JPH10208924A - Molecular magnetic material - Google Patents

Molecular magnetic material

Info

Publication number
JPH10208924A
JPH10208924A JP9013011A JP1301197A JPH10208924A JP H10208924 A JPH10208924 A JP H10208924A JP 9013011 A JP9013011 A JP 9013011A JP 1301197 A JP1301197 A JP 1301197A JP H10208924 A JPH10208924 A JP H10208924A
Authority
JP
Japan
Prior art keywords
spin
crystal
magnetic
tcne
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9013011A
Other languages
Japanese (ja)
Inventor
Keiji Nagai
圭治 長井
Tomokazu Yada
智一 彌田
Kazuhito Hashimoto
和仁 橋本
Akira Fujishima
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP9013011A priority Critical patent/JPH10208924A/en
Publication of JPH10208924A publication Critical patent/JPH10208924A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/009Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity bidimensional, e.g. nanoscale period nanomagnet arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a molecular magnetic material which has a very strong coercive force and enables a spin flop transition when the material is exposed to light by giving crystallomagnetic anisotropy in which the interaction between spins in a one-dimensional spin arranging direction is contrary to that in an axis crossing the arranging direction to the material. SOLUTION: A single-crystal body is obtained by causing a slow reaction between manganese II-meso-tetraphenyl porphyrin (MnII (TPP)) pyridine and tetracyanoethylene (TCNE) as a toluen solution. The MnTPP-TCNE single crystal is obtained in the form of a planar crystal. The MnTPP and TCNE are alternately arranged in the a-axis direction and the trans-position cyano- group is weakly coordinated in manganese. In the magnetization curves of this crystal, the curve in the a-axis direction is largely different from the other two curves and has a very high linearity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、分子磁性
体に関するものである。さらに詳しくは、記憶材料、光
磁気材料等として有用な、有機系分子をその構成に有
し、巨大保持力を持ち、しかも光でその磁気特性を劇的
に可逆的に制御することのできる分子磁性体に関するも
のである。
TECHNICAL FIELD The invention of this application relates to a molecular magnetic material. More specifically, molecules that have organic molecules in their composition, are useful as storage materials, magneto-optical materials, etc., have a huge coercive force, and can dramatically and reversibly control their magnetic properties with light. It relates to a magnetic material.

【0002】[0002]

【従来の技術とその課題】従来より、有機系分子をその
構成に有している高分子の分子磁性体が知られている。
これらの分子磁性体は、化学修飾が容易であることか
ら、多機能性の磁性材料としての発展が期待されている
ものである。しかしながら、これまでの分子磁性体にお
いては、磁気相転移温度(Tc)を上昇させることに関
心が払われ、保磁力を大きくする努力は全くなされてこ
なかったのが実情であった。そして、このことは、分子
磁性体についての磁気特性とその由来についての検討が
あまり進んでおらず、実用的磁性材料の開発への技術的
な手がかりが得られていない状況を反映するものでもあ
った。
2. Description of the Related Art Hitherto, a polymer molecular magnetic material having an organic molecule in its structure has been known.
These molecular magnetic materials are expected to be developed as multifunctional magnetic materials because of their easy chemical modification. However, in the conventional molecular magnetic materials, attention has been paid to increasing the magnetic phase transition temperature (Tc), and no effort has been made to increase the coercive force. This also reflects the situation in which the magnetic properties of molecular magnetic substances and their origin have not been studied much, and no technical clues have been obtained for the development of practical magnetic materials. Was.

【0003】分子磁性体についてのこれまでの理解によ
れば、低次元構造を有する場合、その異方性に基づくメ
タ磁性、あるいはスピンフロップ現象が知られ、これら
はいずれもスピン配列に起因するものとして特徴づけら
れていた。しかしながら、このような一次元性分子磁性
体については、その結晶磁気異方性から考えられる大き
な保磁力についてはほとんど検討されていない状況にあ
り、分子磁性体の技術的発展は足踏みしており、今後へ
の大きな課題となっていた。
According to the prior understanding of molecular magnetic materials, when they have a low-dimensional structure, metamagnetism or spin-flop phenomenon based on the anisotropy is known, and these are all caused by spin alignment. It was characterized as. However, for such a one-dimensional molecular magnetic material, a large coercive force considered from its crystal magnetic anisotropy has hardly been studied, and the technological development of the molecular magnetic material has been halted. This was a major issue for the future.

【0004】[0004]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、一次元スピン配列方向と
これに交差する軸でスピン間相互作用が全く相反する結
晶磁気異方性を有することを特徴とする分子磁性体を提
供する。また、この出願の発明は、一次元スピン配列鎖
を有し、その鎖内に電荷移動相互作用をもち、一次元ス
ピン配列方向とこれに交差する軸で、スピン間相互作用
が全く相反する結晶磁気異方性を有して、光励起状態に
おいてスピン再配列が起こることを特徴とする光誘起磁
気相転移性の分子磁性体も提供する。
Means for Solving the Problems The present invention solves the above-mentioned problems by providing a crystal magnetic anisotropy in which the spin-to-spin interaction is completely opposite in a one-dimensional spin arrangement direction and an axis crossing the direction. Provided is a molecular magnetic material characterized by having: Further, the invention of this application is directed to a crystal having a one-dimensional spin array chain, having a charge transfer interaction in the chain, and having a completely opposite spin-to-spin interaction between the one-dimensional spin array direction and an axis crossing the direction. The present invention also provides a photoinduced magnetic phase transition molecular magnetic material having magnetic anisotropy and being characterized in that spin rearrangement occurs in a photoexcited state.

【0005】[0005]

【発明の実施の形態】この出願の発明は、以上のとおり
の結晶磁気異方性の一次元的スピン配列構造を有する分
子磁性体を提供するものであるが、この発明の磁性体に
よって具体的に見出された巨大保磁力と光誘起による磁
気相の転移は、これまでの知見からは全く予測できない
ことであり、この点において、この発明は、分子磁性体
の技術的発展にとって画期的なものと言える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention of this application is to provide a molecular magnetic material having a one-dimensional spin array structure of crystal magnetic anisotropy as described above. The giant coercive force and the magnetic phase transition induced by light, which were found in the above, are completely unpredictable from previous findings, and in this regard, the present invention is a breakthrough for the technological development of molecular magnets. It can be said that.

【0006】一次元的配列構造を持つ分子磁性体として
は、以下の実施例において詳しく説明するマンガンポル
フィリン−テトラシアノエチレン系のものだけでなく、
各種のものが考慮される。マンガンポリフィリン−テト
ラシアノエチレン系の分子磁性体についても、テトラシ
アノエチレン(TCNE)とともに、たとえば次のよう
な各種のマンガンポリフィリンとの組合わせが考慮され
る。これらの分子磁性体については、これまでに報告さ
れている公知の方法等により適宜に合成される。
The molecular magnetic material having a one-dimensional array structure is not limited to a manganese porphyrin-tetracyanoethylene-based material described in detail in the following examples.
Various things are considered. Regarding the manganese porphyrin-tetracyanoethylene-based molecular magnetic material, combinations with the following various manganese porphyrins, for example, are considered together with tetracyanoethylene (TCNE). These molecular magnetic substances are appropriately synthesized by a known method or the like reported so far.

【0007】[0007]

【化1】 Embedded image

【0008】なお、この発明において「一次元」と規定
していることは、結晶構造としては、高分子鎖の一次元
性が認められるものであって、正確には全体構造として
は擬一次元性の結晶構造を持つものも含むことを意味し
ている。このため、結晶構造においては、多様な態様が
あってよく、電荷移動型錯体を形成しているものも例示
される。
The term "one-dimensional" as used in the present invention means that one-dimensionality of a polymer chain is recognized as a crystal structure. It also means that those having a crystalline structure of nature are included. For this reason, the crystal structure may have various modes, and examples include those forming a charge transfer complex.

【0009】分子磁性体の結晶は単結晶、または多結
晶、もしくはその混合体であってよい。以下、実施例を
示し、さらに詳しくこの発明の実施の形態を説明する。
The crystal of the molecular magnetic material may be a single crystal, a polycrystal, or a mixture thereof. Hereinafter, examples will be shown, and embodiments of the present invention will be described in more detail.

【0010】[0010]

【実施例】実施例1 有機スピン源を含みかつX線構造解析により一次元性配
列が明らかにされているmanganese meso-tetraphenylpo
rphyrin-tetracyanoethylene(MnTPP−TCNE)
系(Tc=18K)は、多結晶系で正のWeiss 温度と負
のWeiss 温度を持つという特異な温度依存磁気特性を持
つことが知られている。しかしながら、この現象は一次
元性との関連があると指摘されながらも、未だに結晶磁
気異方性は報告されていない。そこで、この発明では、
結晶の磁気異方性から顕著な一次元性を有するMnTP
P−TCNE系単結晶分子磁性体を提供する。
EXAMPLE 1 Manganese meso-tetraphenylpo containing an organic spin source and having a one-dimensional arrangement revealed by X-ray structural analysis
rphyrin-tetracyanoethylene (MnTPP-TCNE)
The system (Tc = 18K) is known to have a unique temperature-dependent magnetic property of having a positive Weiss temperature and a negative Weiss temperature in a polycrystalline system. However, although it has been pointed out that this phenomenon is related to one-dimensionality, crystal magnetic anisotropy has not yet been reported. Therefore, in the present invention,
MnTP with remarkable one-dimensionality due to magnetic anisotropy of crystal
Provided is a P-TCNE-based single crystal molecular magnetic material.

【0011】この単結晶体は、MnII(TPP)Pyridi
neとTCNEをトルエン溶液としてゆっくり反応させる
ことにより得る。このものの磁気特性はSQUID(超
伝導干渉計)を用いて測定した。MnTPP−TCNE
単結晶は、平板状結晶(1.2mm×0.2mm×0.
6mm、図1に示した構造のそれぞれa,b,c軸に対
応)として得られた。a−軸方向にMnTPPとTCN
Eが交互に配列し、TCNEのトランス位シアノ基がマ
ンガンに弱く配位していることが構造解析より明らかに
なっている。この結晶の1.7Kにおける磁化曲線を図
2に示した。a軸方向の磁化曲線は他の二つと大きく異
なり非常に一次元性が強い。MnTPP−TCNEの一
次元鎖方向に相当するa軸方向の磁化は、15000G
程度で飽和に達し、その値はMn(III)のS=2、TC
NEのS=1/2の和にほぼ対応する。一方一次元鎖に
垂直方向のb−、c−軸方向の磁化は、50000Gで
も飽和せず、また磁場に比例し反強磁性的である。
This single crystal is made of Mn II (TPP) Pyridi.
It is obtained by reacting ne and TCNE slowly as a toluene solution. The magnetic properties of this were measured using a SQUID (superconducting interferometer). MnTPP-TCNE
The single crystal is a flat crystal (1.2 mm × 0.2 mm × 0.1 mm).
6 mm, corresponding to the a, b, and c axes of the structure shown in FIG. 1). MnTPP and TCN in the a-axis direction
Structural analysis has revealed that Es are alternately arranged and the trans cyano group of TCNE is weakly coordinated with manganese. FIG. 2 shows the magnetization curve at 1.7 K of this crystal. The magnetization curve in the a-axis direction is very different from the other two and has a very strong one-dimensionality. The magnetization in the a-axis direction corresponding to the one-dimensional chain direction of MnTPP-TCNE is 15,000 G
The saturation is reached at about the same level, and the value is S = 2 for Mn (III), TC
This approximately corresponds to the sum of S = 1 / of NE. On the other hand, the magnetization in the b- and c-axis directions perpendicular to the one-dimensional chain is not saturated even at 50,000 G, and is antiferromagnetic in proportion to the magnetic field.

【0012】さらに温度依存磁化より、有効磁気モーメ
ント(μeff )を求めると、図3のようになる。a−軸
方向で増加し、b−、c−軸方向で減少した。これは低
温領域においてa−軸方向で強磁性的相互作用、b−、
c−軸方向で反強磁性的相互作用を起こしていることを
示している。以上のとおりの大きな保磁力をもたらすM
nTPP−TCNEの磁気異方性は、この発明の発明者
によって単結晶ではじめて見出されたものである。そし
て、特に注目されることは、この系の磁気異方性は一次
元スピン配列方向で強磁性相互作用、それに交差する方
向で反強磁性相互作用と、全く相反するために著しく大
きいことである。
FIG. 3 shows the effective magnetic moment (μ eff ) obtained from the temperature-dependent magnetization. It increased in the a-axis direction and decreased in the b- and c-axis directions. This is due to the ferromagnetic interaction in the a-axis direction in the low temperature region, b-,
This indicates that antiferromagnetic interaction occurs in the c-axis direction. M which brings about a large coercive force as described above
The magnetic anisotropy of nTPP-TCNE was first discovered in single crystals by the present inventors. It is particularly noteworthy that the magnetic anisotropy of this system is extremely large because it is completely opposite to ferromagnetic interaction in the one-dimensional spin arrangement direction and antiferromagnetic interaction in the direction crossing it. .

【0013】このような単結晶の実験結果から、巨大保
磁力が予想され、実際に以下の実施例2のように、多結
晶系でそれがはじめて観察された。実施例2 次式で表わされるマンガン(II)(テトラエトキシフェ
ニルポルフィリン)ピリジン(MnII(TEtOPP)
Py)とテトラシアノエチレン(TCNE)をトルエン
溶液として反応させ、Mn(TEtOPP)TCNEを
得た。磁気特性はSQUID(超伝導干渉計)を用いて
測定した。
From the experimental results of such a single crystal, a giant coercive force was expected, and it was actually observed for the first time in a polycrystalline system as in Example 2 below. Example 2 Manganese (II) (tetraethoxyphenylporphyrin) pyridine (Mn II (TEtOPP))
Py) and tetracyanoethylene (TCNE) were reacted as a toluene solution to obtain Mn (TEtOPP) TCNE. The magnetic properties were measured using a SQUID (superconducting interferometer).

【0014】[0014]

【化2】 Embedded image

【0015】このものには、2Kの初期磁化曲線におい
てスピンフロップ転移が見られた(図4a)。また、ス
ピンフロップ後、逆方向に磁場を掃引させるとおよそ2
0000Gの保持力を示すことも見いだされた(図4
b)。この大きな保持力は±10000Gの磁場掃引で
は見られない(図4c)。またスピンフロップ後も±1
0000Gの磁場掃引では履歴が見られなくなる(図4
d)。なおこのスピンフロップ転移は、実施例1に示し
たMnTPP−TCNE結晶系の一次元性磁気異方性の
結果から、Mn(TEtOPP)とTCNEの形成する
一次元鎖間の反強磁性相互作用が転移を起こしたものと
推察される。
This showed a spin-flop transition in the 2K initial magnetization curve (FIG. 4a). After the spin flop, the magnetic field is swept in the opposite direction,
0000G was also found to be present (FIG. 4).
b). This large holding force is not seen with a ± 10000 G field sweep (FIG. 4 c). ± 1 after spin flop
No history can be seen with a 0000 G magnetic field sweep (Fig. 4
d). The spin-flop transition is based on the result of the one-dimensional magnetic anisotropy of the MnTPP-TCNE crystal system shown in Example 1 that the antiferromagnetic interaction between Mn (TEtOPP) and the one-dimensional chain formed by TCNE is found. It is presumed that metastasis occurred.

【0016】また、前記磁性体については、Tc4K以
下で20000Gの保持力を有していることも確認され
た。この磁気相転移は可視光による光照射により、低磁
場で行うことが可能である。図4におけるc→d、d→
d、及びd→cのいずれの状態間の変化も光照射で実現
した。光照射しなければ逆スピンフロップ転移は起こら
ないが、光誘起相転移の場合は可逆となった。以上のよ
うにスピンフロップ転移に基づく著しく大きな保持力が
観測され、さらに光照射により低磁場でその転移を行う
ことができた。
It was also confirmed that the magnetic material had a holding force of 20,000 G at Tc4K or less. This magnetic phase transition can be performed in a low magnetic field by light irradiation with visible light. C → d, d → in FIG.
Changes between any of the states d and d → c were realized by light irradiation. The reverse spin-flop transition did not occur without light irradiation, but the light-induced phase transition was reversible. As described above, a remarkably large coercive force based on the spin-flop transition was observed, and the transition was able to be performed in a low magnetic field by light irradiation.

【0017】図5は、±10000Oeにおける光照射
にともなう光誘起磁気相転移を示したものであって、強
磁性相ととの間の転移を示している。点線でつながれた
磁化の値は、光照射前、あるいは光照射後に暗時の測定
で得られたものである。矢印は、光照射による磁化変化
を示したものである。マンガンポルフィリンと、電子受
容体であるテトラシアノエチレンからなる一次元高分子
集合体の極めて大きな磁気異方性は、2万ガウスという
非常に大きな保持力を引き起こすが、この値は有機スピ
ンを有する系では最高の記録である(これまでの最高は
3千5百ガウス)とともに強力な永久磁石と言われるサ
マリウム−コバルト系に比肩し得るものである。さらに
この磁気的異方性は可視光で可逆的に制御することがで
きた。その結果、可視光で誘起されるスピンフロップ転
移(磁気相転移の一種)では、保持力が10000倍変
化した。
FIG. 5 shows a light-induced magnetic phase transition accompanying light irradiation at ± 10000 Oe, and shows a transition to a ferromagnetic phase. The magnetization values connected by dotted lines are obtained by measurement in the dark before or after light irradiation. Arrows indicate changes in magnetization due to light irradiation. The extremely large magnetic anisotropy of the one-dimensional polymer aggregate consisting of manganese porphyrin and the electron acceptor tetracyanoethylene causes a very large coercive force of 20,000 gauss. This is the best record (up to a maximum of 3,500 Gauss so far) and can be compared with the samarium-cobalt system called a strong permanent magnet. Furthermore, the magnetic anisotropy could be reversibly controlled by visible light. As a result, in the spin-flop transition (a kind of magnetic phase transition) induced by visible light, the coercive force changed 10,000 times.

【0018】光誘起による磁気相転移についは、異方的
な2種類のスピン間相互作用のエネルギーレベルが近
く、観測されうる磁場において交差すること、このエネ
ルギーの交差磁場において、スピン間相互作用の異なる
二つの状態への転移のための活性化エネルギーが存在す
ること等もその根拠として考慮される。もちろんこの発
明は、以上の例によって何ら限定されるものでなく、細
部の態様は各種可能である。
Regarding the magnetic phase transition induced by light, the energy levels of two anisotropic spin-to-spin interactions are close to each other and cross at a magnetic field that can be observed. The existence of activation energy for transition to two different states is also considered as the basis. Of course, the present invention is not limited at all by the above-mentioned examples, and various embodiments of the details are possible.

【0019】[0019]

【発明の効果】以上詳しく説明したとおり、この発明に
よって、これまでに全く予測されなかった巨大保磁力を
有し、しかも光によりスピンフロップ転移により保持力
が10000倍も変化する分子磁性体が提供される。こ
の分子磁性体は、大きな技術的ブレークスルーをもたら
すものである。
As described above in detail, according to the present invention, there is provided a molecular magnetic material having a giant coercive force which has never been predicted so far, and whose coercive force changes by 10,000 times by spin-flop transition by light. Is done. This molecular magnet is a major technological breakthrough.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における結晶構造の方位を示した概要
図である。
FIG. 1 is a schematic diagram showing the orientation of a crystal structure in Example 1.

【図2】実施例1における結晶磁気異方性を示した図で
ある。
FIG. 2 is a view showing the magnetocrystalline anisotropy in Example 1.

【図3】実施例1における有効磁気モーメントを示した
図である。
FIG. 3 is a diagram showing an effective magnetic moment in the first embodiment.

【図4】実施例2における磁化曲線を示した図である。FIG. 4 is a diagram showing a magnetization curve in Example 2.

【図5】実施例2における光誘起による磁気相転移を示
した図である。
FIG. 5 is a view showing a magnetic phase transition induced by light in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤嶋 昭 神奈川県川崎市中原区中丸子710番地5 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akira Fujishima 710-5 Nakamaruko Nakahara-ku, Kawasaki-shi, Kanagawa 5

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一次元スピン配列方向とこれに交差する
軸でスピン間相互作用が全く相反する結晶磁気異方性を
有することを特徴とする分子磁性体。
1. A molecular magnetic material having a crystal magnetic anisotropy in which a spin-to-spin interaction is completely opposite in a one-dimensional spin arrangement direction and an axis crossing the one-dimensional spin arrangement direction.
【請求項2】 一次元スピン配列鎖を有し、その鎖内に
電荷移動相互作用をもち、一次元スピン配列方向とこれ
に交差する軸で、スピン間相互作用が全く相反する結晶
磁気異方性を有して、光励起状態においてスピン再配列
が起こることを特徴とする光誘起磁気相転移性の分子磁
性体。
2. A crystal magnetic anisotropy having a one-dimensional spin array chain, having a charge transfer interaction in the chain, and having a completely opposite spin-to-spin interaction between the one-dimensional spin array direction and an axis crossing the direction. A light-induced magnetic phase-transition molecular magnetic material having a property and causing spin rearrangement in a photoexcited state.
JP9013011A 1997-01-27 1997-01-27 Molecular magnetic material Pending JPH10208924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9013011A JPH10208924A (en) 1997-01-27 1997-01-27 Molecular magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9013011A JPH10208924A (en) 1997-01-27 1997-01-27 Molecular magnetic material

Publications (1)

Publication Number Publication Date
JPH10208924A true JPH10208924A (en) 1998-08-07

Family

ID=11821236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9013011A Pending JPH10208924A (en) 1997-01-27 1997-01-27 Molecular magnetic material

Country Status (1)

Country Link
JP (1) JPH10208924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355820B1 (en) 2000-02-21 2002-03-12 Okazaki National Research Institutes Chiral molecular magnet and manufacturing method of the same
JP2002260907A (en) * 2001-03-05 2002-09-13 Nissan Chem Ind Ltd Molecular magnetic material and its manufacturing method
CN103709200A (en) * 2013-12-30 2014-04-09 北京工业大学 Organic coordination zero-dimension single-molecular magnet material of Mn as well as preparation method and application of material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355820B1 (en) 2000-02-21 2002-03-12 Okazaki National Research Institutes Chiral molecular magnet and manufacturing method of the same
JP2002260907A (en) * 2001-03-05 2002-09-13 Nissan Chem Ind Ltd Molecular magnetic material and its manufacturing method
JP4715982B2 (en) * 2001-03-05 2011-07-06 日産化学工業株式会社 Molecular magnetic material and method for producing the same
CN103709200A (en) * 2013-12-30 2014-04-09 北京工业大学 Organic coordination zero-dimension single-molecular magnet material of Mn as well as preparation method and application of material

Similar Documents

Publication Publication Date Title
Koon et al. Magnetic properties of R2Fe14B single crystals
Maheswaran et al. Phosphonate Ligands Stabilize Mixed‐Valent {MnIII20− xMnIIx} Clusters with Large Spin and Coercivity
Schaller et al. Magnetic characteristics of some binary and ternary 2–17 compounds
Dezsi et al. Mössbauer Study of β‐and δ‐FeOOH and their Disintegration Products
Takanashi et al. A novel hysteresis loop and indirect exchange coupling in Co/Pt/Gd/Pt multilayer films
Folven et al. Antiferromagnetic domain reconfiguration in embedded LaFeO3 thin film nanostructures
Cornia et al. Single-molecule magnets on surfaces
Nowlin et al. Magnetism of Piezoelectric Ga2− x Fe x O3
Rogacz et al. Low-coordinate erbium (III) single-molecule magnets with photochromic behavior
Nagai et al. A soft-hard-tunable molecule-based magnet via photo-induced spin-flopping transition in a MnTEtOPP-TCNE charge transfer salt
JPH10208924A (en) Molecular magnetic material
Bhattacharjee et al. Study of the negative magnetization phenomenon in NBu 4 [Fe II Fe III (ox) 3]
Yu et al. Tuning the magnetic anisotropy via Mn substitution in single crystal Co4Nb2O9
Williams et al. Continuous spin orientations in single crystal HoxTb1− sxFe2
Geselbracht et al. Rare earth iron garnets: their synthesis and magnetic properties
Freitas et al. Giant anisotropic magnetoresistance and excess resistivity in amorphous U 1− x Sb x ferromagnets
Takei et al. Magnetic Structures of GdCu1− xZnx System
Yao et al. Photocontrol of Exchange Bias Using Cobalt–Iron Prussian Blue Analogues for Applications in Spintronics
Ruiz et al. Isomeric Forms of [Mn12O12 (O2CR) 16 H2O) 4] Complexes Showing Different Magnetization Relaxation Processes
Gatteschi Organic Ferromagnets
CN108727251A (en) One kind being based on magnetic cobalt (II) complex and preparation method thereof of 4,4 '-bipyridyls-itaconic acid derived ligand
Gatteschi et al. Design, Synthesis, and Properties of Nitroxide Networked Materials
Szytuła Complex magnetic phenomena in f-electron intermetallic compounds
JP3814049B2 (en) Organic magnetic thin film and method for producing the thin film
Quandt et al. Giant magnetostrictive materials and applications