.
The electrode finger of DT is arranged in consideration. FIG. 1B shows a transmission characteristic α (frequency-Loss) and a phase characteristic β (frequency-Pha) in which the terminal impedance of the filter A is mismatched.
se) and A1 (primary), A2 (secondary) in the vertical mode
And three resonance peaks corresponding to the resonance frequency of the A3 (third order) mode. The phase relation of the above modes is A
If the phase of the 1 (primary) mode is 0 degree, A2 (secondary)
The mode is 180 degrees, and the A3 (tertiary) mode is 0 degrees. FIG. 2C shows a transmission characteristic α and a phase characteristic β in which the terminal impedance of the filter B is mismatched, and similarly to FIG. 2B, B1 (primary) and B2 (secondary) in the longitudinal mode.
And three resonance peaks corresponding to the resonance frequencies of the B3 (third order) mode. Since the phases of these modes are arranged in consideration of the polarity of the electrode fingers so as to be opposite to the phase of the corresponding mode of the filter A, B1 (primary)
The phase of the mode is 180 degrees, B2 (second order) is 0 degrees,
B3 (3rd order) has a phase of 180 degrees. Furthermore, as shown in FIGS. 2B and 2C, the arrangement of the electrode fingers of the IDT is set so that the resonance frequencies of the filters A and B are substantially equal to Fa2 = Fb3 and Fa1 = Fb2 as shown in FIGS. And B
Are electrically connected in parallel to form a resonance synthesis type SAW filter.

【0013】図1(d)は共振合成型SAWフィルタの
終端インピーダンスをミスマッチさせた場合の伝送特性
αと位相特性βであり、伝送特性には4つの共振ピーク
Fa3、Fa2(=Fb3)、Fa1(=Fb2)及び
Fb1が出現する。各共振ピークの間隔(Fa2−Fa
3)、(Fa1−Fa2)及び(Fb1−Fa2)を図
1(d)に示すようにそれぞれa、b及びcとした場
合、aとcをほぼ等しくしてb/aの値を変化させて伝
送特性と群遅延時間特性、特に後者に重点をおいてをシ
ミュレーションした。縦結合三重モードフィルタの3つ
の共振周波数を制御する要素としては、IDTのピッチ
はもとより、IDTの電極指対数、ミドルグレーティン
グのピッチ等がある。本発明ではこれらの要素を種々変
えて、膨大な計算の結果、上記の共振合成型SAWフィ
ルタにおいてはaとcの値をほぼ等しくした上で、共振
間隔比b/aの値を変化させると群遅延偏差が変動する
ことが見出した。図2(a)、(b)、(c)は上記シ
ュミレーションで得られた通過域特性と群遅延時間特性
である。前記図5に示した試作例に対し変化させたパラ
メータだけを記すと、図2(a)ではフィルタBのID
T対数を387対、ミドルグレーティングピッチを0.
998としたもので、共振間隔比b/a が1.7の場
合あり、図2(b)ではフィルタAのミドルグレーティ
ングピッチを1.0075、フィルタBのIDT対数を
361対、ミドルグレーティングピッチを0.997と
したもので共振間隔比b/a が2.1の場合であり、
図2(c)ではフィルタAのミドルグレーティングピッ
チを1.008、フィルタBのIDT対数を333対、
ミドルグレーティングピッチを0.993としたもの
で、共振間隔比b/aが2.3の場合である。図2から
明らかなようにb/aの値が大きくなるにつれて、群遅
延偏差が小さくなることがわかる。
FIG. 1D shows the transmission characteristic α and the phase characteristic β when the terminal impedance of the resonance combined type SAW filter is mismatched. The transmission characteristic includes four resonance peaks Fa3, Fa2 (= Fb3), and Fa1. (= Fb2) and Fb1 appear. The interval between each resonance peak (Fa2-Fa
3) When (Fa1-Fa2) and (Fb1-Fa2) are a, b, and c, respectively, as shown in FIG. 1D, a and c are made substantially equal to change the value of b / a. The simulation was performed with emphasis on transmission characteristics and group delay time characteristics, especially on the latter. Elements that control the three resonance frequencies of the longitudinally coupled triple mode filter include the IDT pitch, the number of electrode fingers of the IDT, the pitch of the middle grating, and the like. In the present invention, these elements are variously changed, and as a result of enormous calculations, in the above-described resonance-combined SAW filter, the values of a and c are made substantially equal, and then the value of the resonance interval ratio b / a is changed. It was found that the group delay deviation fluctuated. FIGS. 2A, 2B, and 2C show passband characteristics and group delay time characteristics obtained by the above simulation. If only parameters changed for the prototype example shown in FIG. 5 are described, in FIG.
T logarithm 387 pairs, middle grating pitch 0.
998, and the resonance interval ratio b / a may be 1.7. In FIG. 2B, the filter A has a middle grating pitch of 1.0075, the filter B has 361 IDT logarithms, and a middle grating pitch. 0.997 and the resonance interval ratio b / a is 2.1,
In FIG. 2C, the filter A middle grating pitch is 1.008, the filter B IDT logarithm is 333 pairs,
This is the case where the middle grating pitch is 0.993 and the resonance interval ratio b / a is 2.3. As is apparent from FIG. 2, the group delay deviation decreases as the value of b / a increases.

【0014】図3は上記シュミレーションの結果から共
振間隔比b/aと群遅延時間(μs)との関係をまとめ
たものである。同図からもaとcをほぼ等しくした場
合、共振間隔比b/aが大きくなるに従い通過帯域内の
群遅延時間も小さくなる様子が分かる。b/aの値がほ
ぼ2の時に群遅延時間が1μsを下回る。以上の説明で
圧電基板として水晶基板を用いた場合を説明してきた
が、水晶のみに限らずLiTaO3、LiNbO3、L
BOその他表面波を励振できる圧電材料であるなら、本
発明が適用できることは言うまでもない。
FIG. 3 summarizes the relationship between the resonance interval ratio b / a and the group delay time (μs) based on the simulation results. It can also be seen from the figure that when a and c are substantially equal, the group delay time in the pass band decreases as the resonance interval ratio b / a increases. When the value of b / a is approximately 2, the group delay time is less than 1 μs. In the above description, the case where the quartz substrate is used as the piezoelectric substrate has been described. However, the present invention is not limited to the quartz substrate, and LiTaO 3, LiNbO 3, L
It is needless to say that the present invention can be applied to any piezoelectric material that can excite BO or other surface waves.

【0015】[0015]

【発明の効果】本発明は、以上説明したように構成した
ので、従来の共振合成型SAWフィルタに比べ、本発明
に係る共振間隔を特定することにより群値遅延時間を設
計の中に取り込むことが可能となり、群遅延時間の優れ
たSAWフィルタを実現することができる。本発明にな
る共振合成型SAWフィルタは最近のデジタル通信方式
のフィルタの要求を十分に満たすことができるため、デ
ィジタル通信方式を採用した無線機に本発明になるフィ
ルタを用いればその効果は極めて顕著である。
Since the present invention is configured as described above, the group value delay time can be incorporated into the design by specifying the resonance interval according to the present invention, as compared with the conventional resonance combined type SAW filter. And a SAW filter having an excellent group delay time can be realized. Since the resonance synthesis type SAW filter according to the present invention can sufficiently satisfy the requirements of recent digital communication type filters, the effect is extremely remarkable if the filter according to the present invention is used for a radio device adopting the digital communication method. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る共振合成型SAWフィルタの実施
の一形態例で、(a)は電極パターンの模式的平面図、
(b)、(c)はフィルタA、Bのそれぞれの共振周波
数配列と位相関係を示す図、(d)は共振合成型SAW
フィルタの伝送特性と位相特性図である。
FIG. 1A is a schematic plan view of an electrode pattern according to an embodiment of a resonance synthesis type SAW filter according to the present invention.
(B) and (c) are diagrams showing the respective resonance frequency arrays and phase relationships of filters A and B, and (d) is a resonance-combined SAW
It is a transmission characteristic and phase characteristic figure of a filter.

【図2】(a)、(b)、(c)は共振合成型SAWフ
ィルタの共振周波数間隔比b/aと濾波特性及び群遅延
時間特性を示す図である。
FIGS. 2A, 2B, and 2C are diagrams showing a resonance frequency interval ratio b / a, a filtering characteristic, and a group delay time characteristic of a resonance combined type SAW filter.

【図3】共振周波数間隔比b/aと群遅延時間特性との
関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a resonance frequency interval ratio b / a and a group delay time characteristic.

【図4】従来の共振合成型SAWフィルタで、(a)は
電極パターンの模式的平面図、(b)、(c)はフィル
タA、Bのそれぞれの共振周波数配列と位相関係を示す
図、(d)は共振合成型SAWフィルタの伝送特性と位
相特性図である。
4A and 4B are schematic plan views of an electrode pattern of a conventional resonance-combination type SAW filter, and FIGS. 4B and 4C are diagrams showing resonance frequency arrays and phase relationships of filters A and B, respectively. (D) is a diagram showing the transmission characteristics and phase characteristics of the resonance-combined SAW filter.

【図5】従来の共振合成型SAWフィルタの通過域特性
と群遅延時間特性を示す図である。
FIG. 5 is a diagram showing passband characteristics and group delay time characteristics of a conventional resonance-combined SAW filter.

【符号の説明】[Explanation of symbols]

1・・・圧電基板 2a、2c、4a、4c・・・IDT 2b、4b・・・ミドルグレーティング 3a、3b、5a、5b・・・反射器 Fa1・・・フィルタAの1次モードの共振周波数 Fa2・・・フィルタAの2次モードの共振周波数 Fa3・・・フィルタAの3次モードの共振周波数 Fb1・・・フィルタBの1次モードの共振周波数 Fb2・・・フィルタBの2次モードの共振周波数 Fb3・・・フィルタBの3次モードの共振周波数 0°、180°・・・モードの位相 C・・・共振合成型SAWフィルタ a、b、c・・・共振周波数間隔 DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate 2a, 2c, 4a, 4c ... IDT 2b, 4b ... Middle grating 3a, 3b, 5a, 5b ... Reflector Fa1 ... Primary mode resonance frequency of filter A Fa2: resonance frequency of the secondary mode of filter A Fa3: resonance frequency of the third mode of filter A Fb1: resonance frequency of the first mode of filter B Fb2: resonance frequency of the second mode of filter B Resonance frequency Fb3: Resonance frequency of 3rd mode of filter B 0 °, 180 °: Mode phase C: Resonance synthesis type SAW filter a, b, c: Resonance frequency interval

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板上に表面波の伝搬方向に沿って
2個のIDTとその両側に反射器を配置し更に前記ID
Tの間にミドルグレーティングを配置して構成した縦結
合三重モードSAWフィルタを2個併置し電気的に並列
接続して構成した共振合成型SAWフィルタにおいて、
該フィルタの4つの共振点の周波数を高い方からF1、
F2、F3及びF4としたとき、(F3−F4)と(F
1−F2)とをほぼ等しく、且つ2.0≦(F2−F
3)/(F1−F2)としたことを特徴とする弾性表面
波フィルタ。
1. An IDT having two IDTs arranged on a piezoelectric substrate along a propagation direction of a surface acoustic wave and reflectors on both sides of the IDTs.
In a resonance combined type SAW filter, two longitudinally coupled triple mode SAW filters each having a middle grating disposed between T and juxtaposed and electrically connected in parallel,
The frequencies of the four resonance points of the filter are set to F1,
When F2, F3 and F4 are set, (F3-F4) and (F
1-F2) and 2.0 ≦ (F2-F
3) / A surface acoustic wave filter characterized by (F1-F2).
JP2587897A 1997-01-23 1997-01-23 Surface acoustic wave filter Pending JPH10209808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2587897A JPH10209808A (en) 1997-01-23 1997-01-23 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2587897A JPH10209808A (en) 1997-01-23 1997-01-23 Surface acoustic wave filter

Publications (1)

Publication Number Publication Date
JPH10209808A true JPH10209808A (en) 1998-08-07

Family

ID=12178051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2587897A Pending JPH10209808A (en) 1997-01-23 1997-01-23 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JPH10209808A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001727A1 (en) * 2009-02-19 2012-01-05 Epcos Ag Saw filter
JP2012199673A (en) * 2011-03-18 2012-10-18 Nippon Dempa Kogyo Co Ltd Elastic wave filter
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter
US9401537B2 (en) 2011-08-23 2016-07-26 Mesaplexx Pty Ltd. Multi-mode filter
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US9614264B2 (en) 2013-12-19 2017-04-04 Mesaplexxpty Ltd Filter
US9843083B2 (en) 2012-10-09 2017-12-12 Mesaplexx Pty Ltd Multi-mode filter having a dielectric resonator mounted on a carrier and surrounded by a trench

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001727A1 (en) * 2009-02-19 2012-01-05 Epcos Ag Saw filter
US8823469B2 (en) * 2009-02-19 2014-09-02 Epcos Ag Saw filter and a receiver for remote keyless entry and tire pressure monitoring systems using same
JP2012199673A (en) * 2011-03-18 2012-10-18 Nippon Dempa Kogyo Co Ltd Elastic wave filter
US9559398B2 (en) 2011-08-23 2017-01-31 Mesaplex Pty Ltd. Multi-mode filter
US9401537B2 (en) 2011-08-23 2016-07-26 Mesaplexx Pty Ltd. Multi-mode filter
US9406993B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Filter
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US9437910B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Multi-mode filter
US9437916B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Filter
US9698455B2 (en) 2011-08-23 2017-07-04 Mesaplex Pty Ltd. Multi-mode filter having at least one feed line and a phase array of coupling elements
US9843083B2 (en) 2012-10-09 2017-12-12 Mesaplexx Pty Ltd Multi-mode filter having a dielectric resonator mounted on a carrier and surrounded by a trench
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter
US9614264B2 (en) 2013-12-19 2017-04-04 Mesaplexxpty Ltd Filter

Similar Documents

Publication Publication Date Title
JP3391346B2 (en) Vertically coupled resonator type surface acoustic wave filter
KR100230655B1 (en) Saw filter apparatus
EP0897218B1 (en) Surface acoustic wave filter
US5592135A (en) Surface acoustic wave filter with different filter portions satisfying complex conjugate relationship of impedances
EP0782255B1 (en) Longitudinal coupling type surface acoustic wave resonator filter
EP1005154B1 (en) Surface acoustic wave filter for improving flatness of a pass band and a method of manufacturing thereof
JP2001217680A (en) Longitudinally coupled surface acoustic wave filter
WO2005050837A1 (en) Elastic surface wave filter
JPH10209808A (en) Surface acoustic wave filter
KR20020075307A (en) Surface acoustic wave filter, surface acoustic wave device using the filter, and communication device using the filter or the device
JPH10294644A (en) Polar surface acoustic wave device
JPH05335881A (en) Longitudinal dual mode surface acoustic wave filter
JPH11251861A (en) Vertical connection multiplex mode saw filter
JPH1117494A (en) Multiplex mode saw filter
JP2003309452A (en) Longitudinal coupled resonator-type surface acoustic wave filter
JP3324424B2 (en) Vertically coupled surface acoustic wave resonator filter
JPH10322161A (en) Vertically-coupled triple mode saw filter
JPH10284988A (en) Surface acoustic wave filter
JP3214226B2 (en) Surface acoustic wave resonator filter
JP2002314370A (en) Balanced surface acoustic wave filter
JP3225702B2 (en) Surface acoustic wave resonator filter
JPH10290141A (en) Cascade-connected double mode saw filter
JP3321443B2 (en) Primary-tertiary longitudinally coupled dual-mode SAW filter
JPH1117493A (en) Surface acoustic wave device
JP3180055B2 (en) Surface acoustic wave filter and multi-stage surface acoustic wave filter