JPH10209747A - Method for determining antenna-reflecting mirror surface by optimal spherical approximating method - Google Patents

Method for determining antenna-reflecting mirror surface by optimal spherical approximating method

Info

Publication number
JPH10209747A
JPH10209747A JP1963397A JP1963397A JPH10209747A JP H10209747 A JPH10209747 A JP H10209747A JP 1963397 A JP1963397 A JP 1963397A JP 1963397 A JP1963397 A JP 1963397A JP H10209747 A JPH10209747 A JP H10209747A
Authority
JP
Japan
Prior art keywords
paraboloid
spherical shell
revolution
reflecting surface
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1963397A
Other languages
Japanese (ja)
Other versions
JP3513828B2 (en
Inventor
Yumi Senbokutani
由美 仙北谷
Hitoshi Mitsugi
仁 三次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP01963397A priority Critical patent/JP3513828B2/en
Publication of JPH10209747A publication Critical patent/JPH10209747A/en
Application granted granted Critical
Publication of JP3513828B2 publication Critical patent/JP3513828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent distortion from being generated by shortening the overall length of a connection structure for a reflecting surface and a support structure and hold a radio wave reflecting surface precisely and stably by designing the spherical shell, which supports the antenna of an artificial satellite so that a part as the maximum point of the difference between the approximate rotary parabolic surface and radio wave reflecting surface of the spherical shell in a Z-axial direction with respect to the earth direction is minimized. SOLUTION: A reflecting surface structure 5, which has a metallic film surface of a rotary parabolic surface and a support structure 7 which can be expanded, are connected by the connection structure 6. When the spherical shell of the support structure 7 is designed, the spherical surface is so determined that the sum of >=4 even numbers of the Z-directional difference between an expression Zp for finding the rotary parabolic surface of the reflection structure 5 and an expression ZS for finding the rotary parabolic surface of the spherical shell which are raised to a power is minimized, thereby minimizing the Z-axial maximum error between the reflecting surface 5 and the spherical shell 7. Thus, the overall length of the connection structure 6 can be made short for improving the precision of a cable network forming a metallic film surface and reduce the load placed on the support structure, thereby making the antenna lightweight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工衛星に搭載す
る反射鏡アンテナ構造のうち、反射面構造と支持構造お
よび、その両者を接続する接続構造から構成されている
ものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflector antenna structure mounted on an artificial satellite, which comprises a reflecting surface structure, a support structure, and a connection structure for connecting the two.

【0002】例えば、金属膜面などの軽量・柔軟な構造
で反射面構造を形成し、それを展開可能な骨組み構造に
よって支持する構成のアンテナ構造がこれにあたる。
[0002] For example, an antenna structure in which a reflecting surface structure is formed by a lightweight and flexible structure such as a metal film surface and supported by a deployable framework structure corresponds to this.

【0003】[0003]

【従来の技術】人工衛星に搭載する反射鏡アンテナ構造
は、CFRPハニカム板を用いて反射面1を構成し、そ
の背面を骨組み構造2やリブ構造を用いて、補強すると
いう手法が多く用いられてきた(図1)。
2. Description of the Related Art In many cases, a reflector antenna structure mounted on an artificial satellite uses a method in which a reflecting surface 1 is formed using a CFRP honeycomb plate and the back surface thereof is reinforced using a frame structure 2 or a rib structure. (Figure 1).

【0004】こうした構造形式で大型の反射鏡アンテナ
構造を作ろうとした場合、衛星本体に固定する部分を可
動することによって、ある程度、小さな領域に収納する
ことは可能ではあるものの(図2)、例えば、直径10
mを超えるような寸法の反射鏡アンテナ構造を衛星本体
を含めて直径5m程度のロケットフェアリング内に収納
することは事実上困難である。
When an attempt is made to make a large reflector antenna structure with such a structure, it is possible to store the antenna in a small area to some extent by moving a portion fixed to the satellite body (FIG. 2). , Diameter 10
It is practically difficult to house a reflector antenna structure having a size exceeding m in a rocket fairing having a diameter of about 5 m including the satellite body.

【0005】そこで比較的低い通信周波数を用いた移動
体通信用の衛星では、金属膜面を用いて反射面構造を構
成し、それを展開可能な構造物を用いて支持するという
考え方が提案されている(図3)。人工衛星に搭載する
反射鏡アンテナ構造は、多くの場合、回転放物面を形成
しているが、反射面構造、支持構造とも回転放物面を近
似することは支持構造が展開することを考慮すると困難
である。そこで、多くの場合、支持構造は回転放物面を
近似する球面を構成し、支持構造7と反射面構造5を接
続する接続構造6(図4)の長さを調整することによっ
て、球面と回転放物面の誤差を吸収している。
[0005] Therefore, in a satellite for mobile communication using a relatively low communication frequency, there has been proposed an idea that a reflecting surface structure is formed by using a metal film surface and is supported by using a deployable structure. (FIG. 3). In many cases, the reflector antenna structure mounted on a satellite has a paraboloid of revolution, but approximating the paraboloid of revolution for both the reflective surface structure and the support structure takes into account that the support structure expands Then it is difficult. Therefore, in many cases, the support structure constitutes a spherical surface approximating a paraboloid of revolution, and by adjusting the length of the connection structure 6 (FIG. 4) connecting the support structure 7 and the reflective surface structure 5, the support structure is formed. Absorbs the error of the paraboloid of revolution.

【0006】従って、与えられた回転放物面による反射
面構造の形状をできるだけ少ない誤差で近似する球面を
導出する必要があるわけだが、この問題に対して従来
は、電波を反射する方向の近似球面と回転放物面の差の
二乗の反射面構造となる部分の和が最小になるような近
似球面を導出していた。
Therefore, it is necessary to derive a spherical surface that approximates the shape of the reflecting surface structure by a given paraboloid of revolution with as few errors as possible. An approximation sphere was derived such that the sum of the portions having a reflection surface structure of the square of the difference between the sphere and the paraboloid of revolution was minimized.

【0007】[0007]

【発明が解決しようとする課題】電波を反射する方向の
近似球面と回転放物面の差の二乗の反射面構造となる部
分の和が最小になる方法で近似球面を求めると、近似球
面と回転放物面の差つまり反射面構造と支持構造を結ぶ
接続構造の長さがある程度以上には短くならない。接続
構造が短くならなければ、接続構造の先端に取り付けら
れる反射面構造の張力で接続構造に力がかかってしま
い、接続構造が曲がってしまうと反射面構造の精度が保
てなくなる。
When an approximate spherical surface is obtained by a method that minimizes the sum of the portion having a reflective surface structure of the square of the difference between the approximate spherical surface in the direction of radio wave reflection and the paraboloid of revolution, the approximate spherical surface is obtained. The difference in the paraboloid of revolution, that is, the length of the connection structure connecting the reflection surface structure and the support structure does not become shorter than a certain value. If the connection structure is not shortened, a force is applied to the connection structure by the tension of the reflection surface structure attached to the tip of the connection structure, and if the connection structure is bent, the accuracy of the reflection surface structure cannot be maintained.

【0008】本発明の目的は接続構造の長さを上記の方
法で導出する接続構造の長さをさらに短くし、接続構造
に力がかかることを防ぐ方法を提供することにある。
An object of the present invention is to provide a method for further shortening the length of the connection structure for deriving the length of the connection structure by the above-described method, thereby preventing a force from being applied to the connection structure.

【0009】[0009]

【課題を解決するための手段】反射面構造となる部分
の、電波を反射する方向の近似球面と回転放物面の差の
偶数のべき乗の和を最小にするように球面を決定するこ
とにより接続構造の全体の長さを短くすると共に接続構
造に力がかかることを防止する。
The spherical surface is determined so as to minimize the sum of even powers of the difference between the approximate spherical surface in the direction of radio wave reflection and the paraboloid of revolution in the portion forming the reflecting surface structure. The overall length of the connection structure is shortened, and a force is prevented from being applied to the connection structure.

【0010】[0010]

【発明の実施の形態】従来の技術で述べたように、金属
膜面を反射面構造とし、接続構造、展開可能な支持構造
を用いた人工衛星の搭載アンテナの支持構造が形作る球
殻を以下の方法で設計した。その際反射面構造となる回
転放物面と回転放物面を近似した球殻のZ軸方向の差が
一番大きなところが一番小さくなるようにした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described in the description of the prior art, a spherical shell formed by a supporting structure of an antenna mounted on a satellite using a connecting structure and a deployable supporting structure with a metal film surface as a reflecting surface structure is described below. Designed in the way. At that time, the point where the difference in the Z-axis direction between the paraboloid of revolution having the reflecting surface structure and the spherical shell approximating the paraboloid of revolution was largest was minimized.

【0011】まず、図8のフローチャート要素8で示し
た回転放物面の式を導出する。それには図5に示すよう
に回転放物面の頂点を原点として、回転放物面の広がっ
ている、アンテナから見た地球の位置する方向と一致す
る方向をZ軸とし、それと直交する方向をY軸とする。
次に反射面構造に用いる部分を以下のように定める。回
転放物面の原点から反射面構造が始まる部分までの距離
をY軸のオフセット、YDとし、反射面構造部分のY軸
方向の大きさをDとする。そして電気特性から、この回
転放物面の式Zp は回転放物面の焦点距離がfmで表わ
され、以下の式のようになる。
First, the equation of the paraboloid of revolution shown by the flow chart element 8 in FIG. 8 is derived. As shown in Fig. 5, the origin is the vertex of the paraboloid of revolution, the Z-axis is the direction in which the paraboloid of revolution is spreading, and the direction coincides with the direction in which the earth is viewed from the antenna. Let it be the Y axis.
Next, the portion used for the reflection surface structure is determined as follows. The distance from the origin of the paraboloid of revolution to the portion where the reflecting surface structure starts is Y-axis offset, YD, and the size of the reflecting surface structure portion in the Y-axis direction is D. And from the electrical characteristics, the formula Z p of the paraboloid is expressed focal length of the paraboloid of revolution is at fm, as shown in the following equation.

【0012】[0012]

【数1】 (Equation 1)

【0013】Z軸上の位置をOz 、Y軸上の位置をO
y 、半径rで表わすとフローチャート要素9に示す球殻
の式Zs は以下のようになる。この時回転放物面も球殻
もZ軸に対して軸対称なのでX軸上のオフセットは考慮
しない。
The position on the Z axis is O z , and the position on the Y axis is O
y, wherein Z s spherical shell shown in the flow chart element 9 is represented by the radius r is as follows. At this time, since both the paraboloid of revolution and the spherical shell are axisymmetric with respect to the Z axis, no offset on the X axis is considered.

【0014】[0014]

【数2】 (Equation 2)

【0015】これらの式(1)と(2)で表わされたZ
p とZs の式のZ方向の差を最小にするために、まず、
Z方向の差が一番大きいところがより大きくなり、小さ
くなるところはより小さくなるような式を作成した。
The Z expressed by these equations (1) and (2)
The difference in the Z direction wherein p and Z s in order to minimize, firstly,
An equation was created so that the part where the difference in the Z direction is the largest becomes larger and the part where the difference in the Z direction becomes smaller becomes smaller.

【0016】そのためにZs からZp を引いたものを2
m乗し、反射面構造となる部分を積分した。mを10.
0などの大きな数にすると、Zs とZp の大きなところ
はより大きく、小さいところはより小さくすることがで
きる。積分範囲である回転放物面の反射面構造となる部
分は図5に示すようにY軸方向についてはYDからYD
+Dまで、X軸方向についてはZ軸から見た時に直径D
の円になる部分である。フローチャート要素10に示
す、Zs −Zp の2m乗を積分した式は以下のようにな
る。
Therefore, the value obtained by subtracting Z p from Z s is 2
The value was raised to the m-th power, and the portion forming the reflection surface structure was integrated. m to 10.
When a large number such as 0 is set, a portion where Z s and Z p are large can be made larger and a portion where Z s and Z p are small can be made smaller. As shown in FIG. 5, the portion of the paraboloid of revolution that is the integration range, which becomes the reflecting surface structure, is YD to YD in the Y-axis direction.
Up to + D, the diameter D in the X-axis direction when viewed from the Z-axis
This is the part of the circle. The equation shown in flowchart element 10 that integrates Z s -Z p to the power of 2m is as follows.

【0017】[0017]

【数3】 (Equation 3)

【0018】この式(3)のr,Oy ,Oz について一
回微分した値が0になる時がZs とZp のZ軸方向の差
が最小になる時である。それらの式を以下に示す。
The time when the value obtained by differentiating r, O y , and O z in equation (3) once becomes 0 is the time when the difference between Z s and Z p in the Z-axis direction becomes minimum. The equations are shown below.

【0019】[0019]

【数4】 (Equation 4)

【0020】[0020]

【数5】 (Equation 5)

【0021】[0021]

【数6】 (Equation 6)

【0022】これらの式(4)、(5)、(6)が成り
立つ時のr,Oy ,Oz の値をフローチャート要素11
に示す、ニュートン法の式(7)を用いて導出した。i
はニュートン法の繰り返し計算の回数である。
The values of r, O y , and O z when these equations (4), (5), and (6) are satisfied are represented by the flowchart element 11.
Is derived using the equation (7) of the Newton method shown in FIG. i
Is the number of iterations of the Newton method.

【0023】[0023]

【数7】 (Equation 7)

【0024】従来の方法である最小二乗法で近似球面を
求める場合は、式(3)から(6)のmが1になる。フ
ローチャート要素12、13に示すようにニュートン法
が収束すると、r,Oy ,Oz が求まる。
When an approximate spherical surface is obtained by the conventional method of least squares, m in equations (3) to (6) becomes 1. When the Newton method converges as shown in flowchart elements 12 and 13, r, O y , and O z are obtained.

【0025】最小二乗法によって求めた回転放物面と球
殻のZ軸方向の誤差を図6に示す。回転放物面のDは1
5000mm、YDは3000mm、fmは10000
mmである。図6中の実線や各種の点線はZ軸方向の回
転放物面と球殻との差(近似誤差)であり、X軸に平行
な断面の位置をパラメーターにして示してある。この時
の正の最大値、回転放物面のZ軸方向の位置が球面のZ
軸方向の位置より大きい時の最大値は241.51mm
であり負の最大値、回転放物面のZ軸方向の位置が球面
のZ軸方向の位置より小さい時の最小値は−192.8
6mmである。そして球面が回転放物面をZ軸方向の下
側から支える形になるので、球面のZ軸の値が回転放物
面のそれより大きい部分があるということは、つまり負
の最大値分球面を回転放物面よりZ軸方向に下げなけれ
ばならないことになる。それをすると近似球面と回転放
物面のZ軸方向の値は正の最大値と負の最大値を足した
値になることから、接続構造の高低差は438.37m
mとなる。接続構造の高低差をさらに短くするためには
最小二乗法を用いるよりも近似球面と回転放物面のZ軸
方向の最大誤差を縮める方法を用いた方法が有効であ
る。
FIG. 6 shows the error in the Z-axis direction between the paraboloid of revolution and the spherical shell obtained by the least square method. D of the paraboloid of revolution is 1
5000mm, YD is 3000mm, fm is 10,000
mm. The solid lines and various dotted lines in FIG. 6 are differences (approximation errors) between the paraboloid of revolution in the Z-axis direction and the spherical shell, and indicate the position of a cross section parallel to the X-axis as a parameter. The positive maximum value at this time, the position of the paraboloid of revolution in the Z-axis direction is the Z of the spherical surface.
The maximum value when it is larger than the axial position is 241.51 mm
And the minimum value when the position of the paraboloid of revolution in the Z-axis direction is smaller than the position of the spherical surface in the Z-axis direction is -192.8.
6 mm. Since the spherical surface supports the paraboloid of revolution from the lower side in the Z-axis direction, the fact that there is a portion where the value of the Z-axis of the spherical surface is larger than that of the paraboloid of revolution means that the spherical surface has a negative maximum value. Must be lowered from the paraboloid of revolution in the Z-axis direction. Then, the value in the Z-axis direction of the approximate spherical surface and the paraboloid of revolution becomes a value obtained by adding the positive maximum value and the negative maximum value, and the height difference of the connection structure is 438.37 m.
m. In order to further reduce the height difference of the connection structure, it is more effective to use a method of reducing the maximum error in the Z-axis direction between the approximate spherical surface and the paraboloid of revolution than using the least squares method.

【0026】本発明で提案するmをより大きな値にし計
算した結果を図7に表わし、上記で述べた最小二乗法を
用いて計算した結果と比較した。mを10にした場合は
Dは15000mm、YDは3000mm、fmは10
000mmとなり、その時のZ軸方向の差の正の最大値
は186.33mmとなり、負の最大値は−176.1
6mmとなる。つまり接続構造の高低差は364.49
mmとなる。最小二乗法を用いた時の接続構造の高低差
の438.37mmと比較すると73.88mm短くす
ることができる。
FIG. 7 shows the result of calculating the value of m proposed in the present invention with a larger value, and compares the result with the result of calculation using the least square method described above. When m is 10, D is 15000 mm, YD is 3000 mm, and fm is 10
000 mm, and the positive maximum value of the difference in the Z-axis direction at that time is 186.33 mm, and the negative maximum value is -176.1.
6 mm. That is, the height difference of the connection structure is 364.49.
mm. Compared to the difference in height of the connection structure of 438.37 mm when the least squares method is used, the height can be reduced by 73.88 mm.

【0027】また接続構造が長くなった場合、反射面構
造の張力により接続構造の先端に力がかかって接続構造
と反射面構造の接続位置が規定の位置より反射面構造側
にずれてしまう。例えばそのずれが5mmのとき反射面
構造に取り付けてあるノード点14の位置が最大で1
5.59mmずれてしまい、接続位置が10mmずれれ
ばノード点の位置が21.43mmずれてしまう。この
ように、接続構造と反射面構造の接続位置のずれが小さ
い場合でも、ノード位置は大きくずれる。このずれが大
きい場合には反射面構造の張力を所望の張力に調整する
ことすら不可能になってしまう。このことから接続構造
をできるだけ短くすることで、接続構造の変形を防ぐ必
要がある。
When the connection structure becomes longer, a force is applied to the tip of the connection structure due to the tension of the reflection surface structure, and the connection position between the connection structure and the reflection surface structure is shifted from the prescribed position to the reflection surface structure side. For example, when the deviation is 5 mm, the position of the node point 14 attached to the reflecting surface structure is 1 at the maximum.
If the connection position is shifted by 10 mm, the position of the node point is shifted by 21.43 mm. As described above, even when the difference between the connection positions of the connection structure and the reflection surface structure is small, the node position is largely shifted. If the deviation is large, it becomes impossible even to adjust the tension of the reflecting surface structure to a desired tension. For this reason, it is necessary to prevent the deformation of the connection structure by making the connection structure as short as possible.

【0028】[0028]

【発明の効果】回転放物面を球殻で近似する際には最小
二乗法よりも回転放物面と球殻のZ軸方向の誤差の最も
大きな部分を最小にする方法のほうが誤差を小さくする
ことができ、反射鏡構造と支持構造を接続する接続構造
をより短く作成することができる。
When the paraboloid of revolution is approximated by a spherical shell, the method of minimizing the largest error in the Z-axis direction between the paraboloid of revolution and the spherical shell has a smaller error than the least squares method. The connection structure for connecting the reflector structure and the support structure can be made shorter.

【0029】誤差の最も大きな部分を最小にするには、
誤差の偶数のべき乗の和を最小にすればよい。偶数の値
は好ましくは4以上である。偶数のべき乗をとると、小
さな誤差はより小さくなり、大きな誤差はより大きくな
るので、偶数のべき乗の和は、誤差の最も大きな部分に
より代表される。
To minimize the largest part of the error,
What is necessary is just to minimize the sum of the even powers of the error. The even value is preferably 4 or more. Even powers are smaller, smaller errors are larger, and larger errors are larger, so the sum of even powers is represented by the largest part of the error.

【0030】接続構造が短くなることで金属膜面を形成
するケーブルネットワークの精度を上げ、支持構造にか
かる負担を少なくすることができることや、衛星搭載ア
ンテナ全体の重量の軽量化にもつながる。
By shortening the connection structure, the accuracy of the cable network forming the metal film surface can be increased, the load on the support structure can be reduced, and the weight of the entire antenna mounted on the satellite can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の反射鏡アンテナ構造である。FIG. 1 shows a conventional reflector antenna structure.

【図2】従来の人工衛星の搭載アンテナの反射鏡アンテ
ナ構造の展開・収納状態を示す。
FIG. 2 shows a deployed and stored state of a reflector antenna structure of a conventional antenna mounted on a satellite.

【図3】従来衛星のイメージ図を示す。FIG. 3 shows an image diagram of a conventional satellite.

【図4】反射面構造と支持構造と接続構造の接続図であ
る。
FIG. 4 is a connection diagram of a reflection surface structure, a support structure, and a connection structure.

【図5】回転放物面の反射面構造となる部分の説明図で
ある。
FIG. 5 is an explanatory view of a portion having a paraboloidal reflection surface structure.

【図6】最小二乗法による回転放物面と球殻のZ軸方向
の誤差のグラフである。
FIG. 6 is a graph of the error in the Z-axis direction between the paraboloid of revolution and the spherical shell according to the method of least squares.

【図7】より大きな偶数のべき乗による回転放物面と球
殻のZ軸方向の誤差のグラフである。
FIG. 7 is a graph of the Z-axis error between the paraboloid of revolution and the spherical shell due to a larger even power.

【図8】本発明の方法を実施するフローチャートであ
る。
FIG. 8 is a flowchart for implementing the method of the present invention.

【符号の説明】[Explanation of symbols]

1 従来の反射鏡アンテナ構造 2 骨組み構造 3 従来の人工衛星の搭載アンテナの展開状態 4 従来の人工衛星のロケットフェアリングへの収納状
態 5 反射面構造 6 接続構造 7 支持構造 8 フローチャート要素 9 フローチャート要素 10 フローチャート要素 11 フローチャート要素 12 フローチャート要素 13 フローチャート要素 14 ノード点
DESCRIPTION OF SYMBOLS 1 Conventional reflector antenna structure 2 Frame structure 3 Conventional satellite mounted antenna deployment state 4 Conventional satellite stored in rocket fairing 5 Reflective surface structure 6 Connection structure 7 Support structure 8 Flow chart element 9 Flow chart element 10 Flow chart element 11 Flow chart element 12 Flow chart element 13 Flow chart element 14 Node point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電波を反射する反射面構造の形状を回転
放物面で与え、 該反射面構造を支持する離散的な点が球面の上に位置
し、 該球面と回転放物面の間の軸方向の差の偶数のべき乗の
和を求め、 その和が最小となるように前記球面を決定することを特
徴とする、最適球面近似法によるアンテナ反射鏡面の決
定方法。
1. A shape of a reflecting surface structure for reflecting a radio wave is given by a paraboloid of revolution, and discrete points supporting the reflecting surface structure are located on a spherical surface, and between the spherical surface and the paraboloid of revolution. A method of determining an antenna reflecting mirror surface by an optimal spherical approximation method, wherein a sum of even powers of the difference in the axial direction is determined, and the spherical surface is determined so as to minimize the sum.
【請求項2】 前記偶数が4より大である、請求項1記
載の最適球面近似法によるアンテナ反射鏡面の決定方
法。
2. The method according to claim 1, wherein the even number is greater than four.
JP01963397A 1997-01-20 1997-01-20 Antenna reflector Expired - Fee Related JP3513828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01963397A JP3513828B2 (en) 1997-01-20 1997-01-20 Antenna reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01963397A JP3513828B2 (en) 1997-01-20 1997-01-20 Antenna reflector

Publications (2)

Publication Number Publication Date
JPH10209747A true JPH10209747A (en) 1998-08-07
JP3513828B2 JP3513828B2 (en) 2004-03-31

Family

ID=12004622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01963397A Expired - Fee Related JP3513828B2 (en) 1997-01-20 1997-01-20 Antenna reflector

Country Status (1)

Country Link
JP (1) JP3513828B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036863A1 (en) 2010-09-16 2012-03-22 Space Systems/Loral, Inc. High capacity broadband satellite antenna
US9004409B1 (en) 2011-08-23 2015-04-14 Space Systems/Loral, Llc Extendable antenna reflector deployment techniques
US9248922B1 (en) 2011-08-23 2016-02-02 Space Systems/Loral, Llc Reflector deployment techniques for satellites
CN108511921A (en) * 2018-02-28 2018-09-07 西安空间无线电技术研究所 A kind of rope net antenna, rope net antenna metal mesh structure and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036863A1 (en) 2010-09-16 2012-03-22 Space Systems/Loral, Inc. High capacity broadband satellite antenna
US8789796B2 (en) 2010-09-16 2014-07-29 Space Systems/Loral, Llc High capacity broadband satellite
US9004409B1 (en) 2011-08-23 2015-04-14 Space Systems/Loral, Llc Extendable antenna reflector deployment techniques
US9248922B1 (en) 2011-08-23 2016-02-02 Space Systems/Loral, Llc Reflector deployment techniques for satellites
CN108511921A (en) * 2018-02-28 2018-09-07 西安空间无线电技术研究所 A kind of rope net antenna, rope net antenna metal mesh structure and preparation method thereof
CN108511921B (en) * 2018-02-28 2020-09-18 西安空间无线电技术研究所 Cable net antenna, metal net structure for cable net antenna and manufacturing method of metal net structure

Also Published As

Publication number Publication date
JP3513828B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
Hedgepeth Accuracy potentials for large space antenna reflectors with passive structure
US7216995B2 (en) Deployable reflector
US6542132B2 (en) Deployable reflector antenna with tensegrity support architecture and associated methods
US20070146227A1 (en) Deployment booms
CN107248620B (en) Self-resilience multi-dimensional reconfigurable high-parameter satellite-borne deployable antenna
US3530469A (en) Energy impingement device
JPH10209747A (en) Method for determining antenna-reflecting mirror surface by optimal spherical approximating method
CN114503361B (en) Antenna deployable assembly
EP0168904B1 (en) Offset-fed dual reflector antenna
Natori et al. A structure concept of high precision mesh antenna for space VLBI observation
US7548218B2 (en) Isostatic support structure or fixed or re-orientable large size antenna reflectors
Dyer et al. Deployable truss structure advanced technology
US20030234746A1 (en) Sub-reflector shaping in an unfurlable reflector antenna system
Olmi et al. SRT: design and technical specifications
Lamb et al. Blockage due to subreflector supports in large radiotelescope antennas
JP3252287B2 (en) Mesh antenna
US11909126B2 (en) Optical system for enhanced wide scan capability of array antennas
Ozawa et al. Shape Estimation of Mesh Reflector Surface on Rhombus Lattice Thin-Plate Network
JP3500025B2 (en) Antenna reflector surface
JPH11220322A (en) Extension antenna
JP2687413B2 (en) Reflector antenna
Takano et al. Large deployable antenna with cable net composition for satellite use
JP2650232B2 (en) Double reflector antenna device
JPH05218731A (en) Parabolic face approximating expansion antenna
JPH0767045B2 (en) Deployable antenna reflector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees