JPH10209485A - Optical semiconductor element - Google Patents

Optical semiconductor element

Info

Publication number
JPH10209485A
JPH10209485A JP9012225A JP1222597A JPH10209485A JP H10209485 A JPH10209485 A JP H10209485A JP 9012225 A JP9012225 A JP 9012225A JP 1222597 A JP1222597 A JP 1222597A JP H10209485 A JPH10209485 A JP H10209485A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
incident
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9012225A
Other languages
Japanese (ja)
Inventor
Takao Miyazaki
隆雄 宮崎
Yoshiaki Kamigaki
良昭 神垣
Hitoshi Nakamura
均 中村
Masato Shishikura
正人 宍倉
Shigehisa Tanaka
滋久 田中
Shinji Tsuji
伸二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9012225A priority Critical patent/JPH10209485A/en
Publication of JPH10209485A publication Critical patent/JPH10209485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a tunable light receiving unit having simple structure by entering an energy light having wavelength larger than that of the band gap energy of a light absorption layer so that microwave oscillation takes place under such voltage application conditions as the breakdown field strength is higher than a specified value. SOLUTION: A light absorption layer 13 is formed in the center and provided with clad layers, i.e., a p-InGaAsP layer 12 and an n-InGaAsP layer 14, on the opposite sides thereof and then a p-i-n junction is formed and an n electrode 11 and P electrode 15 are provided. An energy light having wavelength larger than that of the band gap energy of the light absorption layer 13 is projected as an optical signal 16 and when a diode applying voltage Vg is applied between the n electrode 11 and p electrode 15 under conditions that the breakdown field strength is 90% or above, a photocurrent and a microwave signal are generated from a same electrode. The microwave oscillation frequency depends on the wavelength and power of the incident light and the element can function as a tunable light receiving unit by specifying the input conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体受光素子,半
導体光発振素子,波長多重素子等の半導体光素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical device such as a semiconductor light receiving device, a semiconductor optical oscillation device, and a wavelength multiplexing device.

【0002】[0002]

【従来の技術】光を入射して、それにより発生する光電
流や光起電力を検出する受光素子には種々の構造のもの
が考案され、実用に供されている。半導体素子に外部か
ら高電界を印加し、キャリヤの走行時間効果やアバラン
シェブレークダウン現象に起因するマイクロ波発振を実
現した素子には、ガンダイオードやインパットダイオー
ドなどがよく知られており、固体発振素子として広く利
用されている。これらは各々、光−電気変換および光−
マイクロ波変換のエネルギ変換を積極的に利用したもの
である。この両者の例では、光とマイクロ波のエネルギ
変換の相関は見られない。
2. Description of the Related Art Various structures have been devised for light receiving elements for detecting light current and photoelectromotive force generated by the incidence of light, which have been put into practical use. Devices that apply a high electric field to a semiconductor device from the outside and realize microwave oscillation caused by carrier transit time effects and avalanche breakdown phenomena are well known, such as gun diodes and impatt diodes. Widely used as elements. These are optical-electrical conversion and optical-
The energy conversion of microwave conversion is actively used. In both examples, there is no correlation between light and microwave energy conversion.

【0003】[0003]

【発明が解決しようとする課題】通信回線の加入者系の
光化とISDNの導入により、通信ネットワークの大容
量化への期待が高まっている。それを実現するには、時
間,空間または波長の次元で多重化を行う必要があり、
その方策として時間多重(TDM),空間多重(SD
M)および波長多重(WDM)があり、超大容量ネット
ワークを実現するにはこれらを組み合わせることが不可
欠になる。しかし、従来活発に開発されてきた超高速化
も電子回路等の周辺技術の高速化の難しさから10Gb
/s以上の高速領域では現実的でなく、また空間的な多
重化も物理的な制約から適用に限界がある。
With the increase in the optical system of the subscriber line of the communication line and the introduction of ISDN, expectations for an increase in the capacity of the communication network are increasing. To do that, we need to multiplex in the time, space or wavelength dimensions,
Time multiplexing (TDM) and spatial multiplexing (SD)
M) and wavelength division multiplexing (WDM), and it is essential to combine them to realize a very large capacity network. However, the ultra-high speed which has been actively developed in the past has also been reduced to 10 Gb due to the difficulty of speeding up peripheral technologies such as electronic circuits.
/ S is not practical in the high-speed region of more than / s, and the application of spatial multiplexing is limited due to physical restrictions.

【0004】これらの問題の克服には、光の広帯域性を
充分に活用する波長領域での多重化を導入するのが最も
有効である。WDMでは、伝送信号形式によらずフレキ
シブルな多重化が可能であることと、波長数を増やすだ
けでシステム規模の拡張ができるという特徴がある。こ
れらの点を考慮すると、全光WDMネットワーク化が光
技術開発の主たる動向になると考えられる。
In order to overcome these problems, it is most effective to introduce multiplexing in a wavelength region that makes full use of the broadband characteristics of light. WDM has features that flexible multiplexing is possible regardless of the transmission signal format and that the system scale can be expanded simply by increasing the number of wavelengths. Considering these points, all-optical WDM networking is considered to be the main trend in optical technology development.

【0005】WDMネットワーク実現のためのキーデバ
イスには種々のものがあるが、パッシブスター結合では
チューナブル光受信器がその一つである。高速でチャネ
ル切り替え受信を行うためには、電気的制御が可能な光
フィルタの利用が不可欠で、現在のところ最適と思われ
る方式のものが実現されていない。
There are various types of key devices for realizing a WDM network, and a tunable optical receiver is one of them in passive star coupling. In order to perform channel switching reception at high speed, it is essential to use an optical filter that can be electrically controlled, and a system that is considered to be optimal at present has not been realized.

【0006】光アクセスネットワークを指向した1.3
/1.55μmのWDM−フォトダイオード(PD)モ
ジュールが最近提案された(OECC ‘96(199
6)384,518)。これは1.3μm帯PDと1.55
μm帯PDを直列に配置し、1.3μm波長光は前面配
置の1.3μmPDに、1.55μm 波長光は1.3μm
PDを通過して1.55μmPDに入射するようにした
もので、1.3μmPDにフィルタ作用を持たせてい
る。この方式では光学的な位置整合や素子寸法の点から
不都合な問題も頻発するため、システム構築上制限が課
せられる。
1.3 for optical access networks
/1.55 μm WDM-photodiode (PD) module has recently been proposed (OECC '96 (199
6) 384, 518). This corresponds to a 1.3 μm band PD and 1.55
μm band PDs are arranged in series, 1.3 μm wavelength light is 1.3 μm PD on the front side, 1.55 μm wavelength light is 1.3 μm
The light passes through the PD and is incident on the 1.55 μm PD. The 1.3 μm PD has a filtering function. In this system, inconveniences frequently occur in terms of optical position matching and element dimensions, so that restrictions are imposed on system construction.

【0007】[0007]

【課題を解決するための手段】チューナブル光受信器で
は、受信すべきチャネルを識別できる機能を有する必要
がある。WDMでは各チャネルの波長が異なるので、受
光の波長の識別作用を含むことになる。個別部品のハイ
ブリッド集合体でもこの目的にそうことは可能である
が、コストパフォーマンスの点からはモノリシック集積
化が望ましい。
SUMMARY OF THE INVENTION A tunable optical receiver needs to have a function of identifying a channel to be received. In the WDM, since the wavelength of each channel is different, the function of discriminating the wavelength of the received light is included. Although a hybrid assembly of individual components can do this for this purpose, monolithic integration is desirable from a cost performance standpoint.

【0008】光ネットワークで受光素子として通常用い
られているものはPIN型とAPD型があり、これらは
いずれも光の入射方向が発生したキャリヤの走行方向と
平行になるような構造になっている。
[0008] There are a PIN type and an APD type which are usually used as light receiving elements in an optical network. Both of them have a structure in which the incident direction of light is parallel to the traveling direction of the generated carrier. .

【0009】これに対して、最近考案された外部印加電
界と垂直方向から光入射を行う側面入射PD(WG−P
D)では、光感度に対応する入射光の利用効率と高周波
帯域特性を両立させたもので、従来構造のものに比して
有利な点が多い。このWG−PDに接合破壊電界強度の
90%以上の高電界バイアスを印加するとともに、PD
の光吸収層のバンドギャップ以上のエネルギを有する光
を入射することにより、光電流とともにマイクロ波発振
が生じることがわかった。
On the other hand, a recently-invented side-incident PD (WG-P
D) achieves both the use efficiency of the incident light corresponding to the light sensitivity and the high frequency band characteristic, and has many advantages as compared with the conventional structure. A high electric field bias of 90% or more of the junction breakdown electric field strength is applied to this WG-PD,
It has been found that, when light having energy equal to or greater than the band gap of the light absorbing layer is incident, microwave oscillation occurs together with the photocurrent.

【0010】この光−マイクロ波の変換効率はキャリヤ
の増倍作用のあるAPDのほうが、PIN構造よりも大
きい。また、マイクロ波の振幅や周波数は、入射光の強
度や波長に依存して決まる。特にWG−APDでは、こ
の傾向が顕著に生じる。従って、一定強度の入射光を受
光したWG−PDで、出力の周波数をフィルタリングす
ることにより、チューナブル光受信器として動作する。
電気的周波数フィルタリングは光学的フィルタリングよ
りも容易で、集積化にも適している。
The conversion efficiency of the light-microwave is larger in the APD having the multiplying effect of the carrier than in the PIN structure. Further, the amplitude and frequency of the microwave are determined depending on the intensity and wavelength of the incident light. Particularly in the case of WG-APD, this tendency occurs remarkably. Therefore, the WG-PD that has received the incident light of a constant intensity filters the output frequency to operate as a tunable optical receiver.
Electrical frequency filtering is easier than optical filtering and is also suitable for integration.

【0011】この受光素子は光マイクロ波変換器として
動作し、特に入射光の波長が特定の出力周波数に対応す
るため、出力周波数の情報から入力チャネルの情報を知
ることができる。従って、簡単な構造でチューナブル光
受信器として作用する。多波長入力条件では、出力側に
周波数識別回路を導入することで、モノリシックチュー
ナブル受光器を実現できる。
This light receiving element operates as an optical microwave converter. In particular, since the wavelength of the incident light corresponds to a specific output frequency, the information of the input channel can be known from the information of the output frequency. Therefore, it functions as a tunable optical receiver with a simple structure. Under multi-wavelength input conditions, a monolithic tunable light receiver can be realized by introducing a frequency identification circuit on the output side.

【0012】[0012]

【発明の実施の形態】図1は本発明の一実施例の側面光
入射による導波路PDの断面構造を示している。PDの
中心部に形成される光吸収層13は、たとえば1.55
μm 波長の光に対して低不純物ドープ濃度のi−In
GaAsを用いる。厚さは入射光ビームの径に依存し、
たとえば2μmになる。この両面にクラッド層としてp
−InGaAsP層12およびn−InGaAsP層1
4を設けて、p−i−n接合構造を形成する。p層,n
層の厚さは各々4μm程度である。ダイオードに電圧を
印加する電極として、n用電極11とp用電極15を設
ける。
FIG. 1 shows a sectional structure of a waveguide PD by incidence of side light according to an embodiment of the present invention. The light absorption layer 13 formed at the center of the PD is, for example, 1.55.
i-In with low impurity doping concentration for light of μm wavelength
GaAs is used. The thickness depends on the diameter of the incident light beam,
For example, it is 2 μm. As a cladding layer on both sides, p
-InGaAsP layer 12 and n-InGaAsP layer 1
4 to form a pin junction structure. p layer, n
The thickness of each layer is of the order of 4 μm. An electrode 11 for n and a electrode 15 for p are provided as electrodes for applying a voltage to the diode.

【0013】光信号16は側面より入射し、実際の素子
形状は入射方向の垂直面内に10μm×10μmの断面
積を有し、長さが約100μmのリッジ形ストライプに
なっている。ダイオード印加電圧Vgは両電極間に逆バ
イアス方向に印加し、同一電極から光電流およびマイク
ロ波信号を検出する。
The optical signal 16 is incident from the side surface, and the actual element shape is a ridge-shaped stripe having a cross-sectional area of 10 μm × 10 μm and a length of about 100 μm in a plane perpendicular to the incident direction. The diode applied voltage Vg is applied in a reverse bias direction between both electrodes, and a photocurrent and a microwave signal are detected from the same electrode.

【0014】ダイオードのdc電流電圧特性は、光未照
射時は図2の曲線21に、光照射時にはたとえば曲線2
2のようになる。そこでバイアス電圧を接合耐圧の90
%以上に相当する動作点23に設定し、光を照射すると
電流端子を通じてマイクロ波発振が観測された。
The dc current-voltage characteristic of the diode is shown by curve 21 in FIG.
It looks like 2. Therefore, the bias voltage is set to 90 at the junction breakdown voltage.
% Was set to the operating point 23 corresponding to at least%, and when light was irradiated, microwave oscillation was observed through the current terminal.

【0015】このマイクロ波発振は、ダイオードに接続
したスペクトラムアナライザで周波数スペクトルとして
表示できる。図3はその結果の一例を示すもので、横軸
に発振周波数Fcを、縦軸にマイクロ波発振出力Poを示
したものである。
This microwave oscillation can be displayed as a frequency spectrum by a spectrum analyzer connected to a diode. FIG. 3 shows an example of the result, in which the horizontal axis shows the oscillation frequency Fc and the vertical axis shows the microwave oscillation output Po.

【0016】発振周波数は入射光の波長λや入射光の入
力パワーPinに依存する。たとえば、入射光波長をλ1
(1.3μm)とλ2(1.5μm)の二種類に設定し、
入力光パワーを変えた場合の発振周波数の変化を測定す
ると、図4に表示したような結果が得られた。入射光の
エネルギ波長が大きいほど発振周波数は高くなる傾向を
示した。これにより、入射光波長とパワーが規定される
と一義的に発振周波数が設定されることになり、波長と
周波数の対応関係が明らかになった。
The oscillation frequency depends on the wavelength λ of the incident light and the input power Pin of the incident light. For example, if the incident light wavelength is λ 1
(1.3 μm) and λ 2 (1.5 μm)
When the change of the oscillation frequency when the input light power was changed was measured, the result as shown in FIG. 4 was obtained. The oscillation frequency tended to increase as the energy wavelength of the incident light increased. As a result, when the wavelength and the power of the incident light are defined, the oscillation frequency is uniquely set, and the correspondence between the wavelength and the frequency is clarified.

【0017】次の実施例として、WDM用チューナブル
受光器への応用例を図5に示した。図において光入力パ
ワーを一定に保ち、波長の異なった複数個の光入力信号
をファイバを通して本発明によるPD51に入射する
と、直流高電界バイアス条件でそれぞれの波長に対応し
た周波数のマイクロ波発振を生じる。この信号を電気的
フィルタ回路でフィルタリングし、次段の信号処理回路
へ伝送する。
FIG. 5 shows an example of application to a tunable photodetector for WDM as the next embodiment. In the figure, when the optical input power is kept constant and a plurality of optical input signals having different wavelengths are incident on the PD 51 according to the present invention through the fiber, microwave oscillation of a frequency corresponding to each wavelength is generated under a DC high electric field bias condition. . This signal is filtered by an electric filter circuit and transmitted to the next signal processing circuit.

【0018】他の実施例は、装置の概念構成は図5と同
様であるが、PDには増幅作用効果を有するAPDを用
いた。この場合、λ1 とλ2 の光波長に極めて接近した
ものを用いると、出力のマイクロ波信号にはそれに対応
したF1 ,F2 周波数の他に、ΔF=F1−F2のヘテロ
ダイン周波数成分が顕著になる。λ1 =1.27μm,Δ
λ=2ÅではΔF=74GHzのミリ波発振が観測され
た。このオプティカルミキシング法により、従来の高周
波電子回路素子では困難であったミリ波やサブミリ波の
発振が容易に行えるようになった。
In other embodiments, the conceptual configuration of the apparatus is the same as that of FIG. 5, but an APD having an amplifying effect is used for the PD. In this case, if a wavelength very close to the optical wavelengths of λ 1 and λ 2 is used, the output microwave signal has a heterodyne frequency of ΔF = F 1 −F 2 in addition to the corresponding F 1 and F 2 frequencies. The components become noticeable. λ 1 = 1.27 μm, Δ
At λ = 2Å, millimeter wave oscillation of ΔF = 74 GHz was observed. This optical mixing method has made it possible to easily oscillate millimeter waves and submillimeter waves, which were difficult with conventional high-frequency electronic circuit elements.

【0019】なお、実施例としてInGaAs系の材料
について説明したが、他の直接遷移型化合物半導体材料
を用いた場合でも、入射光波長を適宜組み合わせること
で同様の動作が可能である。
Although an InGaAs-based material has been described as an example, the same operation can be performed by appropriately combining the wavelengths of incident light even when another direct transition type compound semiconductor material is used.

【0020】[0020]

【発明の効果】本発明によれば側面光入射の導波路型フ
ォトダイオードにおいて、高電界バイアスの印加条件で
光吸収層のバンドギャップエネルギよりも大きいエネル
ギ波長の光を入射することにより、マイクロ波発振を生
じさせることができた。特に、キャリヤ増幅効果の顕著
なAPD構造で、光−マイクロ波変換効率が大きい。
According to the present invention, in a waveguide type photodiode with side light incidence, a microwave having an energy wavelength larger than the band gap energy of the light absorption layer is incident under a high electric field bias application condition. Oscillation could be caused. In particular, the APD structure having a remarkable carrier amplification effect has a large light-to-microwave conversion efficiency.

【0021】本発明の光素子で、マイクロ波発振周波数
は入射光の波長と入力パワーに依存して決められるの
で、所定の入力条件を指定することによりチューナブル
受光器として動作させることができる。これは従来の受
光器と各種の光学フィルタを組み合わせた構造に比し
て、経済性,多機能性,簡略化にすぐれており、WDM
アクセス系ネットワークシステム構築上多大のメリット
を提供する。
In the optical device of the present invention, since the microwave oscillation frequency is determined depending on the wavelength of the incident light and the input power, it can be operated as a tunable light receiver by designating a predetermined input condition. This is excellent in economy, multi-functionality and simplicity as compared with a structure in which a conventional light receiver and various optical filters are combined.
It offers a great advantage in building an access network system.

【0022】さらに、光ヘテロダイン効果を利用して、
WG−APDに複数波長の光入射を行うことにより、ミ
リ波の発生を可能にした。このオプティカルミキシング
作用により、従来の超高周波電子回路を用いては困難で
あったミリ波やサブミリ波発振が容易になる。
Further, utilizing the optical heterodyne effect,
Millimeter waves can be generated by making light of a plurality of wavelengths incident on the WG-APD. This optical mixing operation facilitates millimeter-wave or submillimeter-wave oscillation, which has been difficult using conventional ultrahigh-frequency electronic circuits.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す側面光入射の複合半導
体受光素子の断面図。
FIG. 1 is a cross-sectional view of a composite semiconductor light receiving element with side light incidence showing an embodiment of the present invention.

【図2】図1の素子の電流電圧特性図。FIG. 2 is a current-voltage characteristic diagram of the device of FIG.

【図3】図1の素子の発振スペクトル特性図。FIG. 3 is an oscillation spectrum characteristic diagram of the device of FIG.

【図4】図1の素子の発振周波数−光入力特性図。FIG. 4 is an oscillation frequency-optical input characteristic diagram of the device of FIG. 1;

【図5】本発明の光半導体素子の波長多重素子への応用
例を示す説明図。
FIG. 5 is an explanatory diagram showing an application example of the optical semiconductor device of the present invention to a wavelength division multiplexing device.

【符号の説明】[Explanation of symbols]

11…電極金属層、12…p型クラッド層、13…i型
光吸収層、14…n型クラッド層、15…電極金属層。
11: electrode metal layer, 12: p-type cladding layer, 13: i-type light absorption layer, 14: n-type cladding layer, 15: electrode metal layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宍倉 正人 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 田中 滋久 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 辻 伸二 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masato Shishikura 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. In Central Research Laboratory (72) Inventor Shinji Tsuji 1-280 Higashi Koigakubo, Kokubunji City, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電気信号入力面と光信号入力面の異なる半
導体受光素子において、光吸収層バンドギャップエネル
ギより大きい波長エネルギ光を入射し、破壊電界強度の
90%以上の電圧印加条件でマイクロ波発振を生じるこ
とを特徴とする光半導体素子。
In a semiconductor light receiving element having an electric signal input surface and an optical signal input surface, light having a wavelength energy larger than the band gap energy of a light absorbing layer is incident, and microwaves are applied under a voltage application condition of 90% or more of the breakdown electric field intensity. An optical semiconductor device characterized by generating oscillation.
【請求項2】請求項1において、入射光の波長制御と光
入力エネルギ制御により発振周波数を制御できる光半導
体素子。
2. An optical semiconductor device according to claim 1, wherein the oscillation frequency can be controlled by controlling the wavelength of the incident light and the light input energy.
【請求項3】複数の異なった波長の光を入射し、各波長
に対応する周波数の出力信号を、周波数制御で信号処理
することを特徴とする光半導体素子。
3. An optical semiconductor device wherein a plurality of light beams having different wavelengths are incident and an output signal having a frequency corresponding to each wavelength is subjected to signal processing by frequency control.
【請求項4】導波路型アバランシェフォトダイオードへ
の複数個の光入射によるヘテロダインオプティカルミキ
シングによりミリ波やサブミリ波を発生することを特徴
とする光半導体素子。
4. An optical semiconductor device which generates a millimeter wave or a submillimeter wave by heterodyne optical mixing by a plurality of light incident on a waveguide type avalanche photodiode.
JP9012225A 1997-01-27 1997-01-27 Optical semiconductor element Pending JPH10209485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9012225A JPH10209485A (en) 1997-01-27 1997-01-27 Optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9012225A JPH10209485A (en) 1997-01-27 1997-01-27 Optical semiconductor element

Publications (1)

Publication Number Publication Date
JPH10209485A true JPH10209485A (en) 1998-08-07

Family

ID=11799443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9012225A Pending JPH10209485A (en) 1997-01-27 1997-01-27 Optical semiconductor element

Country Status (1)

Country Link
JP (1) JPH10209485A (en)

Similar Documents

Publication Publication Date Title
EP1210755B1 (en) Integrated opto-electronic wavelength converter assembly
US5452118A (en) Optical heterodyne receiver for fiber optic communications system
US6580739B1 (en) Integrated opto-electronic wavelength converter assembly
JP3597531B2 (en) Photoelectric transducer
Beling et al. InP-based high-speed photodetectors
US6175672B1 (en) RF wide bandwidth lossless high performance low noise transmissive link
US6724523B2 (en) Remotely locatable RF power amplification system
EP0263613B1 (en) An optical mixer for upconverting or downconverting an optical signal
Visscher et al. Broadband true time delay microwave photonic beamformer for phased array antennas
US7009210B2 (en) Method and apparatus for bit-rate and format insensitive performance monitoring of lightwave signals
Lam et al. GaAs optoelectronic mixer operation at 4.5 GHz
Chang et al. High-performance monolithic dual-MSM photodetector for long-wavelength coherent receivers
US6624000B1 (en) Method for making a monolithic wavelength converter assembly
Song et al. Simultaneous all-optical frequency downconversion technique utilizing an SOA-MZI for WDM radio over fiber (RoF) applications
CA1280170C (en) Homodyne interconnections of integrated circuits
JPH10209485A (en) Optical semiconductor element
EP0855112B1 (en) Optical communication system
KR101897257B1 (en) photo detector and optical device used the same
JP3276347B2 (en) Optical / electrical mutual conversion element, optical signal transmitting / receiving device, and optical signal transmitting / receiving system
Sawasa et al. An experimental study on a self-oscillating optoelectronic up-converter that uses a heterojunction bipolar transistor
JP3416064B2 (en) Optical pulse receiving circuit
Roeloffzen et al. Photonic Integrated Circuits for Space Communications
Wakatsuki et al. High-speed photodiode and optical receiver technologies
Roeloffzen et al. Integrated Microwave Photonics: A Chip Platform by Hybrid Integration of InP and SiN TriPleX
Gnanamani et al. High Efficiency O‐band Preamplified Receiver Integrated with Semiconductor Optical Amplifier and Uni‐travelling Carrier Photodiode for Passive Optical Network