JPH10208909A - Current limiter employing ptc element and circuit breaker equipped with current limiter - Google Patents

Current limiter employing ptc element and circuit breaker equipped with current limiter

Info

Publication number
JPH10208909A
JPH10208909A JP7625697A JP7625697A JPH10208909A JP H10208909 A JPH10208909 A JP H10208909A JP 7625697 A JP7625697 A JP 7625697A JP 7625697 A JP7625697 A JP 7625697A JP H10208909 A JPH10208909 A JP H10208909A
Authority
JP
Japan
Prior art keywords
ptc element
heat
plate
cylindrical
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7625697A
Other languages
Japanese (ja)
Inventor
Takashi Ohashi
隆 大橋
Yukio Mizuno
幸夫 水野
Chikafumi Ihara
爾史 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7625697A priority Critical patent/JPH10208909A/en
Publication of JPH10208909A publication Critical patent/JPH10208909A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a small current limiter excellent in maintainability in which the power loss is reduced in a steady state, and a small circuit breaker excellent in maintainability in which breaking capacity is enhanced. SOLUTION: The current limiter 10 comprises a thin planar PTC element plate 11 sandwiched by upper and lower terminal plates 12, 13, a heat sink 14 applied tightly to the terminal plate 12 in order to absorb heat generated from the PTC element plate 11, and a heat dissipator 16 with a large number of fins 16a mounted on the heat sink 14 through an insulation plate 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配電系統等の電路
に流れる短絡電流等の過大な電流から配電系統あるいは
配電系統等の電路に配設した電力機器を保護するための
限流器およびこの限流器を備えた遮断器に係わり、特に
PTC素子を用いた限流器およびこの限流器を備えた遮
断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current limiting device for protecting a power distribution system or power equipment disposed in a power distribution system or the like from an excessive current such as a short-circuit current flowing in a power distribution system or the like. The present invention relates to a circuit breaker having a current limiter, and more particularly to a current limiter using a PTC element and a circuit breaker having the current limiter.

【0002】[0002]

【従来の技術】従来から、配電用電路を短絡電流あるい
は過負荷電流等の過電流から保護するために配電用電路
に開閉機構、引き外し装置、過電流検出装置等を備えた
配線用遮断器(Molded Case Circuit Breakers(MCC
B)、以下、MCCBという)を配設し、この配電用電
路に短絡電流あるいは過負荷電流が流れた場合に自動的
に配電用電路を遮断するようにしている。このMCCB
は、図14に示すような動作特性曲線となるように引く
外し動作をさせるものである。
2. Description of the Related Art Conventionally, in order to protect a distribution circuit from an overcurrent such as a short-circuit current or an overload current, a wiring circuit breaker provided with an opening / closing mechanism, a trip device, an overcurrent detection device, and the like in the distribution circuit. (Molded Case Circuit Breakers (MCC
B), which is hereinafter referred to as MCCB), and automatically cuts off the power distribution circuit when a short-circuit current or an overload current flows through the power distribution circuit. This MCCB
Is to perform a pulling-out operation to draw an operation characteristic curve as shown in FIG.

【0003】図14(なお、図14の縦軸は対数目盛を
表す)において、定格電流Inの100%(1.0I
n)が流れる定常領域においてはこのMCCBは引く
外し動作を行わず、定格電流Inの125%(1.25
In)〜1000%(10In)の過電流領域におい
ては、120分〜10秒以内にMCCBは引く外し動作
を行い、それ以上の短絡領域において、約0.02秒
(50Hzにおいて1サイクル)以内にMCCBは引く
外し動作を行うことを示している。なお、MCCBに通
電できる最大電流は接点、電極構造などによって決まっ
ており、MCCBの遮断容量として決められている。
In FIG. 14 (the vertical axis in FIG. 14 represents a logarithmic scale), 100% of the rated current In (1.0 I
In the steady region where n) flows, this MCCB does not perform the pulling-off operation, and is 125% (1.25%) of the rated current In.
In the overcurrent region of (In) to 1000% (10In), the MCCB performs the pulling-off operation within 120 minutes to 10 seconds, and in the short circuit region longer than that, within approximately 0.02 seconds (one cycle at 50 Hz). MCCB indicates that a pull-off operation is performed. Note that the maximum current that can flow through the MCCB is determined by the contact point, the electrode structure, and the like, and is determined as the breaking capacity of the MCCB.

【0004】この遮断器の遮断容量の増大を図るため
に、電磁反発機構、限流ヒューズ、限流素子等の何らか
の限流装置を備えた配線用遮断器が実用化されるように
なった。電磁反発機構を備えた配線用遮断器は、例え
ば、特開平3−102724号公報において提案されて
いる。図15は上記特開平3−102724号公報にお
いて提案された電磁反発機構の構成を示している。
[0004] In order to increase the breaking capacity of this circuit breaker, a circuit breaker for wiring provided with some current limiting device such as an electromagnetic repulsion mechanism, a current limiting fuse, and a current limiting element has come into practical use. A circuit breaker provided with an electromagnetic repulsion mechanism has been proposed, for example, in Japanese Patent Application Laid-Open No. 3-102724. FIG. 15 shows a configuration of an electromagnetic repulsion mechanism proposed in the above-mentioned Japanese Patent Application Laid-Open No. 3-102724.

【0005】図15において、固定導体1の一端に固着
された固定接点2を備えるとともにこの固定接点2を有
する導体部1bは端子7と接続導体6とを結ぶ導体部1
aに対してほぼ直角に立てられている。接続導体6は図
示しない回路遮断器の端子8に重ねられて固定できるよ
うになっている。可動接触子3の一端には固定接点2に
相対する可動接点4を備えており、可動接触子3の他端
にはシャント5が固着されて端子7に接続されている。
可動接触子3の下部には可動接触子3を軸支するピン3
aが貫挿されており、このピン3aに圧接ばね3bが装
着されて、可動接触子3を固定導体1側へ付勢してい
る。これらの両接点2,4の上部にはアークを消弧する
消弧グリッド9が配設されている。
[0005] In FIG. 15, a fixed contact 2 fixed to one end of a fixed conductor 1 is provided, and a conductor 1 b having the fixed contact 2 is a conductor 1 connecting the terminal 7 and the connection conductor 6.
It stands substantially perpendicular to a. The connection conductor 6 is fixed on the terminal 8 of the circuit breaker (not shown). One end of the movable contact 3 is provided with a movable contact 4 facing the fixed contact 2, and a shunt 5 is fixed to the other end of the movable contact 3 and connected to a terminal 7.
A pin 3 for supporting the movable contact 3 is provided below the movable contact 3.
The pressure contact spring 3b is mounted on the pin 3a to urge the movable contact 3 toward the fixed conductor 1. An arc extinguishing grid 9 for extinguishing the arc is disposed above these two contacts 2 and 4.

【0006】このように構成された電磁反発機構に短絡
事故などにより過電流が流れると、可動接点4と固定接
点2との間もしくは可動接触子3と固定導体1との間に
働く電磁反発力が圧接ばね3bの付勢力に抗して反発
し、可動接点4と固定接点2とが開離し、両接点4,2
間にアークAが発生する。このとき、固定導体1の底面
導体部1aに流れる電流I1とアークAとは互いに異方
向電流のため、アークAは消弧グリッド9側に駆動され
る。このように、アークAを消弧グリッド9側へ駆動さ
せると、アーク長は長くなり、また、消弧グリッド9に
よりアークAは冷却されるのでアーク電圧も高くなる。
この結果、得られた高いアーク電圧は電路において高抵
抗を挿入したのと同じ効果となり、過電流は制限されて
抑制、即ち、限流される。
When an overcurrent flows due to a short circuit accident or the like in the electromagnetic repulsion mechanism configured as described above, an electromagnetic repulsion force acting between the movable contact 4 and the fixed contact 2 or between the movable contact 3 and the fixed conductor 1. Are repelled against the urging force of the pressure contact spring 3b, the movable contact 4 and the fixed contact 2 are separated from each other,
An arc A is generated in between. At this time, since the current I 1 flowing through the bottom conductor portion 1a of the fixed conductor 1 and the arc A are currents in different directions, the arc A is driven to the arc extinguishing grid 9 side. As described above, when the arc A is driven toward the arc-extinguishing grid 9, the arc length increases, and the arc A is cooled by the arc-extinguishing grid 9, so that the arc voltage also increases.
As a result, the obtained high arc voltage has the same effect as inserting a high resistance in the electric circuit, and the overcurrent is limited and suppressed, that is, the current is limited.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た電磁反発機構を備えた配線用遮断器においては、両接
点4,2間に発生したアークAを消弧グリッド9側に駆
動してアーク長を長くするとともに、消弧グリッド9に
よりアークを冷却してアーク電圧を高くするため、消弧
グリッド9を大きく形成しなければならく、消弧グリッ
ド9が大型になって、この種の配線用遮断器が大型にな
るという問題が生じる。
However, in the circuit breaker provided with the above-described electromagnetic repulsion mechanism, the arc A generated between the contacts 4 and 2 is driven toward the arc-extinguishing grid 9 to reduce the arc length. In order to increase the arc voltage by increasing the arc voltage by cooling the arc by the arc-extinguishing grid 9, the arc-extinguishing grid 9 must be formed large. There is a problem that the vessel becomes large.

【0008】一方、限流ヒューズを備えた配線用遮断器
においては、一旦、限流動作を行うと限流ヒューズが溶
断するので、この溶断した限流ヒューズを取り替えなけ
ればならなく、保守性が悪いという問題を生じる。ま
た、抵抗素子等の限流素子を備えた配線用遮断器は、定
格電流が流れる定常領域においては、抵抗電圧降下に起
因して電力損失が大きくなるという問題を生じるととも
に、過負荷電流が流れる過電流領域においては、図14
より明らかなように過負荷電流が小さくなることに起因
して遮断時間が長くなるという問題を生じる。
On the other hand, in a circuit breaker provided with a current-limiting fuse, once the current-limiting operation is performed, the current-limiting fuse is blown. Therefore, the blown current-limiting fuse must be replaced. The problem of badness arises. Further, a circuit breaker provided with a current limiting element such as a resistance element causes a problem that power loss is increased due to a resistance voltage drop in a steady region where a rated current flows, and an overload current flows. In the overcurrent region, FIG.
As is apparent, a problem arises in that the cutoff time is prolonged due to the reduction of the overload current.

【0009】ここで、抵抗素子の1つとして、この素子
の温度が上昇してその温度が所定の温度(抵抗転移温度
あるいは相転移温度、以下抵抗転移温度という)になる
とその抵抗値が急激に増大する正の抵抗温度係数を有す
る素子(PTC(Positive Temperature Coefficient)
サーミスタ、以下PTC素子という)が知られている。
そこで、本発明は、定格電流が流れる定常領域および過
負荷電流が流れる過電流領域においては低抵抗状態であ
り、かつ短絡電流が流れる短絡領域においては抵抗転移
温度に達してその抵抗値が急激にその抵抗値が増大する
PTC素子を限流素子として用いれば、定常領域におい
ては電力損失が小さく、過電流領域においては遮断器の
動作特性に影響を与えない特性を備え、かつ短絡領域に
おいてはその急激な抵抗上昇に起因して限流効果が生じ
るであろうという知見に基づいてなされたものであっ
て、定常時の電力損失を少なくした小型で保守性に優れ
た限流器を得るとともにこの限流器を備えて遮断容量が
増大した小型で保守性に優れた遮断器を得ることにあ
る。
Here, as one of the resistance elements, when the temperature of the element rises and reaches a predetermined temperature (resistance transition temperature or phase transition temperature, hereinafter referred to as resistance transition temperature), the resistance value sharply increases. Devices with an increasing positive temperature coefficient of resistance (PTC (Positive Temperature Coefficient)
A thermistor (hereinafter referred to as a PTC element) is known.
Therefore, the present invention has a low resistance state in a steady region where a rated current flows and an overcurrent region where an overload current flows, and reaches a resistance transition temperature in a short circuit region where a short circuit current flows and the resistance value rapidly increases. If a PTC element whose resistance value increases is used as a current limiting element, the power loss is small in a steady state region, has a characteristic that does not affect the operating characteristics of the circuit breaker in an overcurrent region, and has a characteristic in a short circuit region. It is based on the knowledge that a current limiting effect will occur due to a sudden increase in resistance, and it is possible to obtain a current limiter that is small and has excellent maintainability with reduced power loss at steady state. An object of the present invention is to obtain a small circuit breaker having a current limiting device and having an increased breaking capacity and excellent in maintainability.

【0010】[0010]

【課題を解決するための手段およびその作用・効果】本
発明は、所定の抵抗転移温度になると急激にその抵抗値
が増大する正の抵抗温度係数を有するPTC素子を電路
に備えて同電路に短絡電流のような過電流が流れること
により同PTC素子の温度が上昇してその温度が所定の
抵抗転移温度になると急激にその抵抗値が増大して過電
流を抑制するPTC素子を用いた限流器であって、上記
課題を解決するために、請求項1に記載の発明において
は、上述のPTC素子は薄板状に形成されて、その薄板
状平面の一端が電路の電源側に接続され、その薄板状平
面の他端が電路の負荷側に接続される薄板状PTC素子
板と、この薄板状PTC素子板に接触して配設されて同
薄板状PTC素子板に発生した熱を吸収して蓄熱する蓄
熱材からなる蓄熱器と、この蓄熱器に接触して配設され
て同蓄熱器に蓄熱された熱を放熱する良熱伝導材からな
る放熱体とを備えたことにある。
SUMMARY OF THE INVENTION The present invention provides a PTC element having a positive temperature coefficient of resistance, which has a resistance value that rapidly increases when a predetermined resistance transition temperature is reached. When an overcurrent such as a short-circuit current flows, the temperature of the PTC element rises, and when the temperature reaches a predetermined resistance transition temperature, the resistance value rapidly increases, and a PTC element that suppresses the overcurrent is used. In order to solve the above-mentioned problem, in the invention according to claim 1, the PTC element is formed in a thin plate shape, and one end of the thin plate-shaped plane is connected to the power supply side of the electric circuit. A thin PTC element plate whose other end is connected to the load side of the electric circuit, and a heat generated in the thin PTC element plate which is disposed in contact with the thin PTC element plate to absorb the heat. Storage made of heat storage material that stores heat If, in that a heat radiator made of good thermal conductive material for dissipating heat stored in the heat is disposed in contact with the heat accumulator in the heat accumulator.

【0011】このようにPTC素子を薄板状に形成し、
この薄板状平面の一端を電路の電源側に接続するととも
にこの薄板状平面の他端を電路の負荷側に接続すること
により、薄板状のPTC素子板の通電方向はその厚み方
向になるため、定常時の定格電流が流れる状態において
は、通電抵抗が減少して電力損失が減少する。また、定
格電流以上の過負荷電流が流れる過電流領域において、
そのジュール熱によりPTC素子板が発熱すると、この
発熱した熱が蓄熱器に熱伝導する。
Thus, the PTC element is formed in a thin plate shape,
By connecting one end of this thin plate-shaped plane to the power supply side of the electric circuit and connecting the other end of this thin plate-shaped plane to the load side of the electric circuit, the energizing direction of the thin PTC element plate becomes the thickness direction, In a state in which the rated current flows in a steady state, the conduction resistance decreases and the power loss decreases. Also, in the overcurrent region where the overload current exceeding the rated current flows,
When the PTC element plate generates heat due to the Joule heat, the generated heat is conducted to the heat accumulator.

【0012】これにより、PTC素子板に長時間にわた
って過負荷電流が流れてPTC素子板が発熱しても、こ
の熱は逐次、蓄熱器に吸収されるとともに蓄熱器に吸収
された熱は放熱体より放出されるめ、PTC素子板が抵
抗転移温度に達することが防止できるようになる。
Thus, even if an overload current flows through the PTC element plate for a long time and the PTC element plate generates heat, this heat is successively absorbed by the regenerator and the heat absorbed by the regenerator is radiator. As a result, the PTC element plate can be prevented from reaching the resistance transition temperature.

【0013】一方、電路に短絡電流が流れる場合は、最
大で0.02秒以内という短い時間において過大な電流
が流れるため、PTC素子板に加わる電気的エネルギー
はジュール熱となり、PTC素子板の温度は急激に上昇
する。すると、PTC素子板は抵抗転移温度に達してそ
の抵抗値が急激に増大して短絡電流を抑制(限流)する
ようになり、短絡電流が減少する。
On the other hand, when a short-circuit current flows through an electric circuit, an excessive current flows within a short time of 0.02 seconds or less at maximum, so that the electric energy applied to the PTC element plate becomes Joule heat, and the temperature of the PTC element plate increases. Rises sharply. Then, the PTC element plate reaches the resistance transition temperature, the resistance value increases rapidly, and the short-circuit current is suppressed (current limit), and the short-circuit current decreases.

【0014】請求項2に記載の発明においては、上述の
薄板状PTC素子板の一方の面にその一端が電路の電源
側に接続される端子板を備えるとともに、薄板状PTC
素子板の他方の面にその一端が電路の負荷側に接続され
る端子板を備えるようにしたことにある。このように薄
板状PTC素子板を各端子板に接続することにより、薄
板状PTC素子板の通電方向はその厚み方向になって定
常時の通電抵抗が減少して電力損失が減少する。
According to the second aspect of the present invention, a terminal plate having one end connected to the power supply side of the electric circuit is provided on one surface of the thin PTC element plate,
The other surface of the element plate is provided with a terminal plate having one end connected to the load side of the electric circuit. By connecting the thin plate-like PTC element plate to each terminal plate in this way, the direction of current supply to the thin plate-like PTC element plate becomes its thickness direction, and the current-flow resistance in a steady state decreases, thereby reducing power loss.

【0015】請求項3に記載の発明においては、上述の
蓄熱器は金属製の容器内に充填される低融点金属を密閉
して構成されるとともに、上述の放熱体は多数の放熱フ
ィンを備えるようにしたことにある。このように蓄熱器
を構成すると薄板状PTC素子板が発熱するとこの蓄熱
器に充填された低融点金属が溶融するようになってその
融解熱によりPTC素子板が発熱した熱を蓄熱するよう
になる。融解熱を利用することにより、蓄熱器の容積は
単一金属(例えば、銅)で製作したものより小さくする
ことが可能となり、限流器を小型化することが可能にな
る。また、放熱体は多数の放熱フィンを備えているので
蓄熱器に吸収された熱は放熱フィンより効率よく放出さ
れるようになる。
According to the third aspect of the present invention, the heat accumulator is configured to hermetically seal a low melting point metal filled in a metal container, and the heat dissipator includes a number of heat dissipating fins. That's what I did. When the heat accumulator is configured as described above, when the thin PTC element plate generates heat, the low melting point metal filled in the heat accumulator is melted, and the heat generated by the PTC element plate is stored by the heat of fusion. . By utilizing the heat of fusion, the volume of the regenerator can be smaller than that made of a single metal (eg, copper), and the current limiter can be downsized. Further, since the heat radiator has a large number of heat radiation fins, the heat absorbed by the heat accumulator can be released more efficiently than the heat radiation fins.

【0016】請求項4に記載の発明においては、上述の
端子板と蓄熱器とを一体的に形成して蓄熱器兼用の端子
板とするとともに、この一体的に形成された蓄熱器兼用
の端子板を薄板状PTC素子板の両面にそれぞれ接続し
たことことにある。このように端子板と蓄熱器とを一体
的に形成することにより、端子板と蓄熱器をそれぞれ別
体に形成したものと同容積であっても全体の厚みを薄く
することが可能となるため、この種の限流器を小型にす
ることが可能となる。
According to the present invention, the terminal plate and the regenerator are integrally formed to form a terminal plate that also serves as a regenerator, and the integrally formed terminal that also serves as a regenerator. That is, the plates are connected to both surfaces of the thin PTC element plate. By integrally forming the terminal plate and the heat accumulator in this manner, even if the terminal plate and the heat accumulator have the same volume as those formed separately, the overall thickness can be reduced. This makes it possible to reduce the size of this type of current limiter.

【0017】請求項5に記載の発明においては、上述の
端子板と蓄熱器と放熱体とを一体的に形成して蓄熱器お
よび放熱体兼用の端子板とするとともに、この一体的に
形成された蓄熱器および放熱体兼用の端子板を薄板状P
TC素子板の少なくとも一方の面に接続したことことに
ある。このように端子板と蓄熱器と放熱体とを一体的に
形成することにより、端子板と蓄熱器と放熱体をそれぞ
れ別体に形成したものと同容積であっても全体の厚みを
さらに薄くすることが可能となるため、この種の限流器
をさらに小型にすることが可能になる。
According to the fifth aspect of the present invention, the terminal plate, the heat storage device, and the heat radiator are integrally formed to form a terminal plate that is also used as the heat storage device and the heat radiator. The terminal plate that also serves as a heat storage unit and a radiator
That is, it is connected to at least one surface of the TC element plate. By integrally forming the terminal plate, the heat accumulator, and the heat radiator in this way, the overall thickness is further reduced even if the terminal plate, the heat accumulator, and the heat radiator are formed separately from each other. Therefore, this type of current limiter can be further miniaturized.

【0018】請求項6に記載の発明においては、上述の
薄板状PTC素子板、端子板、蓄熱器および放熱体のそ
れぞれの平面形状がそれぞれ同形の四角形状になるよう
に形成して限流器全体として略角柱状に形成したことこ
とにある。このように限流器を全体として略角柱状に形
成すると、この限流器を3相分並べてMCCB(遮断
器)の接続端子に接続する場合に省スペース化が図れる
ようになる。
According to a sixth aspect of the present invention, the thin-film PTC element plate, the terminal plate, the heat accumulator, and the heat radiator are formed so that their respective planar shapes become the same square shape, respectively. The whole is formed in a substantially prismatic shape. When the current limiting device is formed in a substantially prismatic shape as a whole, space saving can be achieved when the current limiting devices are arranged in three phases and connected to a connection terminal of an MCCB (breaker).

【0019】請求項7に記載の発明においては、上述の
薄板状PTC素子板、端子板、蓄熱器および放熱体のそ
れぞれの平面形状がそれぞれ同径の円形状になるように
形成して限流器全体として略円柱状に形成したことにあ
る。一般に、PTC素子板は円形状に製造されるため、
この種の限流器を略円柱状に形成するようにすると、こ
の種の限流器を安価に製造できるようになるとともに容
易に製造できるようになる。
In the seventh aspect of the present invention, the thin-film PTC element plate, the terminal plate, the heat accumulator, and the heat radiator are formed so that their respective planar shapes are circular with the same diameter, and the current is limited. The entire vessel was formed in a substantially cylindrical shape. Generally, since the PTC element plate is manufactured in a circular shape,
If this type of current limiter is formed in a substantially cylindrical shape, this type of current limiter can be manufactured at low cost and can be easily manufactured.

【0020】請求項8に記載の発明においては、上述の
PTC素子を断面コ字状の半角筒状に形成して半角筒状
PTC素子体とし、この半角筒状PTC素子体の外表面
に緊密に固着されて同半角筒状PTC素子体に電気的に
接続されるとともにその長手方向に突出部を備えた断面
コ字状で半角筒状の外側端子体と、半角筒状PTC素子
体の内表面に緊密に固着されて同半角筒状PTC素子体
に電気的に接続されて同半角筒状PTC素子体に発生し
た熱を吸収して蓄熱するとともにその長手方向に突出部
を備えた蓄熱材からなる蓄熱器兼用の内側端子体と、こ
の蓄熱器兼用の内側端子体に緊密に固着されて同蓄熱器
兼用の内側端子体に蓄熱された熱を放熱する良熱伝導材
からなる放熱体とを備えたことにある。
According to the present invention, the above-mentioned PTC element is formed in the shape of a half-width cylinder having a U-shaped cross section to form a half-width cylindrical PTC element body, and the outer surface of the half-width cylindrical PTC element body is tightly closed. And an outer terminal body having a U-shaped cross section and being electrically connected to the same half-width cylindrical PTC element body and having a protruding portion in the longitudinal direction thereof, and a half-width cylindrical PTC element body. A heat storage material that is tightly fixed to the surface and is electrically connected to the half-width cylindrical PTC element body to absorb and store heat generated in the half-width cylindrical PTC element body and has a protruding portion in a longitudinal direction thereof. An inner terminal body also serving as a regenerator, and a radiator made of a good heat conducting material that is tightly fixed to the inner terminal body also serving as a regenerator and radiates heat stored in the inner terminal body also serving as the regenerator. That you have.

【0021】このようにPTC素子を断面コ字状の半角
筒状に形成して半角筒状PTC素子体とし、この半角筒
状PTC素子体の外表面に断面コ字状で半角筒状の外側
端子体を固着するとともに半角筒状PTC素子体の内表
面に蓄熱材からなる蓄熱器兼用の内側端子体を固着する
と、半角筒状PTC素子体のコ字状の断面に対して垂直
方向に通電されるため、定常時の定格電流が流れる状態
においては通電抵抗が減少して電力損失が減少する。
As described above, the PTC element is formed in a half-width cylindrical shape having a U-shaped cross section to form a half-width cylindrical PTC element body. When the terminal body is fixed and the inner terminal body also serving as a heat storage material made of a heat storage material is fixed to the inner surface of the half-width cylindrical PTC element body, current flows in a direction perpendicular to the U-shaped cross section of the half-width cylindrical PTC element body. Therefore, in a state where the rated current flows in a steady state, the conduction resistance decreases and the power loss decreases.

【0022】また、PTC素子体が発熱した熱は蓄熱器
兼用の内側端子体の3面から伝導するようになるため、
発熱したPTC素子体の熱を効率よく吸収することが可
能となる。このため、PTC素子体に長時間にわたって
過負荷電流が流れてPTC素子体が発熱しても、この熱
は逐次、蓄熱器兼用の内側端子体に吸収されるとともに
蓄熱器兼用の内側端子体に吸収された熱は放熱体より放
出されるので、PTC素子体に過電流領域における過負
荷電流が流れてもPTC素子体が抵抗転移温度に達する
ことが防止できるようになる。
Further, the heat generated by the PTC element body is conducted from the three surfaces of the inner terminal body which also serves as a heat accumulator.
It is possible to efficiently absorb the heat of the heated PTC element body. For this reason, even if an overload current flows through the PTC element for a long time and the PTC element generates heat, this heat is successively absorbed by the inner terminal that also serves as a regenerator and is transferred to the inner terminal that also serves as a regenerator. Since the absorbed heat is released from the radiator, the PTC element can be prevented from reaching the resistance transition temperature even if an overload current in the overcurrent region flows through the PTC element.

【0023】請求項9に記載の発明においては、上述の
外側端子体または蓄熱器兼内側端子の突出部のどちらか
一方は電路の電源側に接続され、その他方は電路の負荷
側に接続されるとともに、蓄熱器兼用の内側端子体は金
属製の容器内に充填される低融点金属を密閉して構成さ
れ、放熱体は多数の放熱フィンを備えるようにしたこと
ことにある。
According to the ninth aspect of the invention, one of the outer terminal body and the protrusion of the heat storage and inner terminal is connected to the power supply side of the electric circuit, and the other is connected to the load side of the electric circuit. In addition, the inner terminal body also serving as a heat storage unit is configured by hermetically sealing a low melting point metal filled in a metal container, and the radiator is provided with a large number of radiating fins.

【0024】このようにPTC素子体を外側端子体およ
び蓄熱器兼内側端子に接続することにより、PTC素子
体の通電方向がコ字状の断面に対して垂直方向になって
通電抵抗を減少させることが可能となる。また、低融点
金属を密閉して蓄熱器兼用の内側端子体を構成すれば、
PTC素子体が発熱するとこの蓄熱器兼用の内側端子体
に充填された低融点金属が溶融するようになってその融
解熱によりPTC素子体が発熱した熱を蓄熱するように
なる。融解熱を利用することにより、蓄熱器の容積は単
一金属(例えば、銅)で製作したものより小さくするこ
とが可能となり、限流器を小型化することが可能にな
る。また、放熱体は多数の放熱フィンを備えているので
蓄熱器に吸収された熱は放熱フィンより効率よく放出さ
れるようになる。
By connecting the PTC element body to the outer terminal body and the regenerator / inner terminal in this way, the direction of conduction of the PTC element body is perpendicular to the U-shaped cross section, and the conduction resistance is reduced. It becomes possible. Also, if the low-melting-point metal is hermetically sealed to form an inner terminal that also serves as a heat storage device,
When the PTC element generates heat, the low-melting-point metal filled in the heat storage internal terminal is melted, and the heat generated by the PTC element due to the heat of fusion is stored. By utilizing the heat of fusion, the volume of the regenerator can be smaller than that made of a single metal (eg, copper), and the current limiter can be downsized. Further, since the heat radiator has a large number of heat radiation fins, the heat absorbed by the heat accumulator can be released more efficiently than the heat radiation fins.

【0025】請求項10に記載の発明においては、上述
のPTC素子を円筒状に形成して円筒状PTC素子体と
し、この円筒状PTC素子体の内表面に緊密に固着され
て同円筒状PTC素子体に電気的に接続されるとともに
その長手方向に突出部を備えた円柱状内側端子体と、円
筒状PTC素子体の外表面に緊密に固着されて同円筒状
PTC素子体に電気的に接続されて同円筒状PTC素子
体に発生した熱を吸収して蓄熱する蓄熱材からなる円筒
状蓄熱器と、この円筒状蓄熱器に緊密に固着されて同円
筒状蓄熱器に電気的に接続されて同円筒状蓄熱器に蓄熱
された熱を放熱するとともにその長手方向に突出部を備
えた良熱伝導材からなる円筒状放熱体兼用の外側端子体
とを備えたことにある。
According to a tenth aspect of the present invention, the above-mentioned PTC element is formed into a cylindrical shape to form a cylindrical PTC element body, and the PTC element is tightly fixed to an inner surface of the cylindrical PTC element body. A cylindrical inner terminal body electrically connected to the element body and having a protruding portion in the longitudinal direction; and a cylindrical PTC element body which is tightly fixed to the outer surface of the cylindrical PTC element body and electrically connected to the cylindrical PTC element body. A cylindrical regenerator made of a heat storage material that is connected and absorbs heat generated in the cylindrical PTC element body and stores the heat, and is tightly fixed to the cylindrical regenerator and electrically connected to the cylindrical regenerator In addition, the heat storage device of the present invention includes a heat-dissipating heat stored in the cylindrical heat accumulator and a cylindrical heat dissipating outer terminal body made of a good heat conductive material having a protruding portion in a longitudinal direction thereof.

【0026】このようにPTC素子を円筒状に形成して
円筒状PTC素子体とし、この円筒状PTC素子体の内
表面に円柱状内側端子体を固着するとともに円筒状PT
C素子体の外表面に円筒状蓄熱器と円筒状放熱体兼用の
外側端子体とを固着すると、円筒状PTC素子体の断面
に対して径方向に通電されるため、定常時の定格電流が
流れる状態においては通電抵抗が減少して電力損失が減
少する。
As described above, the PTC element is formed in a cylindrical shape to form a cylindrical PTC element body, and a cylindrical inner terminal body is fixed to the inner surface of the cylindrical PTC element body, and the cylindrical PTC element body is formed.
When a cylindrical heat storage unit and an outer terminal body also serving as a cylindrical heat radiator are fixed to the outer surface of the C element body, current flows in the radial direction with respect to the cross section of the cylindrical PTC element body, so that the rated current in a steady state is reduced. In a flowing state, the current-carrying resistance is reduced and the power loss is reduced.

【0027】また、PTC素子体が発熱した熱はその外
側の円筒状蓄熱器に円周面全体から伝導するようになる
ため、発熱したPTC素子体の熱を効率よく吸収するこ
とが可能となる。このため、PTC素子体に長時間にわ
たって過負荷電流が流れてPTC素子体が発熱しても、
この熱は逐次、円筒状蓄熱器に吸収されるとともに円筒
状蓄熱器に吸収された熱は円筒状放熱体兼用の外側端子
体より放出されるので、PTC素子体に過電流領域にお
ける過負荷電流が流れてもPTC素子体が抵抗転移温度
に達することが防止できるようになる。
Further, since the heat generated by the PTC element is conducted to the outer cylindrical heat storage unit from the entire circumferential surface, it is possible to efficiently absorb the heat of the generated PTC element. . Therefore, even if an overload current flows through the PTC element for a long time and the PTC element generates heat,
This heat is successively absorbed by the cylindrical heat accumulator, and the heat absorbed by the cylindrical heat accumulator is released from the outer terminal body also serving as the cylindrical heat radiator. , The PTC element body can be prevented from reaching the resistance transition temperature.

【0028】請求項11に記載の発明においては、上述
の円筒状放熱体兼用の外側端子体または円柱状内側端子
体の突出部のどちらか一方は電路の電源側に接続され、
その他方は電路の負荷側に接続されるとともに、円筒状
蓄熱器は金属製の容器内に充填される低融点金属を密閉
して構成され、円筒状放熱体兼用の外側端子体の外表面
に多数の放熱フィンを備えるようにしたことにある。
According to the eleventh aspect of the present invention, either one of the outer terminal body serving as the cylindrical heat radiator and the protrusion of the cylindrical inner terminal body is connected to the power supply side of the electric circuit,
The other end is connected to the load side of the electric circuit, and the cylindrical regenerator is configured by sealing the low melting point metal filled in the metal container, and is connected to the outer surface of the outer terminal body also serving as the cylindrical heat radiator. That is, a large number of heat radiation fins are provided.

【0029】このように円筒状PTC素子体を外側端子
体および蓄熱器兼内側端子に接続することにより、円筒
状PTC素子体の断面に対して径方向に通電されるた
め、定常時の定格電流が流れる状態においては通電抵抗
が減少して電力損失が減少する。また、低融点金属を密
閉して円筒状蓄熱器を構成すれば、PTC素子体が発熱
するとこの蓄熱器に充填された低融点金属が溶融するよ
うになってその融解熱によりPTC素子体が発熱した熱
を蓄熱するようになる。融解熱を利用することにより、
蓄熱器の容積は単一金属(例えば、銅)で製作したもの
より小さくすることが可能となり、限流器を小型化する
ことが可能になる。また、円筒状放熱体兼用の外側端子
体はその外表面に多数の放熱フィンを備えているので蓄
熱器に吸収された熱は放熱フィンより効率よく放出され
るようになる。
By connecting the cylindrical PTC element body to the outer terminal body and the regenerator / inner terminal in this way, current flows in a radial direction with respect to the cross section of the cylindrical PTC element body. When the current flows, the conduction resistance decreases and the power loss decreases. Further, if the low-melting-point metal is sealed to form a cylindrical regenerator, when the PTC element generates heat, the low-melting-point metal filled in the regenerator melts, and the heat of fusion causes the PTC element to generate heat. The stored heat is stored. By utilizing the heat of fusion,
The volume of the heat accumulator can be made smaller than that made of a single metal (for example, copper), and the current limiter can be downsized. In addition, since the outer terminal body also serving as a cylindrical heat radiator has a large number of heat radiating fins on its outer surface, the heat absorbed by the heat accumulator can be released more efficiently than the heat radiating fin.

【0030】請求項12に記載の発明においては、上述
のPTC素子を板状に形成して複数枚のPTC素子板と
し、その長手方向に突出部を備えるとともに高さ方向に
断面三角形状に突起した突起部を少なくとも1つ備え、
PTC素子板に発生した熱を吸収して蓄熱する蓄熱材か
らなる下側端子体と、その長手方向に突出部を備えると
ともに下側端子体の突起部に嵌合する断面三角形状の溝
部をその高さ方向に少なくとも1つ備え、PTC素子板
に発生した熱を吸収して蓄熱する蓄熱材からなる上側端
子体と、上側端子体の上部に配設されて同上側端子体に
蓄熱された熱を放熱する良熱伝導材からなる放熱体とを
備え、下側端子体の断面三角形状の突起部の傾斜面と同
断面三角形状の突起部に嵌合する上側端子体の断面三角
形状の溝部の傾斜面との間にPTC素子板を狭着してい
る。
According to the twelfth aspect of the present invention, the above-mentioned PTC element is formed in a plate shape to form a plurality of PTC element plates, and has a protruding portion in the longitudinal direction and a triangular cross section in the height direction. Provided at least one projection part,
A lower terminal body made of a heat storage material that absorbs and stores heat generated in the PTC element plate, and a groove having a triangular cross section that has a protrusion in the longitudinal direction and that fits into the protrusion of the lower terminal body. An upper terminal body that is provided at least one in the height direction and is made of a heat storage material that absorbs heat generated in the PTC element plate and stores the heat; and heat that is provided above the upper terminal body and is stored in the upper terminal body. A heat dissipating body made of a good heat conductive material for dissipating heat, and a groove having a triangular cross section of the upper terminal body which fits into the inclined surface of the triangular protruding section of the lower terminal body. The PTC element plate is narrowly attached to the inclined surface.

【0031】このようにPTC素子を板状に形成してP
TC素子板とし、このPTC素子板を下側端子体の断面
三角形状の突起部の傾斜面と同断面三角形状の溝部に嵌
合する上側端子体の断面三角形状の溝部の傾斜面との間
に狭着すると、PTC素子板の断面の厚み方向に通電さ
れるため、定常時の定格電流が流れる状態においては通
電抵抗が減少して電力損失が減少する。
As described above, the PTC element is formed in a plate shape,
A TC element plate between the inclined surface of the triangular cross-sectional projection of the lower terminal body and the inclined surface of the triangular groove of the upper terminal body fitted in the triangular groove of the same cross-section; When it is narrow, power is supplied in the thickness direction of the cross section of the PTC element plate, so that the current flow resistance is reduced and the power loss is reduced when the rated current flows in a steady state.

【0032】また、PTC素子板が発熱した熱はその両
側の蓄熱材からなる上、下側両端子体にPTC素子板の
両面から伝導するようになるため、発熱したPTC素子
板の熱を効率よく吸収することが可能となる。このた
め、PTC素子板に長時間にわたって過負荷電流が流れ
てPTC素子板が発熱しても、この熱は逐次、上、下側
両端子体に吸収されるとともに上側両端子体に吸収され
た熱は放熱体より放出されるので、PTC素子板に過電
流領域における過負荷電流が流れてもPTC素子板が抵
抗転移温度に達することが防止できるようになる。
Further, the heat generated by the PTC element plate is made up of the heat storage material on both sides of the PTC element plate, and is conducted to both lower terminals from both sides of the PTC element plate. It becomes possible to absorb well. For this reason, even if an overload current flows through the PTC element plate for a long time and the PTC element plate generates heat, this heat is successively absorbed by the upper and lower terminals and also absorbed by the upper terminals. Since heat is radiated from the heat radiator, it is possible to prevent the PTC element plate from reaching the resistance transition temperature even if an overload current in the overcurrent region flows through the PTC element plate.

【0033】請求項13に記載の発明においては、上側
端子体または下側端子体の突出部のどちらか一方は電路
の電源側に接続され、その他方は電路の負荷側に接続さ
れるとともに、上側端子体および下側端子体は金属製の
容器内に充填される低融点金属を密閉して構成され、放
熱体の外表面に多数の放熱フィンを備えるようにしてい
る。
According to the thirteenth aspect, one of the protruding portions of the upper terminal body and the lower terminal body is connected to the power supply side of the electric circuit, and the other is connected to the load side of the electric circuit. The upper terminal body and the lower terminal body are configured by hermetically sealing a low melting point metal filled in a metal container, and are provided with a large number of radiating fins on the outer surface of the radiator.

【0034】このように、上、下両端子体を低融点金属
を密閉して形成すれば、PTC素子板が発熱すると両端
子体に充填された低融点金属が溶融するようになってそ
の融解熱によりPTC素子板が発熱した熱を蓄熱するよ
うになる。融解熱を利用することにより、両端子体の容
積は単一金属(例えば、銅)で製作したものより小さく
することが可能となり、限流器を小型化することが可能
になる。また、上側端子体の上側外表面に多数の放熱フ
ィンを備えているので上側端子体に吸収された熱は放熱
フィンより効率よく放出されるようになる。
As described above, if the upper and lower terminals are formed by sealing the low-melting-point metal with the low-melting-point metal, the low-melting-point metal filled in the two terminals is melted when the PTC element plate generates heat. The heat generated by the PTC element plate due to the heat is stored. By utilizing the heat of fusion, the volume of both terminal bodies can be made smaller than that made of a single metal (for example, copper), and the current limiter can be downsized. Further, since a large number of radiating fins are provided on the upper outer surface of the upper terminal body, the heat absorbed by the upper terminal body is released more efficiently than the radiating fins.

【0035】請求項14に記載の発明においては、上述
のPTC素子は常温抵抗率が小さくかつ常温抵抗率に対
する抵抗上昇率が大きいクリストバライト系セラミック
スを用いるようにしている。このクリストバライト系セ
ラミックスは常温抵抗率が小さいため、正常時には電路
に給電される電流は電力損失を伴うことなくPTC素子
を通して流れるようになる。また、クリストバライト系
セラミックスは常温抵抗率に対する抵抗上昇が大きいの
で、この素子に短絡電流のような過電流が流れる異常時
には、急激にその抵抗値が増大するようになるため、こ
の電路に流れる過電流を確実に限流することができるよ
うになる。
In the fourteenth aspect of the present invention, the above-mentioned PTC element uses a cristobalite-based ceramic having a small ordinary-temperature resistivity and a large resistance increase with respect to the ordinary-temperature resistivity. Since the cristobalite-based ceramics have a small ordinary temperature resistivity, the current supplied to the electric circuit at normal time flows through the PTC element without power loss. In addition, since the cristobalite-based ceramics have a large increase in resistance with respect to the normal temperature resistivity, when an overcurrent such as a short-circuit current flows through the element, the resistance value rapidly increases. Can be reliably flow-limited.

【0036】また、本発明は、電路に短絡電流のような
過電流が流れると温度上昇してその温度が所定の抵抗転
移温度になると急激にその抵抗値が増大してこの過電流
を抑制するPTC素子を用いた限流器をその電源側に接
続したPTC素子を用いた限流器を備えた遮断器であっ
て、請求項15に記載の発明においては、電路に定格電
流以上の過電流領域での過負荷電流が流れる場合はPT
C素子は抵抗転移温度にならないようにするとともに、
電路に短絡電流が流れる場合はPTC素子は抵抗転移温
度になってその短絡電流を抑制するようにしたことにあ
る。このように構成することにより、電路が短絡状態に
なってこの遮断器に短絡電流が流れるようらなると、限
流器は短絡電流を抑制(限流)するため、この種の遮断
器の遮断容量を大幅に向上させることが可能となる。
Further, according to the present invention, when an overcurrent such as a short-circuit current flows in the electric circuit, the temperature rises, and when the temperature reaches a predetermined resistance transition temperature, the resistance value rapidly increases to suppress this overcurrent. A circuit breaker provided with a current limiter using a PTC element in which a current limiter using a PTC element is connected to a power supply side thereof. PT when overload current flows in the area
The C element should not reach the resistance transition temperature,
When a short-circuit current flows through an electric circuit, the PTC element reaches a resistance transition temperature to suppress the short-circuit current. With this configuration, when the electric circuit is short-circuited and a short-circuit current flows through the circuit breaker, the current limiter suppresses (short-circuits) the short-circuit current. Can be greatly improved.

【0037】請求項16に記載の発明においては、請求
項15に記載の限流器は請求項1から請求項14のいず
れかに記載の限流器であることにある。この遮断器に請
求項1から請求項14に記載の限流器を接続して用いる
と限流効果が大きいので、遮断容量に優れた遮断器が得
られるようになる。
According to a sixteenth aspect of the present invention, the current limiter according to the fifteenth aspect is the current limiter according to any one of the first to fourteenth aspects. When the current limiter according to any one of claims 1 to 14 is connected to this circuit breaker and used, the current limiting effect is large, so that a circuit breaker excellent in breaking capacity can be obtained.

【0038】[0038]

【発明の実施の形態】以下に、図に基づいて本発明の実
施形態を説明する。 実施形態1 図1は本発明の第1実施形態のPTC素子を用いた限流
器の概略を示す斜視図である。一般に、抵抗素子の抵抗
値はその断面積に比例して小さくなり、その長さに反比
例して小さくなるので、抵抗率を有する材料を低抵抗で
使用しようとする場合は表面積を広くするとともにその
長さを短くする必要がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a perspective view schematically showing a current limiter using a PTC element according to a first embodiment of the present invention. Generally, the resistance value of a resistance element decreases in proportion to its cross-sectional area, and decreases in inverse proportion to its length.Therefore, when using a material having resistivity at a low resistance, increase the surface area and increase the surface area. It is necessary to shorten the length.

【0039】そこで、図1に示すように、本第1実施形
態の限流器10は薄板状に形成したPTC素子板11の
上下面に上部端子板12と下部端子板13とを接続し、
上部端子板12の上部にPTC素子板11が発熱した際
の熱を吸収する蓄熱器14を端子板12に密着して接続
するとともに、この蓄熱器14の上部に絶縁板15を介
して放熱体16を配設する構造を採用している。
Therefore, as shown in FIG. 1, in the current limiter 10 of the first embodiment, an upper terminal plate 12 and a lower terminal plate 13 are connected to upper and lower surfaces of a PTC element plate 11 formed in a thin plate shape.
A regenerator 14 for absorbing heat generated when the PTC element plate 11 generates heat is connected to the upper portion of the upper terminal plate 12 in close contact with the terminal plate 12, and a radiator is provided on the upper portion of the regenerator 14 via an insulating plate 15. 16 is provided.

【0040】ここで、PTC素子板11を形成するPT
C素子としては、常温抵抗率ρ(例えば、ρ=0.1Ω
・cm)が小さいとともに、常温抵抗率に対する抵抗上
昇率(例えば、常温抵抗率ρの4000倍)が大きく、
かつその抵抗転移温度(Tc)が200〜240℃程度
のクリストバライト系セラミックスを用いることが好ま
しい。このクリストバライト系セラミックスからなるP
TC素子は、図3に示すような温度(℃)−抵抗率
(ρ)特性を有しており、素子温度が200〜240℃
の抵抗転移温度(Tc)になるとその抵抗率(ρ)が最
大(ρmax)になる。そして、本実施形態1において
は、このクリストバライト系セラミックスからなるPT
C素子を薄板状に形成してPTC素子板11としてい
る。なお、後述する本発明の他の実施形態においてもク
リストバライト系セラミックスからなるPTC素子を用
いる。
Here, the PT for forming the PTC element plate 11 is
As the C element, the room temperature resistivity ρ (for example, ρ = 0.1Ω)
Cm) is small, and the rate of increase in resistance with respect to the normal temperature resistivity (for example, 4000 times the normal temperature resistivity ρ) is large,
In addition, it is preferable to use a cristobalite-based ceramic having a resistance transition temperature (Tc) of about 200 to 240 ° C. P made of this cristobalite ceramic
The TC element has a temperature (° C.)-Resistivity (ρ) characteristic as shown in FIG.
When the resistance transition temperature (Tc) is reached, the resistivity (ρ) becomes the maximum (ρmax). In the first embodiment, the PT made of the cristobalite-based ceramic is used.
The C element is formed in a thin plate shape to form a PTC element plate 11. A PTC element made of cristobalite-based ceramics is used in another embodiment of the present invention described later.

【0041】なお、PTC素子としては、クリストバラ
イト系セラミックス以外に、Cr23あるいはAl23
を固溶したV23系セラミックス、チタン酸鉛(PbT
iO3)セラミックス、チタン酸ビスマス(BiTi
3)セラミックスあるいはこれらの固溶体を用いても
よい。また、ポリエチレン−カーボン系複合材料あるい
はポリオレフィン−カーボン系複合材料等からなる合成
樹脂により形成することも可能である。
As the PTC element, other than cristobalite ceramics, Cr 2 O 3 or Al 2 O 3
V 2 O 3 based ceramics obtained by solid solution of lead titanate (PBT
iO 3 ) ceramics, bismuth titanate (BiTi)
O 3 ) ceramics or solid solutions thereof may be used. Further, it can be formed of a synthetic resin made of a polyethylene-carbon composite material or a polyolefin-carbon composite material.

【0042】両端子板12,13は、例えば銅、アルミ
ニウム、ステンレス等の導電性が良好でかつ熱伝導性が
良好な金属を帯状に形成している。そして、PTC素子
板11の厚み方向に電流が流れるように、これらの両端
子板12,13をPTC素子板11の厚み方向にサンド
イッチ状に挟み込んで、導電性接着剤による接着、ロウ
付けあるいは溶接等により固着してPTC素子板11と
一体化している。このように両端子板12,13をPT
C素子板11に接続すると、薄板状のPTC素子板11
の通電方向はその厚み方向になるため、このPTC素子
板11内に電流が流れても通電抵抗が減少してその電力
損失は小さくなる。なお、これらの両端子板12,13
の各端部には取り付け穴12aおよび13aが配設され
ている。
Each of the terminal plates 12 and 13 is formed of a metal such as copper, aluminum, stainless steel or the like having good conductivity and good heat conductivity in a strip shape. Then, these two terminal plates 12 and 13 are sandwiched in the thickness direction of the PTC element plate 11 so that a current flows in the thickness direction of the PTC element plate 11, and are bonded, brazed or welded with a conductive adhesive. And is integrated with the PTC element plate 11. In this way, the terminal plates 12, 13 are PT
When connected to the C element plate 11, the thin PTC element plate 11
Is conducted in the thickness direction, so that even if a current flows through the PTC element plate 11, the conduction resistance is reduced and the power loss is reduced. In addition, these two terminal boards 12, 13
At each end, mounting holes 12a and 13a are provided.

【0043】蓄熱器14は、図2に示すように、銅、ア
ルミニウム、ステンレス等の熱伝導性が良好な金属から
なる金属容器14aと、この金属容器14a内に密封し
て充填される低融点金属(例えば、鉛−錫合金、はんだ
等の低融点(例えば130〜150℃)の金属)14b
から構成している。そして、この蓄熱器14は両端子板
12,13の少なくとも一方に接着剤による接着、ロウ
付けあるいは溶接等により固着(なお、図1において
は、端子板12側に配設した例を示している)して両端
子板12,13と一体化している。したがって、PTC
素子板11と両端子板12,13と蓄熱器14とが一体
化される。
As shown in FIG. 2, the regenerator 14 includes a metal container 14a made of a metal having good thermal conductivity, such as copper, aluminum, and stainless steel, and a low melting point sealed in the metal container 14a. Metal (e.g., metal having a low melting point (e.g., 130 to 150 [deg.] C.) such as a lead-tin alloy or solder) 14b
It consists of. The heat storage unit 14 is fixed to at least one of the terminal plates 12 and 13 by bonding with an adhesive, brazing, welding, or the like (FIG. 1 shows an example in which the heat storage unit 14 is disposed on the terminal plate 12 side). ) To be integrated with both terminal boards 12 and 13. Therefore, PTC
The element plate 11, the terminal plates 12, 13 and the regenerator 14 are integrated.

【0044】これにより、PTC素子板11に過電流領
域における過負荷電流が流れ、そのジュール熱によりP
TC素子板11が発熱すると、この発熱した熱が蓄熱器
14に熱伝導する。すると、金属容器14a内に密封、
充填された低融点金属14bがこの熱を吸収してその融
点に達すると融解する。これにより、PTC素子板11
に長時間の間にわたって過負荷電流が流れてPTC素子
板11が発熱しても、この熱は逐次、低融点金属14b
の融解熱に変換されるため、PTC素子板11が抵抗転
移温度(Tc=200〜240℃)に達することが防止
でき、後述するMCCB(遮断器)の動作に影響を与え
ない。
As a result, an overload current in the overcurrent region flows through the PTC element plate 11, and the Joule heat causes P
When the TC element plate 11 generates heat, the generated heat is conducted to the regenerator 14. Then, it is sealed in the metal container 14a,
The filled low melting point metal 14b absorbs this heat and melts when it reaches its melting point. Thereby, the PTC element plate 11
Even if the overload current flows for a long time and the PTC element plate 11 generates heat, this heat is successively generated by the low melting point metal 14b.
, The PTC element plate 11 can be prevented from reaching the resistance transition temperature (Tc = 200 to 240 ° C.), and does not affect the operation of an MCCB (circuit breaker) described later.

【0045】放熱体16は、熱伝導性が良好なアルミニ
ウム合金製の板状体に複数のフィン16aを一体に形成
した放熱フィンより構成している。この放熱体16を蓄
熱器14より電気的に絶縁するために、耐熱性が良好な
絶縁板15を介して蓄熱器14の上部に一体的に固着し
ている。これにより、蓄熱器14に蓄熱されたPTC素
子板11より発生した熱は放熱体16より外気中に放出
されるようになる。
The heat dissipating body 16 is composed of a heat dissipating fin in which a plurality of fins 16a are integrally formed on a plate made of aluminum alloy having good thermal conductivity. In order to electrically insulate the heat radiator 16 from the heat accumulator 14, it is integrally fixed to the upper portion of the heat accumulator 14 via an insulating plate 15 having good heat resistance. Thereby, the heat generated from the PTC element plate 11 stored in the heat storage device 14 is released from the radiator 16 into the outside air.

【0046】図4は、MCCB(遮断器)100の外形
を示す正面図であり、このMCCB(遮断器)100
は、図示しない電路に接続される主接点、主接点を開閉
する開閉機構、主接点の開極時に発生するアークを消弧
するための消弧室、過負荷電流または短絡電流に対して
開閉機構を釈放して主接点を引き外す引き外し装置等
と、開閉機構を動作させて主接点を電路に投入する操作
スイッチ101と、このMCCB(遮断器)100を電
源側の電路に接続する電源側端子102X,102Y,
102Zと、図示しないMCCB(遮断器)100を負
荷側の電路に接続する負荷側端子とを備えている。
FIG. 4 is a front view showing the outer shape of the MCCB (circuit breaker) 100.
Is a main contact connected to an electric circuit (not shown), a switching mechanism for opening and closing the main contact, an arc-extinguishing chamber for extinguishing an arc generated when the main contact is opened, and a switching mechanism for overload current or short-circuit current. A release device for releasing the main contact and releasing the main contact, an operation switch 101 for operating the opening / closing mechanism to put the main contact into the electric circuit, and a power supply side for connecting the MCCB (circuit breaker) 100 to the electric circuit on the power supply side Terminals 102X, 102Y,
102Z and a load-side terminal for connecting an MCCB (circuit breaker) 100 (not shown) to an electric circuit on the load side.

【0047】そして、上記限流器10,10,10の各
端子13,13,13の取り付け孔13a,13a,1
3aをMCCB100の電源側端子102X,102
Y,102Zにそれぞれ取り付けてねじ止めし、各限流
器10,10,10の各端子12,12,12の取り付
け孔12a,12a,12aを電源側の電線X,Y,Z
にそれぞれ取り付けてねじ止めすることにより、電源側
の電線X,Y,ZとMCCB100とが各限流器10,
10,10を介して接続される。一方、図示しない負荷
側端子に負荷側の電線各を相毎に接続する。これによ
り、各相毎に限流器10を備えたMCCB(遮断器)1
00が電路に接続されることになる。
Then, the mounting holes 13a, 13a, 1 of the terminals 13, 13, 13 of the current limiting devices 10, 10, 10 are set.
3a is connected to the power supply side terminals 102X and 102 of the MCCB 100.
Y, 102Z, respectively, and screw them in. The mounting holes 12a, 12a, 12a of the terminals 12, 12, 12 of the respective current limiters 10, 10, 10 are connected to the electric wires X, Y, Z on the power supply side.
, And the screws X, Y, Z on the power supply side and the MCCB 100 are connected to the respective current limiters 10,
They are connected via 10, 10. On the other hand, each load-side electric wire is connected to a load-side terminal (not shown) for each phase. Thereby, MCCB (breaker) 1 provided with current limiter 10 for each phase
00 will be connected to the electric circuit.

【0048】ついで、上記のように接続した各相毎に限
流器10を備えたMCCB(遮断器)100の動作を説
明する。まず、正常時(図14の定常領域)の動作に
ついて説明すると、操作スイッチ101を操作して開閉
機構を動作させて主接点を電路に投入すると、図示しな
い電源の電力が限流器10およびMCCB100を通し
て図示しない負荷に供給され、この電路に定格電流(図
14のIn)が流れるようになる。このとき、限流器1
0のPTC素子板11の抵抗値は小さいため、電力損失
を伴うことなく負荷に電力が供給される。
Next, the operation of the MCCB (breaker) 100 having the current limiting device 10 for each phase connected as described above will be described. First, the operation in a normal state (the steady region in FIG. 14) will be described. When the operation switch 101 is operated to operate the opening / closing mechanism and the main contact is turned on, the power of the power supply (not shown) is reduced by the current limiter 10 and the MCCB 100. , And a rated current (In in FIG. 14) flows through this electric circuit. At this time, the current limiter 1
Since the resistance value of the PTC element plate 11 of 0 is small, power is supplied to the load without power loss.

【0049】ここで、何らかの理由により電路の負荷側
に過負荷電流(図14の1.25〜10In)が流れる
異常時(図14の過電流領域)になると、限流器10
のPTC素子板11には定格電流(In)の1.25〜
10倍の過負荷電流が流れ、そのジュール熱によりPT
C素子板11は発熱する。すると、この発熱した熱が蓄
熱器14に熱伝導して蓄熱される。そして、図2に示す
ように、金属容器14a内に密封、充填された低融点金
属14bがこの熱を吸収してその融点に達すると融解す
る。また、蓄熱器14に蓄熱された熱は放熱体16に熱
伝導してそのフィン16aより外部に放出されるように
なる。
Here, if an overload current (1.25 to 10 In in FIG. 14) flows to the load side of the electric circuit for some reason (overcurrent region in FIG. 14), the current limiter 10
PTC element plate 11 has a rated current (In) of 1.25 to
10 times overload current flows, and the Joule heat causes PT
The C element plate 11 generates heat. Then, the generated heat is conducted to the regenerator 14 to be stored. Then, as shown in FIG. 2, the low melting point metal 14b sealed and filled in the metal container 14a absorbs this heat and melts when reaching its melting point. Further, the heat stored in the heat storage device 14 is thermally conducted to the radiator 16 and released to the outside through the fins 16a.

【0050】これにより、PTC素子板11に長時間に
わたって過負荷電流が流れてPTC素子板11が発熱し
ても、この熱は逐次、低融点金属14bの融解熱に変換
されるため、PTC素子板11が抵抗転移温度(Tc=
200〜240℃)に達することはない。このとき、M
CCB100に長時間にわたって定格電流(In)の
1.25〜10倍の過負荷電流が継続して流れると、図
14に示すように、その過負荷電流に対応して予め設定
された時間(10秒〜120分)が経過すると、MCC
B100の引き外し装置は動作して開閉機構を釈放して
主接点を引き外し、負荷側は電源より遮断されて電路に
過負荷電流が流れなくなる。
As a result, even if an overload current flows through the PTC element plate 11 for a long time and the PTC element plate 11 generates heat, this heat is sequentially converted into heat of fusion of the low melting point metal 14b. The plate 11 has a resistance transition temperature (Tc =
(200-240 ° C.). At this time, M
When an overload current of 1.25 to 10 times the rated current (In) continuously flows through the CCB 100 for a long time, as shown in FIG. 14, a predetermined time (10 Seconds to 120 minutes), the MCC
The tripping device of B100 is operated to release the switching mechanism and trip the main contact, and the load side is cut off from the power supply so that no overload current flows in the electric circuit.

【0051】一方、電路の負荷側に短絡事故が生じて短
絡電流が流れる異常時(図14の短絡領域)になる
と、限流器10のPTC素子板11には過大な短絡電流
が流れるため、そのジュール熱によりPTC素子板11
は発熱する。すると、この発熱によりPTC素子板11
が抵抗転移温度(Tc=200〜240℃)に達する
と、PTC素子板11の抵抗率(ρ)は最大値(ρma
x)となり、PTC素子板11は短絡電流を抑制(限
流)する動作を開始する。そして、0.02秒(50H
zの場合の1サイクル)以内にはMCCB100の主接
点の開極動作が終了し、負荷側は電源より遮断されて電
路に短絡電流が流れなくなる。
On the other hand, when a short circuit accident occurs on the load side of the electric circuit and a short circuit current flows (short circuit area in FIG. 14), an excessive short circuit current flows through the PTC element plate 11 of the current limiter 10. The PTC element plate 11 by the Joule heat
Generates heat. Then, the heat generated causes the PTC element plate 11
Reaches the resistance transition temperature (Tc = 200 to 240 ° C.), the resistivity (ρ) of the PTC element plate 11 becomes the maximum value (ρma).
x), and the PTC element plate 11 starts the operation of suppressing (current limiting) the short-circuit current. Then, for 0.02 seconds (50H
Within one cycle in the case of z), the opening operation of the main contact of the MCCB 100 ends, the load side is cut off from the power supply, and no short-circuit current flows in the electric circuit.

【0052】上述したように、本実施形態1において
は、PTC素子板11を薄板状に形成し、この薄板状の
PTC素子板11の一方の面に電源側の電路に接続され
る取り付け孔12aを備えた端子板12を固着し、PT
C素子板11の他方の面に負荷側の電路に接続される取
り付け孔13aを備えた端子板13を固着しているの
で、薄板状のPTC素子板11の通電方向はその厚み方
向になるため、定常時の定格電流が流れる状態において
は、通電抵抗が減少して電力損失が減少する。
As described above, in the first embodiment, the PTC element plate 11 is formed in a thin plate shape, and the mounting hole 12a connected to the electric path on the power supply side is formed on one surface of the thin PTC element plate 11. The terminal plate 12 provided with
Since the terminal plate 13 having the mounting hole 13a connected to the electric circuit on the load side is fixed to the other surface of the C element plate 11, the direction of conduction of the thin PTC element plate 11 is in the thickness direction. In a state where the rated current flows in a steady state, the current-carrying resistance is reduced and the power loss is reduced.

【0053】また、定格電流以上の過負荷電流が流れる
と、そのジュール熱によりPTC素子板11が発熱する
と、この発熱した熱が蓄熱器14に熱伝導する。これに
より、PTC素子板11に長時間にわたって過負荷電流
が流れてPTC素子板11が発熱しても、この熱は逐
次、蓄熱器14に吸収されるとともに蓄熱器14に吸収
された熱は放熱体16より放出されるめ、PTC素子板
11が抵抗転移温度(Tc)に達することが防止できる
ようになる。
When an overload current equal to or higher than the rated current flows, the PTC element plate 11 generates heat due to the Joule heat, and the generated heat is conducted to the regenerator 14. Thus, even if an overload current flows through the PTC element plate 11 for a long time and the PTC element plate 11 generates heat, the heat is successively absorbed by the regenerator 14 and the heat absorbed by the regenerator 14 is radiated. Since the PTC element plate 11 is released from the body 16, the PTC element plate 11 can be prevented from reaching the resistance transition temperature (Tc).

【0054】一方、電路に短絡電流が流れる場合は、P
TC素子板11はその短絡電流に起因したジュール熱に
より発熱する。すると、PTC素子板11は抵抗転移温
度に達してその抵抗値が急激に増大して短絡電流を抑制
(限流)するようになり、短絡電流が減少する。このた
め、このPTC素子板11をMCCB100(図4参
照)に接続することによりMCCB100の遮断容量が
増大するため、小容量のMCCB100を用いても大容
量のMCCB100を用いた場合と同様な遮断効果を達
成することが可能となり、遮断器の設置コストを大幅に
減少させることが可能となる。
On the other hand, when a short-circuit current flows in the electric circuit, P
The TC element plate 11 generates heat by Joule heat caused by the short-circuit current. Then, the PTC element plate 11 reaches the resistance transition temperature, the resistance value of the PTC element plate 11 increases rapidly, and the short-circuit current is suppressed (current limiting), and the short-circuit current decreases. For this reason, by connecting the PTC element plate 11 to the MCCB 100 (see FIG. 4), the breaking capacity of the MCCB 100 is increased, so that even if a small capacity MCCB 100 is used, the same blocking effect as when using the large capacity MCCB 100 is used. Can be achieved, and the installation cost of the circuit breaker can be significantly reduced.

【0055】なお、蓄熱器14は銅、錫、鉛などのよう
な熱容量の大きな金属体で構成してもよい。この場合、
蓄熱器14の構成が容易になって、安価に製造できるよ
うになる。
The regenerator 14 may be made of a metal having a large heat capacity, such as copper, tin, or lead. in this case,
The configuration of the heat storage device 14 is simplified, and the heat storage device 14 can be manufactured at low cost.

【0056】なお、上述した実施形態1においては、P
TC素子板11の上下面に両端子板12,13を接続
し、上部端子板12の上部にPTC素子板11が発熱し
た際の熱を吸収する蓄熱器14を上部端子板12に密着
して接続するとともに、この蓄熱器14の上部に絶縁板
15を介して放熱体16を配設する構造を採用した例に
ついて説明したが、本発明の限流器は上述した実施形態
1の構造に以外にも種々の構造を採用することができ
る。以下に、本第1実施形態の限流器の種々の変形例に
ついて説明する。
In the first embodiment described above, P
The two terminal plates 12 and 13 are connected to the upper and lower surfaces of the TC element plate 11, and a regenerator 14 for absorbing heat when the PTC element plate 11 generates heat is closely attached to the upper terminal plate 12 above the upper terminal plate 12. An example has been described in which a structure is adopted in which a radiator 16 is disposed above the regenerator 14 via an insulating plate 15 while being connected. However, the current limiter of the present invention has a structure other than that of the first embodiment described above. Also, various structures can be adopted. Hereinafter, various modifications of the current limiter of the first embodiment will be described.

【0057】変形例1 図5は本発明のPTC素子を用いた限流器の第1変形例
の概略を示す斜視図である。図5の第1変形例のPTC
素子を用いた限流器20は、蓄熱材からなる蓄熱器兼用
の上部端子板22をPTC素子板21の上部に導電性接
着剤による接着、ロウ付けあるいは溶接により固着する
とともに、この上部端子板22と同様の構成とした蓄熱
器兼用の下部端子板23をPTC素子板21の下部に導
電性接着剤による接着、ロウ付けあるいは溶接により固
着している。
Modification 1 FIG. 5 is a perspective view schematically showing a first modification of the current limiting device using the PTC element of the present invention. PTC of the first modification of FIG.
The current limiter 20 using the element has an upper terminal plate 22 made of a heat storage material, which is also used as a heat storage device, is fixed to the upper portion of the PTC element plate 21 by bonding, brazing or welding with a conductive adhesive. A lower terminal plate 23 also serving as a heat storage unit having the same configuration as that of the lower terminal 22 is fixed to the lower part of the PTC element plate 21 by bonding, brazing, or welding with a conductive adhesive.

【0058】各蓄熱器兼用の端子板22,23は導電性
が良好で熱伝導性が良好な銅、アルミニウム、ステンレ
ス等の金属容器内に低融点金属(例えば、上述の実施形
態1と同様に、鉛ー錫合金あるいははんだ等よりなる)
を充填して密閉形成している。また、各蓄熱器兼用の端
子板22,23はそれぞれPTC素子板21より延出し
て形成しているとともに、各蓄熱器兼用の端子板22,
23のそれぞれ端部には取り付け穴22a,23aを設
けている。
Each of the terminal plates 22 and 23 also serving as a heat storage unit is provided in a metal container such as copper, aluminum or stainless steel having good conductivity and good heat conductivity in a low melting point metal (for example, as in the first embodiment described above). , Lead-tin alloy or solder etc.)
To form a hermetic seal. The terminal plates 22 and 23 also serving as regenerators are formed so as to extend from the PTC element plate 21, respectively.
At each end of 23, mounting holes 22a and 23a are provided.

【0059】蓄熱器兼用の上部端子板22の上部には多
数の放熱フィン25aを備えた放熱体25を耐熱性が良
好な絶縁板24を介して固着している。なお、放熱体2
5は熱伝導性が良好なアルミニウム合金からなる形成し
ており、蓄熱器兼用の上部端子板22と絶縁板24およ
び絶縁板24と放熱体25はそれぞれ接着剤により一体
的に固着している。
A radiator 25 having a large number of radiating fins 25a is fixed to an upper portion of the upper terminal plate 22 also serving as a heat storage unit via an insulating plate 24 having good heat resistance. The radiator 2
Numeral 5 is made of an aluminum alloy having good thermal conductivity, and the upper terminal plate 22 also serving as a heat storage unit and the insulating plate 24, and the insulating plate 24 and the radiator 25 are integrally fixed by an adhesive.

【0060】上述したように本変形例1においては、低
融点金属を充填して密閉形成した蓄熱器兼用の上部端子
板22あるいは下部端子板23とすることにより、上述
した実施形態1のように端子板12と蓄熱器14をそれ
ぞれ別体に形成したものと同容積であっても、各蓄熱器
兼用の端子板22,23をそれぞれPTC素子板21よ
り延出して形成することにより、限流器20の全体の厚
みを薄くすることが可能となるため、この種の限流器2
0を小型に形成することが可能になる。また、PTC素
子板21の両面に各蓄熱器兼用の端子板22,23を固
着しているので、発熱したPTC素子板21から放出さ
れる熱を効率よく吸収できるようになる。 なお、蓄熱
材からなる蓄熱器兼用の端子板22,23は銅、錫、鉛
等よりなる熱容量の大きな金属体により構成してもよ
い。この場合、蓄熱器兼用の端子板22,23の製造が
容易になって、安価に製造できるようになる。
As described above, in the first modification, the upper terminal plate 22 or the lower terminal plate 23 also serving as a regenerator, which is filled with a low melting point metal and is hermetically formed, as in the first embodiment described above. Even if the terminal plate 12 and the regenerator 14 have the same volume as those formed separately, the current limiter can be formed by extending the PTC element plate 21 to form the terminal plates 22 and 23 also serving as regenerators. Since the entire thickness of the device 20 can be reduced, this type of current limiting device 2
0 can be formed small. In addition, since the terminal plates 22 and 23 also serving as heat storage units are fixed to both surfaces of the PTC element plate 21, the heat released from the heated PTC element plate 21 can be efficiently absorbed. In addition, the heat storage material terminal plates 22 and 23 made of a heat storage material may be made of a metal body having a large heat capacity made of copper, tin, lead or the like. In this case, the production of the terminal plates 22 and 23 also serving as a heat storage device is facilitated, and the production is possible at low cost.

【0061】変形例2 図6は本発明のPTC素子を用いた限流器の第2変形例
の概略を示す斜視図である。図6の第2変形例のPTC
素子を用いた限流器30は、上部に多数の放熱フィン3
2bを備えた蓄熱材からなる蓄熱器および放熱体兼用の
上部端子板32をPTC素子板31の上部に導電性接着
剤による接着、ロウ付けあるいは溶接により固着すると
ともに、PTC素子板31の下部に下部端子板33を導
電性接着剤による接着、ロウ付けあるいは溶接により固
着している。そして、蓄熱器および放熱体兼用の上部端
子板32の外表面は放熱性が良好な材料からなる絶縁膜
を被着している。
Modification 2 FIG. 6 is a perspective view schematically showing a second modification of the current limiting device using the PTC element of the present invention. PTC of the second modification of FIG.
The current limiter 30 using the element has a large number of radiating fins 3
An upper terminal plate 32 also serving as a heat accumulator and a radiator, which is provided with a heat storage material provided with 2b, is fixed to the upper portion of the PTC element plate 31 by bonding, brazing or welding with a conductive adhesive, and is fixed to the lower portion of the PTC element plate 31. The lower terminal plate 33 is fixed by bonding using an electrically conductive adhesive, brazing or welding. The outer surface of the upper terminal plate 32, which is also used as a heat storage unit and a radiator, is coated with an insulating film made of a material having good heat dissipation.

【0062】蓄熱材からなる蓄熱器および放熱体兼用の
上部端子板32は熱伝導性が良好で導電性が良好なアル
ミニウム合金から形成しておりその内部に低融点金属
(例えば、上述の実施形態1と同様に、鉛ー錫合金ある
いははんだ等よりなる)を充填して密閉形成している。
また、下部端子板33は導電性が良好で熱伝導性が良好
な銅、アルミニウム、ステンレス等の金属から形成して
いる。また、各端子板32,33のそれぞれ端部には取
り付け穴32a,33aを設けている。
The heat storage material and the upper terminal plate 32, which also serves as a heat radiator, are made of an aluminum alloy having good heat conductivity and good conductivity, and have a low melting point metal (for example, in the above embodiment). 1 (made of a lead-tin alloy or solder, etc.) to form a hermetic seal.
The lower terminal plate 33 is formed of a metal having good conductivity and good heat conductivity, such as copper, aluminum, and stainless steel. Further, mounting holes 32a, 33a are provided at the ends of the terminal plates 32, 33, respectively.

【0063】上述したように本変形例2においては、上
部に多数の放熱フィン32bを備え、その内部に低融点
金属を充填して密閉形成した蓄熱器および放熱体兼用の
上部端子板32とすることにより、上述した変形例1よ
りさらに小型の限流器30を得ることが可能になる。な
お、蓄熱材からなる蓄熱器および放熱体兼用の端子板3
2は銅、錫、鉛等よりなる熱容量の大きな金属体により
構成してもよい。この場合、蓄熱器兼用の端子板22,
23の製造が容易になって、安価に製造できるようにな
る。
As described above, in the second modification, the upper end plate 32 is provided with a large number of heat dissipating fins 32b in the upper portion, and a low-melting point metal is filled in the inside thereof to form a sealed heat storage unit and a heat dissipating body. This makes it possible to obtain a current limiter 30 that is smaller than the first modification. In addition, the heat storage device made of heat storage material and the terminal plate 3 also serving as a heat radiator
2 may be made of a metal body having a large heat capacity, such as copper, tin, or lead. In this case, the terminal plate 22, which also serves as a heat storage device,
23 can be easily manufactured and can be manufactured at low cost.

【0064】変形例3 図7は本発明のPTC素子を用いた限流器の第3変形例
の概略を示す斜視図である。図7の第3変形例のPTC
素子を用いた限流器40は、蓄熱材からなる蓄熱器兼用
の上部端子板42をPTC素子板41の上部に導電性接
着剤による接着、ロウ付けあるいは溶接により固着する
とともに、この蓄熱器兼用の上部端子板42と同様の構
成とした蓄熱器兼用の下部端子板43をPTC素子板4
1の下部に導電性接着剤による接着、ロウ付けあるいは
溶接により固着している。
Third Modification FIG. 7 is a perspective view schematically showing a third modification of the current limiting device using the PTC element of the present invention. PTC of the third modification of FIG.
The current limiting device 40 using the element is configured such that an upper terminal plate 42 made of a heat storage material and also serving as a heat storage device is fixed to the upper portion of the PTC element plate 41 by bonding, brazing or welding with a conductive adhesive, and the heat storage device is also used. The lower terminal plate 43 also serving as a regenerator having the same configuration as the upper terminal plate 42 of the PTC element plate 4
1 is fixed to the lower portion by bonding with a conductive adhesive, brazing or welding.

【0065】蓄熱器兼用の上部端子板42および蓄熱器
兼用の下部端子板43は導電性が良好で熱伝導性が良好
な銅、アルミニウム、ステンレス等の金属からなる容器
に低融点金属(例えば、上述の実施形態1と同様に、鉛
ー錫合金あるいははんだ等よりなる)を充填して密閉形
成している。また、各端子板42,43のそれぞれ端部
には取り付け穴42a,43aを設けている。
The upper terminal plate 42 also serving as a regenerator and the lower terminal plate 43 serving also as a regenerator have a low melting point metal (for example, copper, aluminum, stainless steel, etc.) having good conductivity and good heat conductivity. As in the first embodiment described above, a hermetic seal is formed by filling with a lead-tin alloy or solder. Further, mounting holes 42a, 43a are provided at the ends of the terminal plates 42, 43, respectively.

【0066】蓄熱器兼用の上部端子板42の上部には多
数の放熱フィン46aを備えた放熱体46を耐熱性が良
好な絶縁板44を介して固着するとともに、蓄熱器兼用
の下部端子板43の上部には多数の放熱フィン47aを
備えた放熱体47を耐熱性が良好な絶縁板45を介して
固着している。なお、放熱体46,47は熱伝導性が良
好なアルミニウム合金によって形成しており、上部端子
板42と絶縁板44、下部端子板43と絶縁板45およ
び絶縁板44と放熱体46、絶縁板45と放熱体47は
それぞれ接着剤により一体的に固着している。
A radiator 46 having a large number of radiating fins 46a is fixed to the upper portion of the upper terminal plate 42 also serving as a regenerator via an insulating plate 44 having good heat resistance, and a lower terminal plate 43 also serving as a regenerator. A heat radiator 47 having a large number of radiating fins 47a is fixed to an upper portion thereof via an insulating plate 45 having good heat resistance. The radiators 46 and 47 are formed of an aluminum alloy having good thermal conductivity, and the upper terminal plate 42 and the insulating plate 44, the lower terminal plate 43 and the insulating plate 45, and the insulating plate 44 and the radiator 46, the insulating plate The radiator 45 and the radiator 47 are integrally fixed by an adhesive.

【0067】上述したように、本変形例3においては、
PTC素子板41の両面に蓄熱器兼用の各端子板42,
43を固着するとともに、これらの各端子板42,43
の上部および下部に放熱体46および47を固着してい
るので、発熱したPTC素子板41から放出される熱を
効率よく吸収できるようになるとともに、吸収した熱を
放熱体46,47から効率よく放出できるようになる。
As described above, in the third modification,
Each terminal plate 42 also serving as a heat storage device is provided on both surfaces of the PTC element plate 41,
43, and these terminal plates 42, 43
Since the heat radiators 46 and 47 are fixed to the upper and lower portions of the PTC element plate 41, the heat released from the heated PTC element plate 41 can be efficiently absorbed, and the absorbed heat can be efficiently transmitted from the heat radiators 46 and 47. Be able to release.

【0068】なお、蓄熱材からなる蓄熱器兼用の上部端
子板42および下部端子板43は銅、錫、鉛等よりなる
熱容量の大きな金属体により構成してもよい。この場
合、蓄熱器兼用の各端子板42,43の製造が容易にな
って、安価に製造できるようになる。
Note that the upper terminal plate 42 and the lower terminal plate 43, which are also made of a heat storage material and also serve as a heat storage device, may be made of a metal body having a large heat capacity, such as copper, tin, or lead. In this case, the production of each of the terminal plates 42 and 43 also serving as a heat storage device becomes easy, and the production can be performed at low cost.

【0069】変形例4 上述した実施形態1および各変形例1,2,3において
は、例えば実施形態1においてはPTC素子板11、各
端子板12,13、蓄熱器14、絶縁板15および放熱
体16をそれぞれPTC素子板11と略同形の四角形状
として、限流器10全体として略角柱状体(なお、各端
子板12,13のみは略角柱状体から突出するようにな
る)に形成した例について説明したが、一般に、PTC
素子板は円形状に製造されるため、限流器全体を略円柱
状に形成するようにすると、この種の限流器を安価に製
造できるようになるとともに容易に製造できるようにな
る。
Modification 4 In Embodiment 1 and Modifications 1, 2, and 3 described above, for example, in Embodiment 1, PTC element plate 11, terminal plates 12, 13, heat storage unit 14, insulating plate 15, and heat radiation The body 16 is formed into a substantially prismatic body (only the terminal plates 12 and 13 protrude from the substantially prismatic body) as a whole of the current limiter 10 in the form of a square having substantially the same shape as the PTC element plate 11. Was explained, but in general, PTC
Since the element plate is manufactured in a circular shape, if the entire current limiter is formed in a substantially cylindrical shape, this type of current limiter can be manufactured at low cost and can be easily manufactured.

【0070】そこで、本第4変形例においては、円形状
に製造されたPTC素子板を用いて限流器全体を略円柱
状に形成することにある。図8は本発明のPTC素子を
用いた限流器の第4変形例の概略を示す斜視図である。
図8の第4変形例のPTC素子を用いた限流器50は、
平面形状が円形状に形成された薄板状PTC素子板51
の上部に円形状に形成された蓄熱材からなる蓄熱器兼用
の上部端子板52を導電性接着剤による接着、ロウ付け
あるいは溶接により固着している。また、平面形状が円
形状に形成された薄板状PTC素子板51の下部に平面
形状が円形状に形成された下部端子板53を導電性接着
剤による接着、ロウ付けあるいは溶接により固着してい
る。
Therefore, in the fourth modification, the entire current limiter is formed in a substantially columnar shape by using a PTC element plate manufactured in a circular shape. FIG. 8 is a perspective view schematically showing a fourth modification of the current limiter using the PTC element of the present invention.
The current limiter 50 using the PTC element of the fourth modification of FIG.
Thin PTC element plate 51 having a circular planar shape
An upper terminal plate 52 made of a heat storage material formed in a circular shape and also serving as a heat storage device is fixed to the upper portion by bonding, brazing, or welding with a conductive adhesive. Further, a lower terminal plate 53 having a circular planar shape is fixed to a lower portion of a thin PTC element plate 51 having a circular planar shape by bonding, brazing, or welding with a conductive adhesive. .

【0071】蓄熱材からなる蓄熱器兼用の上部端子板5
2は導電性が良好で熱伝導性が良好な銅、アルミニウ
ム、ステンレス等の金属からなる容器内に低融点金属
(例えば、上述の実施形態1と同様に、鉛ー錫合金ある
いははんだ等よりなる)を充填して密閉形成している。
また、下部端子板53は導電性が良好で熱伝導性が良好
な銅、アルミニウム、ステンレス等の金属から形成して
いる。また、各端子板52,53のそれぞれ端部には図
示しない接続部が設けられている。
Upper terminal plate 5 made of heat storage material and also serving as a heat storage device
Reference numeral 2 denotes a low-melting-point metal (for example, a lead-tin alloy or a solder as in the first embodiment described above) in a container made of a metal such as copper, aluminum, and stainless steel having good conductivity and good heat conductivity. ) To form a hermetic seal.
The lower terminal plate 53 is formed of a metal having good conductivity and good heat conductivity, such as copper, aluminum, and stainless steel. In addition, connection portions (not shown) are provided at the respective ends of the terminal plates 52 and 53.

【0072】蓄熱器兼用の上部端子板52の上部には多
数の放熱フィン55aを備えた平面形状が円形状に形成
された放熱体55を耐熱性が良好な円形状に形成された
絶縁板54を介して固着している。放熱体55は熱伝導
性が良好なアルミニウム合金から形成しており、上部端
子板52と絶縁板54および絶縁板54と放熱体55は
それぞれ接着剤により一体的に固着している。このよう
に構成すると、限流器50全体として略円柱状体に形成
される。
A heat radiator 55 having a large number of radiating fins 55a and having a circular planar shape is provided on an upper portion of the upper terminal plate 52 also serving as a heat storage device. An insulating plate 54 having a circular shape with good heat resistance is provided. Is fixed through. The heat radiator 55 is formed of an aluminum alloy having good thermal conductivity, and the upper terminal plate 52 and the insulating plate 54, and the insulating plate 54 and the heat radiator 55 are integrally fixed by an adhesive. With this configuration, the current limiter 50 as a whole is formed in a substantially columnar body.

【0073】上述したように、限流器50全体を略円柱
状体に形成すると、平面形状が円形状に製造されたPT
C素子板を加工することなく用いることが可能になるた
め、この種の限流器を安価に製造できるようになるとと
もに容易に製造できるようになる。
As described above, when the entire current limiter 50 is formed in a substantially columnar body, the PT having a circular planar shape is manufactured.
Since it becomes possible to use the C element plate without processing it, this type of current limiter can be manufactured at low cost and can be easily manufactured.

【0074】なお、蓄熱材からなる蓄熱器兼用の上部端
子板52は銅、錫、鉛等よりなる熱容量の大きな金属体
により構成してもよい。この場合、蓄熱器兼用の上部端
子板52の製造が容易になって、安価に製造できるよう
になる。
The upper terminal plate 52 also serving as a heat storage device made of a heat storage material may be made of a metal body having a large heat capacity, such as copper, tin, or lead. In this case, the production of the upper terminal plate 52 also serving as a heat storage device is facilitated, and the production can be performed at low cost.

【0075】なお、平面形状が四角形状あるいは円形状
に製造されたPTC素子板を用いて限流器とする場合、
図9に示すように各部品の配置構成を種々に変形させる
ことが可能である。図9(a)は図1および図8の配置
構成例を示し、図1および図8の配置構成の限流器から
絶縁板15あるいは54を省略すると図9(b)に示す
配置構成の限流器となる。また、図9(a)の配置構成
の限流器の下部にさらにもう1つの放熱体16あるいは
55を付加すると図9(c)に示す配置構成の限流器と
なる。さらに、図9(c)の配置構成の限流器から絶縁
板15あるいは54を省略すると図9(d)に示す配置
構成の限流器となる。
When a current limiting device is formed by using a PTC element plate having a square or circular planar shape,
As shown in FIG. 9, the arrangement of each component can be variously modified. FIG. 9A shows an example of the arrangement shown in FIGS. 1 and 8. If the insulating plate 15 or 54 is omitted from the current limiter having the arrangement shown in FIGS. 1 and 8, the arrangement shown in FIG. It becomes a sink. Further, when another radiator 16 or 55 is further added to the lower part of the current limiter having the arrangement shown in FIG. 9A, a current limiter having the arrangement shown in FIG. 9C is obtained. Further, when the insulating plate 15 or 54 is omitted from the current limiter having the configuration shown in FIG. 9C, the current limiter has the configuration shown in FIG. 9D.

【0076】実施形態2 図10は本発明のPTC素子を用いた限流器の第2実施
形態の概略を示す斜視図である。図10の第2実施形態
のPTC素子を用いた限流器60は、PTC素子を断面
コ字状の半角筒状に形成して半角筒状PTC素子体61
としたものを使用している。PTC素子としては上述し
た第1実施形態と同様にクリストバライト系セラックス
が好ましい。
Embodiment 2 FIG. 10 is a perspective view schematically showing a current limiter using a PTC element according to a second embodiment of the present invention. The current limiter 60 using the PTC element of the second embodiment shown in FIG.
We use what we did. As the PTC element, a cristobalite-based cerax is preferable as in the first embodiment described above.

【0077】半角筒状PTC素子体61の外表面には長
手方向に突出部63aを備えた断面コ字状で半角筒状の
外側端子体63を接着剤による接着、ロウ付けあるいは
溶接して固着し、PTC素子体61と外側端子体63と
を電気的に接続している。なお、外側端子体63は銅、
アルミニウム、ステンレス等の導電性が良好で熱伝導性
が良好な金属から形成している。また、突出部63aに
は取り付け穴63bを設けている。
A semi-cylindrical outer terminal body 63 having a U-shaped cross section and having a protruding portion 63a in the longitudinal direction is fixed to the outer surface of the semi-cylindrical PTC element body 61 by bonding, brazing or welding with an adhesive. Then, the PTC element body 61 and the outer terminal body 63 are electrically connected. The outer terminal body 63 is made of copper,
It is made of a metal having good conductivity and good heat conductivity, such as aluminum and stainless steel. The projection 63a is provided with a mounting hole 63b.

【0078】半角筒状PTC素子体61の内表面には長
手方向に突出部62aを備えた蓄熱材からなる蓄熱器兼
用の内側端子体62を接着剤による接着、ロウ付けある
いは溶接して固着し、PTC素子体61と蓄熱器兼用の
内側端子体62とを電気的および熱的に接続している。
この蓄熱材からなる蓄熱器兼用の内側端子体62は、導
電性が良好で熱伝導性が良好な銅、アルミニウム、ステ
ンレス等の金属からなる容器内に低融点金属(例えば、
上述の実施形態1と同様に、鉛ー錫合金あるいははんだ
等よりなる)を充填して角柱状に密閉形成している。ま
た、突出部62aには取り付け穴62bを設けている。
An inner terminal body 62 made of a heat storage material and having a protruding portion 62a in the longitudinal direction and also serving as a heat storage device is fixed to the inner surface of the half-width cylindrical PTC element body 61 by bonding, brazing or welding with an adhesive. , PTC element body 61 and inner terminal body 62 also serving as a heat storage device are electrically and thermally connected.
The inner terminal body 62 also serving as a heat storage material made of a heat storage material is provided in a container made of a metal such as copper, aluminum, and stainless steel, which has good conductivity and good heat conductivity, in a low melting point metal (for example,
As in the first embodiment described above, a lead-tin alloy or a solder or the like is filled) to form a hermetic seal in a prismatic shape. The projection 62a is provided with a mounting hole 62b.

【0079】この蓄熱器兼用の内側端子体62の上部に
は複数の放熱フィン65aを備えた放熱体65を耐熱性
良好な絶縁板64を介して固着している。この場合、蓄
熱器兼用の内側端子体62と絶縁板64とは接着剤によ
り固着するとともに絶縁板64と放熱体65も接着剤に
より固着している。なお、放熱体65は熱伝導性が良好
なアルミニウム合金より形成している。
A radiator 65 having a plurality of radiating fins 65a is fixed to an upper portion of the inner terminal body 62 also serving as a heat storage unit via an insulating plate 64 having good heat resistance. In this case, the inner terminal body 62 also serving as a heat storage unit and the insulating plate 64 are fixed with an adhesive, and the insulating plate 64 and the radiator 65 are also fixed with an adhesive. The heat radiator 65 is formed of an aluminum alloy having good thermal conductivity.

【0080】本第2実施形態の限流器60は半角筒状の
PTC素子体61を半角筒状の外側端子体63および角
柱状の蓄熱器兼用の内側端子62にそれぞれ接続してい
るので、PTC素子体61の通電方向がPTC素子体6
1の断面に対してそれぞれ垂直方向になる。そのため、
PTC素子体61の通電抵抗を減少させることが可能に
なる。また、蓄熱器兼用の内側端子体62はその内部に
低融点金属を密閉して充填しているので、PTC素子体
61が発熱するとこの蓄熱器兼用の内側端子体62に充
填された低融点金属が溶融するようになってその融解熱
によりPTC素子体62が発熱した熱を蓄熱するように
なる。また、放熱体65は多数の放熱フィン65aを備
えているので蓄熱器兼用の内側端子体62に吸収された
熱は放熱フィン65aより効率よく放出されるようにな
る。
In the current limiter 60 of the second embodiment, the half-width cylindrical PTC element body 61 is connected to the half-width cylindrical outer terminal body 63 and the prism-shaped inner terminal 62 which also serves as a regenerator. The direction of current supply to the PTC element 61 is PTC element 6
1 are perpendicular to the section. for that reason,
The current-carrying resistance of the PTC element body 61 can be reduced. Further, since the low-melting-point metal is hermetically sealed in the inner terminal body 62 also serving as a heat storage device, when the PTC element 61 generates heat, the low-melting-point metal filled in the inner terminal body 62 also serving as a heat storage device is used. Is melted, and the heat generated by the PTC element body 62 due to the heat of fusion is stored. Further, since the heat dissipating body 65 includes a large number of heat dissipating fins 65a, the heat absorbed by the inner terminal body 62 also serving as a heat accumulator is released more efficiently than the heat dissipating fin 65a.

【0081】このように構成した本第2実施形態の3個
の限流器60,60,60の取り付け穴63b,63
b,63bを上述の第1実施形態において説明したMC
CB(遮断器)100(図4参照)の電源側端子102
X,102Y,102Zにそれぞれ取り付けてねじ止め
し、3個の限流器60,60,60の取り付け穴62
b,62b,62bを電源側の電線X,Y,Zにそれぞ
れ取り付けてねじ止めすることにより、電源側の電線
X,Y,ZとMCCB(遮断器)100とが各限流器6
0,60,60を介して接続される。これにより、各相
毎に限流器60を備えたMCCB(遮断器)100が電
路に接続される。なお、このMCCB(遮断器)100
の動作は上述した第1実施形態と同様であるのでその説
明は省略する。
The mounting holes 63 b, 63 of the three current limiting devices 60, 60, 60 of the second embodiment configured as described above.
b and 63b are the MCs described in the first embodiment.
Power supply side terminal 102 of CB (breaker) 100 (see FIG. 4)
X, 102Y, and 102Z, respectively, and screwed, and the mounting holes 62 of the three current limiters 60, 60, 60
b, 62b, and 62b are respectively attached to the electric wires X, Y, and Z on the power supply side and screwed, so that the electric wires X, Y, and Z on the power supply side and the MCCB (circuit breaker) 100
0, 60, and 60. Thereby, MCCB (breaker) 100 provided with current limiter 60 for each phase is connected to the electric circuit. The MCCB (circuit breaker) 100
Are the same as those in the first embodiment described above, and the description thereof is omitted.

【0082】以上で述べたように、本実施形態2におい
てはPTC素子を断面コ字状の半角筒状に形成して半角
筒状PTC素子体61とし、この半角筒状PTC素子体
61の外表面に断面コ字状で半角筒状の外側端子体63
を固着するとともに半角筒状PTC素子体61の内表面
に蓄熱材からなる蓄熱器兼用の内側端子体62を固着す
ると、半角筒状PTC素子体61のコ字状の断面に対し
て垂直方向に通電されるため、定常時の定格電流が流れ
る状態においては通電抵抗が減少して電力損失が減少す
る。
As described above, in the second embodiment, the PTC element is formed in the shape of a half-width cylinder having a U-shaped cross section to form the half-width cylindrical PTC element body 61. The outer terminal body 63 having a U-shaped cross section and a half-angle cylindrical shape on the surface.
When the inner terminal body 62 made of a heat storage material and also serving as a heat storage material is fixed to the inner surface of the half-sized cylindrical PTC element body 61, Since the power is supplied, the current-carrying resistance is reduced and the power loss is reduced in a state where the rated current in the steady state flows.

【0083】また、PTC素子体61が発熱した熱は蓄
熱器兼用の内側端子体62の3面から熱伝導するように
なるため、発熱したPTC素子体61の熱を効率よく吸
収することが可能となる。このため、PTC素子体61
に長時間にわたって過電流領域における過負荷電流が流
れてPTC素子体61が発熱しても、この熱は逐次、蓄
熱器兼用の内側端子体62に吸収されるとともに蓄熱器
兼用の内側端子体62に吸収された熱は放熱体65より
放出されるので、PTC素子体61に過電流領域におけ
る過負荷電流が流れてもPTC素子体61が抵抗転移温
度に達することが防止できるようになる。
The heat generated by the PTC element body 61 is conducted from the three surfaces of the inner terminal body 62 also serving as a heat accumulator, so that the heat of the heated PTC element body 61 can be efficiently absorbed. Becomes Therefore, the PTC element body 61
Even if an overload current in the overcurrent region flows for a long time and the PTC element body 61 generates heat, this heat is successively absorbed by the inner terminal body 62 also serving as a regenerator and the inner terminal body 62 also serving as a regenerator. Since the heat absorbed by the PTC element 61 is released from the heat radiator 65, the PTC element 61 can be prevented from reaching the resistance transition temperature even if an overload current in the overcurrent region flows through the PTC element 61.

【0084】一方、限流器60のPTC素子体61に短
絡電流が流れると、そのジュール熱によりPTC素子体
61は発熱する。すると、この発熱によりPTC素子体
61が抵抗転移温度(Tc=200〜240℃)に達す
ると、PTC素子体61の抵抗率(ρ)は最大値(ρm
ax)となり、PTC素子体61は短絡電流を抑制(限
流)するようになる。
On the other hand, when a short-circuit current flows through the PTC element 61 of the current limiter 60, the PTC element 61 generates heat due to the Joule heat. Then, when the PTC element 61 reaches the resistance transition temperature (Tc = 200 to 240 ° C.) due to this heat generation, the resistivity (ρ) of the PTC element 61 becomes the maximum value (ρm).
ax), and the PTC element 61 suppresses (limits current) the short-circuit current.

【0085】なお、蓄熱材からなる蓄熱器兼用の内側端
子体62は銅、錫、鉛等よりなる熱容量の大きな金属体
により構成してもよい。この場合、蓄熱器兼用の内側端
子体62の製造が容易になって、安価に製造できるよう
になる。
The inner terminal body 62 made of a heat storage material and also serving as a heat storage device may be made of a metal body having a large heat capacity, such as copper, tin, or lead. In this case, the manufacturing of the inner terminal body 62 also serving as a heat storage device is facilitated, and the manufacturing can be performed at low cost.

【0086】実施形態3 図11は本発明のPTC素子を用いた限流器の第3実施
形態の概略を示す斜視図である。図11の第3実施形態
のPTC素子を用いた限流器70は、PTC素子を円筒
状に形成して円筒状PTC素子体71としたものを使用
している。PTC素子として上述した第1実施形態およ
び第2実施形態と同様にクリストバライト系セラミック
スが好ましい。
Third Embodiment FIG. 11 is a perspective view schematically showing a third embodiment of a current limiter using a PTC element of the present invention. The current limiting device 70 using the PTC element of the third embodiment shown in FIG. 11 uses a PTC element formed in a cylindrical shape to form a cylindrical PTC element body 71. As the PTC element, a cristobalite-based ceramic is preferable as in the first and second embodiments described above.

【0087】この円筒状PTC素子体71の内表面には
長手方向に突出部73aを備えた円柱状内側端子体73
を接着剤による接着、ロウ付けあるいは溶接して固着
し、円筒状PTC素子体71と円柱状内側端子体73と
を電気的に接続している。なお、内側端子体73は銅、
アルミニウム、ステンレス等の導電性が良好な金属を円
柱状に形成している。また、突出部73aには取り付け
孔73bを設けている。
On the inner surface of the cylindrical PTC element 71, a cylindrical inner terminal 73 having a projection 73a in the longitudinal direction is provided.
Are fixed by bonding, brazing or welding with an adhesive, and the cylindrical PTC element body 71 and the cylindrical inner terminal body 73 are electrically connected. The inner terminal body 73 is made of copper,
A metal having good conductivity such as aluminum or stainless steel is formed in a columnar shape. The projection 73a is provided with a mounting hole 73b.

【0088】円筒状PTC素子体71の外表面には蓄熱
材からなる円筒状蓄熱器72を接着剤による接着、ロウ
付けあるいは溶接して固着している。この蓄熱材からな
る円筒状蓄熱器72は上述した第1実施形態と同様の低
融点合金を用い、この低融点合金を銅、アルミニウム、
ステンレス等の熱伝導性が良好で導電性が良好な金属か
らなる容器内に充填して密閉形成している。
A cylindrical heat storage 72 made of a heat storage material is fixed to the outer surface of the cylindrical PTC element 71 by bonding, brazing or welding with an adhesive. The cylindrical heat accumulator 72 made of the heat accumulating material uses the same low melting point alloy as in the first embodiment described above.
It is filled and sealed in a container made of metal having good thermal conductivity and good conductivity such as stainless steel.

【0089】円筒状蓄熱器72の外表面にはその長手方
向に突出部74bを備えた熱伝導性が良好な材料からな
る円筒状放熱体兼用の外側端子体74を接着剤による接
着、ロウ付けあるいは溶接して固着している。なお、円
筒状放熱体兼用の外側端子体74の外表面には多数の放
熱フィン74aを形成している。また、突出部74bに
は取り付け穴74cを設けている。この円筒状放熱体兼
用の外側端子体74は熱伝導性が良好なアルミニウム合
金から形成しており、この外表面は絶縁体が被着されて
いる。
The outer surface of the cylindrical heat accumulator 72 is provided with a cylindrical heat radiator outer terminal 74 having a protruding portion 74b in the longitudinal direction and made of a material having good thermal conductivity, which is bonded and brazed with an adhesive. Or it is fixed by welding. A large number of radiating fins 74a are formed on the outer surface of the outer terminal body 74, which also serves as a cylindrical radiator. The projection 74b is provided with a mounting hole 74c. The outer terminal body 74 also serving as a cylindrical heat radiator is formed of an aluminum alloy having good thermal conductivity, and an outer surface thereof is covered with an insulator.

【0090】このように構成した本第3実施形態の3個
の限流器70,70,70の取り付け穴73b,73
b,73bを上述の第1実施形態において説明したMC
CB(遮断器)100(図4参照)の電源側端子102
X,102Y,102Zにそれぞれ取り付けてねじ止め
し、3個の限流器70,70,70の取り付け穴74
c,74c,74cを電源側の電線X,Y,Zにそれぞ
れ取り付けてねじ止めすることにより、電源側の電線
X,Y,ZとMCCB(遮断器)100とが各限流器7
0,70,70を介して接続される。これにより、各相
毎に限流器70を備えたMCCB(遮断器)100が電
路に接続される。なお、このMCCB(遮断器)100
の動作は上述した第1実施形態と同様であるのでその説
明は省略する。
The mounting holes 73 b, 73 of the three current limiting devices 70, 70, 70 of the third embodiment having the above-described configuration are described.
b, 73b are the MCs described in the first embodiment.
Power supply side terminal 102 of CB (breaker) 100 (see FIG. 4)
X, 102Y, and 102Z, respectively, and screwed to fix the mounting holes 74 of the three current limiters 70, 70, 70.
By attaching the screws c, 74c, 74c to the electric wires X, Y, Z on the power supply side and screwing them, the electric wires X, Y, Z on the power supply side and the MCCB (breaker) 100
0, 70, 70. Thereby, MCCB (breaker) 100 provided with current limiter 70 for each phase is connected to the electric circuit. The MCCB (circuit breaker) 100
Are the same as those in the first embodiment described above, and the description thereof is omitted.

【0091】このように構成した本第3実施形態の限流
器70は、PTC素子を円筒状に形成して円筒状PTC
素子体71とし、この円筒状PTC素子体71の内表面
に円柱状内側端子体73を固着するとともに円筒状PT
C素子体71の外表面に円筒状蓄熱器72と円筒状放熱
体兼用の外側端子体73とを固着しているので、円筒状
PTC素子体71の断面に対して径方向に通電される。
そのため、定常時の定格電流が流れる状態においては通
電抵抗が減少して電力損失が減少する。
The current limiting device 70 according to the third embodiment having the above-described configuration has a cylindrical PTC element in which the PTC element is formed in a cylindrical shape.
A cylindrical inner terminal body 73 is fixed to the inner surface of the cylindrical PTC element body 71 and a cylindrical PT
Since the cylindrical regenerator 72 and the outer terminal body 73 also serving as a cylindrical heat radiator are fixed to the outer surface of the C element body 71, electricity is supplied radially to the cross section of the cylindrical PTC element body 71.
Therefore, in a state where the rated current flows in a steady state, the conduction resistance decreases and the power loss decreases.

【0092】また、PTC素子体71が発熱した熱はそ
の外側の円筒状蓄熱器72に円周面全体から伝導するよ
うになるため、発熱したPTC素子体71の熱を効率よ
く吸収することが可能となる。このため、PTC素子体
71に長時間にわたって過電流領域における過負荷電流
が流れてPTC素子体71が発熱しても、この熱は逐
次、円筒状蓄熱器72に吸収されるとともに円筒状蓄熱
器72に吸収された熱はその外表面に多数の放熱フィン
74aを備えた円筒状放熱体兼用の外側端子体74より
放出されるので、PTC素子体71に過負荷電流が流れ
てもPTC素子体71が抵抗転移温度に達することが防
止できるようになる。
Further, since the heat generated by the PTC element body 71 is conducted from the entire circumferential surface to the cylindrical regenerator 72 on the outside thereof, the heat of the heated PTC element body 71 can be efficiently absorbed. It becomes possible. Therefore, even if an overload current in the overcurrent region flows through the PTC element body 71 for a long time and the PTC element body 71 generates heat, this heat is successively absorbed by the cylindrical heat storage 72 and the cylindrical heat storage Since the heat absorbed by the PTC element 72 is radiated from the outer terminal body 74 having a plurality of radiating fins 74a on its outer surface and also serving as a cylindrical heat radiator, even if an overload current flows through the PTC element body 71, the PTC element body 71 can be prevented from reaching the resistance transition temperature.

【0093】一方、限流器70のPTC素子体71に短
絡電流が流れると、そのジュール熱によりPTC素子体
71は発熱する。すると、この発熱によりPTC素子体
71が抵抗転移温度(Tc=200〜240℃)に達す
ると、PTC素子体71の抵抗率(ρ)は最大値(ρm
ax)となり、PTC素子体71は短絡電流を抑制(限
流)するようになる。
On the other hand, when a short-circuit current flows through the PTC element 71 of the current limiter 70, the PTC element 71 generates heat due to the Joule heat. Then, when the PTC element 71 reaches the resistance transition temperature (Tc = 200 to 240 ° C.) due to this heat generation, the resistivity (ρ) of the PTC element 71 becomes the maximum value (ρm).
ax), and the PTC element body 71 suppresses (limits current) the short-circuit current.

【0094】なお、蓄熱材からなる円筒状蓄熱器72は
銅、錫、鉛等よりなる熱容量の大きな金属体により構成
してもよい。この場合、円筒状蓄熱器72の製造が容易
になって、安価に製造できるようになる。
The cylindrical regenerator 72 made of a heat storage material may be made of a metal having a large heat capacity, such as copper, tin, or lead. In this case, the manufacture of the cylindrical regenerator 72 is facilitated, and the manufacture is possible at low cost.

【0095】実施形態4 図12は本発明のPTC素子を用いた限流器の第4実施
形態の概略を示す斜視図である。図12の第2実施形態
のPTC素子を用いた限流器80は、板状に成形したP
TC素子板81,82を2枚使用している。PTC素子
としては上述した第1実施形態と同様にクリストバライ
ト系セラックスが好ましい。
Fourth Embodiment FIG. 12 is a perspective view schematically showing a current limiter using a PTC element according to a fourth embodiment of the present invention. A current limiter 80 using the PTC element of the second embodiment shown in FIG.
Two TC element plates 81 and 82 are used. As the PTC element, a cristobalite-based cerax is preferable as in the first embodiment described above.

【0096】このPTC素子板81,82は、長手方向
に突出部83aを備え、中央部に高さ方向に断面三角形
状に突起した突起部83bを形成した蓄熱材からなる蓄
熱器兼用の下側端子体83の突出部83bの両傾斜面に
接着剤による接着、ロウ付けあるいは溶接して固着し、
PTC素子体81,82と下側端子体83とを電気的お
よび熱的に接続している。この蓄熱器兼用の下側端子体
83は銅、アルミニウム、ステンレス等の金属からなる
容器内に低融点金属(例えば、上述の実施形態1と同様
に、鉛ー錫合金あるいははんだ等よりなる)を充填して
密閉形成している。なお、突出部83aには取り付け穴
83cを設けている。
Each of the PTC element plates 81 and 82 has a protruding portion 83a in the longitudinal direction and a lower portion also serving as a regenerator made of a heat storage material having a protruding portion 83b protruding in a height direction in a triangular cross section in the center. Adhesion with an adhesive, brazing or welding is fixed to both inclined surfaces of the projecting portion 83b of the terminal body 83,
The PTC element bodies 81 and 82 and the lower terminal body 83 are electrically and thermally connected. The lower terminal body 83 also serving as a heat storage unit is provided with a low melting point metal (for example, a lead-tin alloy or a solder as in the first embodiment) in a container made of a metal such as copper, aluminum, and stainless steel. Filled and sealed. The projection 83a is provided with a mounting hole 83c.

【0097】このPTC素子板81,82を固着した下
側端子体83の上部には、長手方向に突出部84aを備
え、中央部に高さ方向に断面三角形状の溝部84bを形
成した蓄熱材からなる蓄熱器兼用の上側端子体84が配
設されている。この上側端子体84の断面三角形状の溝
部84bの両傾斜面にPTC素子板81,82を間にし
て、これらの下側端子体83と上側端子体84を接着剤
による接着、ロウ付けあるいは溶接して固着し、上側端
子体84と下側端子体83は電気的および熱的に接続し
ている。この蓄熱材からなる蓄熱器兼用の上側端子体8
4は、導電性が良好で熱伝導性が良好な銅、アルミニウ
ム、ステンレス等の金属からなる容器内に低融点金属
(例えば、上述の実施形態1と同様に、鉛ー錫合金ある
いははんだ等よりなる)を充填して密閉形成している。
また、突出部84aには取り付け穴84cを設けてい
る。
A heat storage material provided with a protruding portion 84a in the longitudinal direction at the upper portion of the lower terminal body 83 to which the PTC element plates 81 and 82 are fixed, and a groove 84b having a triangular cross section in the center in the height direction. An upper terminal body 84 also serving as a regenerator is provided. With the PTC element plates 81 and 82 interposed between both inclined surfaces of the groove portion 84b having a triangular cross section of the upper terminal body 84, the lower terminal body 83 and the upper terminal body 84 are bonded, brazed or welded with an adhesive. The upper terminal body 84 and the lower terminal body 83 are electrically and thermally connected. Upper terminal body 8 made of this heat storage material and also serving as a heat storage device.
In a container 4 made of a metal such as copper, aluminum or stainless steel having good conductivity and good heat conductivity, a low-melting point metal (for example, a lead-tin alloy or a solder ) Is sealed.
The projection 84a is provided with a mounting hole 84c.

【0098】下側端子体83と上側端子体84を固着し
た後、これらの周囲は耐熱性良好な絶縁シート(図示せ
ず)が接着剤により被覆される。絶縁シートにより被覆
された蓄熱器兼用の上側端子体84の上部には複数の放
熱フィン85aを備えた放熱体85を接着剤により固着
している。なお、放熱体85は熱伝導性が良好なアルミ
ニウム合金より形成している。
After the lower terminal body 83 and the upper terminal body 84 are fixed, the periphery thereof is covered with an insulating sheet (not shown) having good heat resistance with an adhesive. A heat dissipator 85 having a plurality of heat dissipating fins 85a is fixed to the upper part of the upper terminal 84 also serving as a heat accumulator, which is covered with an insulating sheet, with an adhesive. The radiator 85 is made of an aluminum alloy having good thermal conductivity.

【0099】本第4実施形態の限流器80は、板状に成
形したPTC素子板81,82を中央部に高さ方向に断
面三角形状の突起部82bを形成した蓄熱材からなる蓄
熱器兼用の下側端子体83の突起部83bの傾斜面の両
面に固着し、これらの上に中央部に高さ方向に断面三角
形状の溝部84bを形成した蓄熱材からなる蓄熱器兼用
の上側端子体84が配設されて、これらの両端子体8
3,84が一体的に固着されるので、PTC素子板8
1,82の通電方向がその厚み方向となる。
The current limiter 80 of the fourth embodiment is a heat accumulator made of a heat accumulator made of a plate-shaped PTC element plate 81, 82 and a projection 82b having a triangular cross section in the height direction at the center. An upper terminal also serving as a heat storage device, which is fixed to both surfaces of the inclined surface of the projecting portion 83b of the lower terminal body 83, and has a groove portion 84b having a triangular cross section in the center in the center thereof. A body 84 is provided, and these two terminal bodies 8 are provided.
3 and 84 are integrally fixed, so that the PTC element plate 8
1, 82 is the thickness direction.

【0100】このため、この限流器80の平面の面積を
一定した場合のPTC素子板81,82の通電抵抗を減
少させることが可能になる。また、蓄熱器兼用の両端子
体83,84はその内部に低融点金属を密閉して充填し
ているので、PTC素子板81,82 が発熱すると、こ
の蓄熱器兼用の両端子体83,84に充填された低融点
金属が溶融するようになって、その融解熱によりPTC
素子板81,82が発熱した熱を蓄熱するようになる。
また、放熱体85は多数の放熱フィン85aを備えてい
るので蓄熱器兼用の上側端子体84に吸収された熱は放
熱フィン85aより効率よく放出されるようになる。
Therefore, it is possible to reduce the conduction resistance of the PTC element plates 81 and 82 when the area of the plane of the current limiter 80 is constant. Further, since the low-melting-point metal is hermetically sealed in the interior of both terminal bodies 83 and 84, when the PTC element plates 81 and 82 generate heat, the two terminal bodies 83 and 84 also function as heat storage units. The low-melting point metal filled in the PTC melts, and the heat of fusion causes the PTC to melt.
The element plates 81 and 82 store the generated heat.
Further, since the heat dissipating body 85 has a large number of heat dissipating fins 85a, the heat absorbed by the upper terminal body 84, which also serves as a heat accumulator, is released more efficiently than the heat dissipating fins 85a.

【0101】このように構成した本第4実施形態の3個
の限流器80,80,80の取り付け穴84c,84
c,84cを上述の第1実施形態において説明したMC
CB(遮断器)100(図4参照)の電源側端子102
X,102Y,102Zにそれぞれ取り付けてねじ止め
し、3個の限流器80,80,80の取り付け穴83
c,83c,83cを電源側の電線X,Y,Zにそれぞ
れ取り付けてねじ止めすることにより、電源側の電線
X,Y,ZとMCCB(遮断器)100とが各限流器8
0,80,80を介して接続される。これにより、各相
毎に限流器80を備えたMCCB(遮断器)100が電
路に接続される。なお、このMCCB(遮断器)100
の動作は上述した第1実施形態と同様であるのでその説
明は省略する。
The mounting holes 84c, 84 of the three current limiting devices 80, 80, 80 according to the fourth embodiment having the above-described configuration are provided.
c and 84c are the MCs described in the first embodiment.
Power supply side terminal 102 of CB (breaker) 100 (see FIG. 4)
X, 102Y, and 102Z, respectively, and screwed to fix the mounting holes 83 of the three current limiters 80, 80, 80.
c, 83c, and 83c are respectively attached to the electric wires X, Y, and Z on the power supply side and screwed, so that the electric wires X, Y, and Z on the power supply side and the MCCB (breaker) 100 are connected to the respective current limiters 8.
0,80,80. Thereby, MCCB (breaker) 100 provided with current limiter 80 for each phase is connected to the electric circuit. The MCCB (circuit breaker) 100
Are the same as those in the first embodiment described above, and the description thereof is omitted.

【0102】変形例 上述の実施形態4においては、下側端子体83に1つの
突起部83bを設け、この突起部83bに嵌合する溝部
84bを上側端子体84に1つ設ける例について説明し
たが、突起部および溝部を複数個設けるようにしても良
い。本変形例においては、図13に示すように2つの突
起部と2つの溝部を設けるようにしたことに特徴があ
る。
Modification In the above-described fourth embodiment, an example has been described in which one projection 83b is provided on the lower terminal 83 and one groove 84b that fits into the projection 83b is provided on the upper terminal 84. However, a plurality of protrusions and grooves may be provided. This modification is characterized in that two projections and two grooves are provided as shown in FIG.

【0103】図13は実施形態4の変形例の概略を示す
斜視図である。図13の変形例のPTC素子を用いた限
流器90は、板状に成形したPTC素子板91,92,
93,94を4枚使用している。PTC素子としては上
述した第1実施形態と同様にクリストバライト系セラッ
クスが好ましい。
FIG. 13 is a perspective view schematically showing a modification of the fourth embodiment. A current limiting device 90 using the PTC element of the modification of FIG. 13 is a PTC element plate 91, 92,
93 and 94 are used. As the PTC element, a cristobalite-based cerax is preferable as in the first embodiment described above.

【0104】このPTC素子板91,92,93,94
は、長手方向に突出部95aを備え、高さ方向に断面三
角形状に突起した2つの突起部95b,95cを形成し
た蓄熱材からなる蓄熱器兼用の下側端子体95の突起部
95b,95cのそれぞれの両傾斜面に接着剤による接
着、ロウ付けあるいは溶接して固着し、各PTC素子板
91,92,93,94と下側端子体95とを電気的お
よび熱的に接続している。この蓄熱器兼用の下側端子体
95は銅、アルミニウム、ステンレス等の金属からなる
容器内に低融点金属(例えば、上述の実施形態1と同様
に、鉛ー錫合金あるいははんだ等よりなる)を充填して
密閉形成している。なお、突出部95aには取り付け穴
95dを設けている。
The PTC element plates 91, 92, 93, 94
The projections 95b, 95c of the lower terminal body 95 also serving as a heat storage device, which is provided with a projection 95a in the longitudinal direction and has two projections 95b, 95c projecting into a triangular cross section in the height direction. Are fixed to both inclined surfaces by bonding, brazing, or welding with an adhesive, and each of the PTC element plates 91, 92, 93, 94 and the lower terminal body 95 are electrically and thermally connected. . The lower terminal body 95 also serving as a heat storage unit is provided with a low-melting-point metal (for example, made of a lead-tin alloy or a solder as in the first embodiment) in a container made of a metal such as copper, aluminum, and stainless steel. Filled and sealed. The projection 95a is provided with a mounting hole 95d.

【0105】このPTC素子板91,92,93,94
を固着した下側端子体95の上部には、長手方向に突出
部96aを備え、高さ方向に断面三角形状の2つの溝部
96b,96cを形成した蓄熱材からなる蓄熱器兼用の
上側端子体96が配設されている。この上側端子体96
の断面三角形状の2つの溝部96b,96cのそれぞれ
の両傾斜面にPTC素子板91,92,93,94を間
にして、これらの下側端子体95と上側端子体96を接
着剤による接着、ロウ付けあるいは溶接して固着し、上
側端子体95と下側端子体96は電気的および熱的に接
続している。この蓄熱材からなる蓄熱器兼用の上側端子
体96は、導電性が良好で熱伝導性が良好な銅、アルミ
ニウム、ステンレス等の金属からなる容器内に低融点金
属(例えば、上述の実施形態1と同様に、鉛ー錫合金あ
るいははんだ等よりなる)を充填して密閉形成してい
る。また、突出部96aには取り付け穴96dを設けて
いる。
The PTC element plates 91, 92, 93, 94
An upper terminal body also serving as a heat accumulator, comprising a heat storage material provided with a protrusion 96a in the longitudinal direction and formed with two grooves 96b and 96c having a triangular cross section in the height direction, on the upper part of the lower terminal body 95 to which is fixed. 96 are provided. This upper terminal body 96
The lower terminal body 95 and the upper terminal body 96 are bonded by an adhesive with the PTC element plates 91, 92, 93, 94 interposed between the respective inclined surfaces of the two grooves 96b, 96c having a triangular cross section. The upper terminal body 95 and the lower terminal body 96 are electrically and thermally connected. The upper terminal body 96 made of a heat storage material, which also serves as a heat storage device, is provided in a container made of a metal such as copper, aluminum, and stainless steel having good conductivity and good heat conductivity (for example, the first embodiment described above). (Made of lead-tin alloy or solder, etc.) in the same manner as described above. The projection 96a is provided with a mounting hole 96d.

【0106】下側端子体95と上側端子体96を固着し
た後、これらの周囲は耐熱性良好な絶縁シート(図示せ
ず)が接着剤により被覆される。絶縁シートにより被覆
された蓄熱器兼用の上側端子体96の上部には複数の放
熱フィン97aを備えた放熱体97を接着剤により固着
している。なお、放熱体97は熱伝導性が良好なアルミ
ニウム合金より形成している。
After the lower terminal body 95 and the upper terminal body 96 are fixed, the periphery thereof is covered with an insulating sheet (not shown) having good heat resistance with an adhesive. A heat radiator 97 having a plurality of heat radiating fins 97a is fixed to an upper portion of the upper terminal body 96 also serving as a heat accumulator, which is covered with an insulating sheet, with an adhesive. The heat radiator 97 is formed of an aluminum alloy having good thermal conductivity.

【0107】本変形例の限流器90は、実施形態4と同
様に、PTC素子板91,92,93,94の通電方向
がその厚み方向となる。このため、この限流器90の平
面の面積を一定した場合に、PTC素子板91,92,
93,94に生じる通電抵抗をさらに減少させることが
可能になる。
In the current limiting device 90 of the present modification, as in the fourth embodiment, the direction of conduction of the PTC element plates 91, 92, 93, 94 is the thickness direction. Therefore, when the area of the plane of the current limiter 90 is constant, the PTC element plates 91, 92,
It is possible to further reduce the current-carrying resistance generated in 93 and 94.

【0108】このように構成した本変形例の3個の限流
器90,90,90の取り付け穴96d,96d,96
dを上述の第1実施形態において説明したMCCB(遮
断器)100(図4参照)の電源側端子102X,10
2Y,102Zにそれぞれ取り付けてねじ止めし、3個
の限流器90,90,90の取り付け穴95d,95
d,95dを電源側の電線X,Y,Zにそれぞれ取り付
けてねじ止めすることにより、電源側の電線X,Y,Z
とMCCB(遮断器)100とが各限流器90,90,
90を介して接続される。これにより、各相毎に限流器
90を備えたMCCB(遮断器)100が電路に接続さ
れる。なお、このMCCB(遮断器)100の動作は上
述した第1実施形態と同様であるのでその説明は省略す
る。
The three current limiting devices 90, 90, 90 of the present modified example thus configured have the mounting holes 96d, 96d, 96 respectively.
d is the power supply side terminals 102X, 10 of the MCCB (circuit breaker) 100 (see FIG. 4) described in the first embodiment.
2Y and 102Z, respectively, and screwed, and mounting holes 95d, 95 of three current limiting devices 90, 90, 90
d and 95d are respectively attached to the electric wires X, Y and Z on the power supply side and screwed, so that the electric wires X, Y and Z on the power supply side are attached.
And the MCCB (breaker) 100 are each of the current limiters 90, 90,
90. Thereby, MCCB (breaker) 100 provided with current limiter 90 for each phase is connected to the electric circuit. The operation of the MCCB (circuit breaker) 100 is the same as that of the above-described first embodiment, and a description thereof will be omitted.

【0109】以上で述べたように、本実施形態およびそ
の変形例においては、板状に成形したPTC素子板8
1,82(または91,92,93,94)を複数枚用
いているので、これらのPTC素子板81,82(また
は91,92,93,94)を両端子板83,84(ま
たは95,96)の間に固着しているので、各PTC素
子板の厚み方向に通電され、定常時の定格電流が流れる
状態においては通電抵抗が減少して電力損失が減少す
る。
As described above, in the present embodiment and its modifications, the PTC element plate 8
1, 82 (or 91, 92, 93, 94), these PTC element plates 81, 82 (or 91, 92, 93, 94) are connected to both terminal plates 83, 84 (or 95, 96), current is supplied in the thickness direction of each PTC element plate, and when a rated current flows in a steady state, the current-carrying resistance is reduced and power loss is reduced.

【0110】一方、限流器80(または90)に短絡電
流が流れると、そのジュール熱によりPTC素子板8
1,82(または91,92,93,94)は発熱す
る。すると、この発熱によりPTC素子板81,82
(または91,92,93,94)が抵抗転移温度(T
c=200〜240℃)に達すると、PTC素子体81
の抵抗率(ρ)は最大値(ρmax)となり、PTC素
子板81,82(または91,92,93,94)は短
絡電流を抑制(限流)するようになる。
On the other hand, when a short-circuit current flows through current limiter 80 (or 90), the PTC element plate 8
1, 82 (or 91, 92, 93, 94) generates heat. Then, the PTC element plates 81, 82 are generated by this heat generation.
(Or 91, 92, 93, 94) is the resistance transition temperature (T
c = 200-240 ° C.), the PTC element 81
Has a maximum value (ρmax), and the PTC element plates 81 and 82 (or 91, 92, 93 and 94) suppress (short-circuit) the short-circuit current.

【0111】また、PTC素子板81,82(または9
1,92,93,94)が発熱した熱は蓄熱器兼用の両
端子体83,84(または95,96)から熱伝導する
ようになるため、発熱したPTC素子体81の熱を効率
よく吸収することが可能となる。このため、PTC素子
板81,82(または91,92,93,94)に長時
間にわたって過電流領域における過負荷電流が流れてP
TC素子板81,82(または91,92,93,9
4)が発熱しても、この熱は逐次、蓄熱器兼用の両端子
体83,84(または95,96)に吸収されるととも
に蓄熱器兼用の上側端子体84(または96)に吸収さ
れた熱は放熱体85(または97)より放出されるの
で、PTC素子板81,82(または91,92,9
3,94)に過電流領域における過負荷電流が流れても
PTC素子板81,82(または91,92,93,9
4)が抵抗転移温度に達することが防止できるようにな
る。
The PTC element plates 81 and 82 (or 9
1, 92, 93, and 94) conduct heat from the two terminals 83 and 84 (or 95 and 96) which also serve as heat accumulators, so that the heat of the heated PTC element 81 can be efficiently absorbed. It is possible to do. Therefore, the overload current in the overcurrent region flows through the PTC element plates 81, 82 (or 91, 92, 93, 94) for a long time, and
TC element plates 81, 82 (or 91, 92, 93, 9)
Even if 4) generates heat, this heat is successively absorbed by the two terminals 83 and 84 (or 95 and 96) also serving as a heat storage device and is also absorbed by the upper terminal member 84 (or 96) also serving as a heat storage device. Since heat is released from the radiator 85 (or 97), the PTC element plates 81, 82 (or 91, 92, 9) are used.
3 and 94), the PTC element plates 81 and 82 (or 91, 92, 93 and 9) even if an overload current in the overcurrent region flows.
4) can be prevented from reaching the resistance transition temperature.

【0112】なお、蓄熱材からなる蓄熱器兼用の両端子
体83,84(または95,96)は銅、錫、鉛等より
なる熱容量の大きな金属体により構成してもよい。この
場合、蓄熱器兼用の両端子体83,84(または95,
96)の製造が容易になって、安価に製造できるように
なる。
The two terminals 83 and 84 (or 95 and 96) which are also used as a heat storage device made of a heat storage material may be made of a metal material having a large heat capacity such as copper, tin or lead. In this case, the two terminals 83 and 84 (or 95,
96) can be easily manufactured and can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態のPTC素子を用いた
限流器の概略を示す斜視図である。
FIG. 1 is a perspective view schematically showing a current limiter using a PTC element according to a first embodiment of the present invention.

【図2】 図1の蓄熱器の一例を示す図である。FIG. 2 is a diagram showing an example of a heat storage device of FIG.

【図3】 本発明に用いるPTC素子の温度−抵抗率特
性の一例を示す図である。
FIG. 3 is a diagram showing an example of a temperature-resistivity characteristic of a PTC element used in the present invention.

【図4】 本発明の遮断器の外形を示す正面図である。FIG. 4 is a front view showing the outer shape of the circuit breaker of the present invention.

【図5】 本発明の第1実施形態のPTC素子を用いた
限流器の第1変形例の概略を示す斜視図である。
FIG. 5 is a perspective view schematically showing a first modification of the current limiter using the PTC element according to the first embodiment of the present invention.

【図6】 本発明の第1実施形態のPTC素子を用いた
限流器の第2変形例の概略を示す斜視図である。
FIG. 6 is a perspective view schematically showing a second modification of the current limiter using the PTC element according to the first embodiment of the present invention.

【図7】 本発明の第1実施形態のPTC素子を用いた
限流器の第3変形例の概略を示す斜視図である。
FIG. 7 is a perspective view schematically showing a third modification of the current limiter using the PTC element according to the first embodiment of the present invention.

【図8】 本発明の第1実施形態のPTC素子を用いた
限流器の第4変形例の概略を示す斜視図である。
FIG. 8 is a perspective view schematically showing a fourth modification of the current limiter using the PTC element according to the first embodiment of the present invention.

【図9】 図1および図8の各部品の配置構成の変形例
を示す図である。
FIG. 9 is a diagram showing a modification of the arrangement configuration of each component in FIGS. 1 and 8;

【図10】 本発明の第2実施形態のPTC素子を用い
た限流器の概略を示す斜視図である。
FIG. 10 is a perspective view schematically showing a current limiter using a PTC element according to a second embodiment of the present invention.

【図11】 本発明の第3実施形態のPTC素子を用い
た限流器の概略を示す斜視図である。
FIG. 11 is a perspective view schematically showing a current limiter using a PTC element according to a third embodiment of the present invention.

【図12】 本発明の第4実施形態のPTC素子を用い
た限流器の概略を示す斜視図である。
FIG. 12 is a perspective view schematically showing a current limiter using a PTC element according to a fourth embodiment of the present invention.

【図13】 本発明の第4実施形態のPTC素子を用い
た限流器の変形例の概略を示す斜視図である。
FIG. 13 is a perspective view schematically showing a modification of the current limiter using the PTC element according to the fourth embodiment of the present invention.

【図14】 MCCB(遮断器)の動作特性を示す図で
ある。
FIG. 14 is a diagram showing operating characteristics of an MCCB (circuit breaker).

【図15】 従来例の限流器の一例を示す図である。FIG. 15 is a diagram showing an example of a conventional current limiting device.

【符号の説明】[Explanation of symbols]

10…限流器、11…PTC素子板、12…上部端子
板、13…下部端子板、14…蓄熱器、16…放熱体、
20…限流器、21…PTC素子板、22…蓄熱器兼用
の上部端子板、23…下部端子板、25…放熱体、30
…限流器、31…PTC素子板、32…蓄熱器および放
熱体兼用の上部端子板、33…下部端子板、40…限流
器、41…PTC素子板、42…蓄熱器兼用の上部端子
板、43…蓄熱器兼用の下部端子板、46,47…放熱
体、50…限流器、51…PTC素子板、52…蓄熱器
兼用の上部端子板、53…下部端子板、55…放熱体、
60…限流器、61…半角筒状のPTC素子体、62…
蓄熱器兼用の内側端子体、63…半角筒状の外側端子
体、65…放熱体、70…限流器、71…円筒状PTC
素子体、72…円筒状蓄熱器、73…円柱状内側端子
体、74…円筒状放熱体兼用の外側端子体、80…限流
器、81,82…PTC素子板、83…蓄熱器兼用の下
側端子体、84…蓄熱器兼用の上側端子体、85…放熱
体、90…限流器、91,92,93,94…PTC素
子板、95…蓄熱器兼用の下側端子体、96…蓄熱器兼
用の上側端子体、97…放熱体、100…MCCB(遮
断器)、101…操作スイッチ、102X,102Y,
102Z…電源側端子
10: current limiter, 11: PTC element plate, 12: upper terminal plate, 13: lower terminal plate, 14: heat storage device, 16: heat dissipator,
Reference numeral 20: current limiter, 21: PTC element plate, 22: upper terminal plate also serving as a heat storage device, 23: lower terminal plate, 25: radiator, 30
... current limiter, 31 ... PTC element plate, 32 ... upper terminal plate also used as heat storage and radiator, 33 ... lower terminal plate, 40 ... current limiter, 41 ... PTC element plate, 42 ... upper terminal used also as heat storage Plate, 43: Lower terminal plate also serving as a heat storage device, 46, 47: Heat radiator, 50: Current limiting device, 51: PTC element plate, 52: Upper terminal plate also serving as a heat storage device, 53: Lower terminal plate, 55: Heat dissipation body,
Reference numeral 60: current limiter, 61: PTC element body having a half-width cylindrical shape, 62:
Inner terminal body also serving as heat storage unit, 63 ... Semicircular cylindrical outer terminal body, 65 ... Heat radiator, 70 ... Current limiter, 71 ... Cylindrical PTC
Element body, 72: cylindrical heat storage device, 73: cylindrical inner terminal body, 74: outer terminal body also serving as a cylindrical radiator, 80: current limiter, 81, 82: PTC element plate, 83: also serving as a heat storage device Lower terminal body, 84: upper terminal body also serving as a heat storage device, 85: radiator, 90: current limiter, 91, 92, 93, 94: PTC element plate, 95: lower terminal body also serving as a heat storage device, 96 ... Upper terminal body also serving as a heat storage unit, 97. Heat radiator, 100. MCCB (circuit breaker), 101. Operation switch, 102X, 102Y,
102Z: Power supply side terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02H 9/02 H02H 9/02 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H02H 9/02 H02H 9/02 B

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 所定の抵抗転移温度になると急激にその
抵抗値が増大する正の抵抗温度係数を有するPTC素子
を電路に備えて同電路に短絡電流のような過電流が流れ
ることにより同PTC素子の温度が上昇してその温度が
前記所定の抵抗転移温度になると急激にその抵抗値が増
大して過電流を抑制するPTC素子を用いた限流器であ
って、 前記PTC素子は薄板状に形成されて、その薄板状平面
の一端が前記電路の電源側に接続され、その薄板状平面
の他端が前記電路の負荷側に接続される薄板状PTC素
子板と、 前記薄板状PTC素子板に接触して配設されて同薄板状
PTC素子板に発生した熱を吸収して蓄熱する蓄熱材か
らなる蓄熱器と、 前記蓄熱器に接触して配設されて同蓄熱器に蓄熱された
熱を放熱する良熱伝導材からなる放熱体とを備えたこと
を特徴とするPTC素子を用いた限流器。
1. A PTC element having a positive temperature coefficient of resistance, whose resistance value increases rapidly when a predetermined resistance transition temperature is reached, is provided in an electric circuit, and an overcurrent such as a short-circuit current flows through the electric circuit, thereby causing the PTC element to have a high resistance. A current limiter using a PTC element that suppresses an overcurrent by rapidly increasing the resistance value when the temperature of the element rises and the temperature reaches the predetermined resistance transition temperature, wherein the PTC element has a thin plate shape. A thin PTC element plate, one end of which is connected to the power supply side of the electric circuit, and the other end of which is connected to the load side of the electric circuit; and A regenerator made of a heat storage material that is disposed in contact with the plate and absorbs heat generated in the thin plate-shaped PTC element plate and stores the heat; and a regenerator that is disposed in contact with the regenerator and stores heat in the regenerator. Radiator made of good heat conductive material that radiates heat And a current limiting device using a PTC element.
【請求項2】 前記薄板状PTC素子板の一方の面にそ
の一端が前記電路の電源側に接続される端子板を備える
とともに、前記薄板状PTC素子板の他方の面にその一
端が前記電路の負荷側に接続される端子板を備えるよう
にしたことを特徴とする請求項1に記載のPTC素子を
用いた限流器。
2. A thin plate-like PTC element plate having a terminal plate having one end connected to a power supply side of the electric circuit on one surface, and one end formed on the other surface of the thin PTC element plate with the electric circuit. 2. A current limiter using a PTC element according to claim 1, further comprising a terminal plate connected to the load side of the PTC element.
【請求項3】 前記蓄熱器は金属製の容器内に充填され
る低融点金属を密閉して構成されるとともに、前記放熱
体は多数の放熱フィンを備えるようにしたことを特徴と
する請求項1または請求項2に記載のPTC素子を用い
た限流器。
3. The heat storage device according to claim 1, wherein the low-melting point metal filled in a metal container is hermetically sealed, and the radiator includes a plurality of radiating fins. A current limiter using the PTC element according to claim 1.
【請求項4】 前記端子板と前記蓄熱器とを一体的に形
成して蓄熱器兼用の端子板とするとともに、この一体的
に形成された蓄熱器兼用の端子板を前記薄板状PTC素
子板の両面にそれぞれ接続したことを特徴とする請求項
2または請求項3に記載のPTC素子を用いた限流器。
4. The terminal plate and the heat storage device are integrally formed to form a terminal plate also serving as a heat storage device, and the integrally formed terminal plate also serving as a heat storage device is connected to the thin plate-shaped PTC element plate. 4. A current limiting device using a PTC element according to claim 2, wherein the current limiting device is connected to both surfaces of the current limiting device.
【請求項5】 前記端子板と前記蓄熱器と前記放熱体と
を一体的に形成して蓄熱器および放熱体兼用の端子板と
するとともに、この一体的に形成された蓄熱器および放
熱体兼用の端子板を前記薄板状PTC素子板の少なくと
も一方の面に接続したことを特徴とする請求項2または
請求項3に記載のPTC素子を用いた限流器。
5. The terminal plate, the heat accumulator, and the heat radiator are integrally formed to form a terminal plate which also serves as a heat accumulator and a heat radiator, and the integrally formed heat accumulator and heat radiator are also used. 4. A current limiting device using a PTC element according to claim 2, wherein said terminal plate is connected to at least one surface of said thin PTC element plate.
【請求項6】 前記薄板状PTC素子板、前記端子板、
前記蓄熱器および前記放熱体のそれぞれの平面形状がそ
れぞれ同形の四角形状になるように形成して前記限流器
全体として略角柱状に形成したことを特徴とする請求項
2から請求項5のいずれかに記載のPTC素子を用いた
限流器。
6. The thin PTC element plate, the terminal plate,
6. The current limiter according to claim 2, wherein each of the heat accumulator and the heat radiator is formed so that each planar shape thereof is the same square shape, and the entire current limiting device is formed in a substantially prismatic shape. A current limiter using the PTC element according to any one of the above.
【請求項7】 前記薄板状PTC素子板、前記端子板、
前記蓄熱器および前記放熱体のそれぞれの平面形状がそ
れぞれ同径の円形状になるように形成して前記限流器全
体として略円柱状に形成したことを特徴とする請求項2
から請求項5のいずれかに記載のPTC素子を用いた限
流器。
7. The thin PTC element plate, the terminal plate,
3. The current limiting device according to claim 2, wherein each of the heat accumulator and the heat radiator is formed to have a circular shape having the same diameter, and the entire current limiting device is formed in a substantially columnar shape.
A current limiter using the PTC element according to any one of claims 1 to 5.
【請求項8】 所定の抵抗転移温度になると急激にその
抵抗値が増大する正の抵抗温度係数を有するPTC素子
を電路に備えて同電路に短絡電流のような過電流が流れ
ることにより同PTC素子の温度が上昇してその温度が
前記所定の抵抗転移温度になると急激にその抵抗値が増
大して過電流を抑制するPTC素子を用いた限流器であ
って、 前記PTC素子を断面コ字状の半角筒状に形成して半角
筒状PTC素子体とし、 前記半角筒状PTC素子体の外表面に緊密に固着されて
同半角筒状PTC素子体に電気的に接続されるとともに
その長手方向に突出部を備えた断面コ字状で半角筒状の
外側端子体と、 前記半角筒状PTC素子体の内表面に緊密に固着されて
同半角筒状PTC素子体に電気的に接続されて同半角筒
状PTC素子体に発生した熱を吸収して蓄熱するととも
にその長手方向に突出部を備えた蓄熱材からなる蓄熱器
兼用の内側端子体と、 前記蓄熱器兼用の内側端子体に緊密に固着されて同蓄熱
器兼用の内側端子体に蓄熱された熱を放熱する良熱伝導
材からなる放熱体とを備えたことを特徴とするPTC素
子を用いた限流器。
8. A PTC element having a positive temperature coefficient of resistance, whose resistance value rapidly increases when a predetermined resistance transition temperature is reached, is provided in an electric circuit, and an overcurrent such as a short-circuit current flows through the electric circuit to cause the PTC element to have a positive temperature coefficient. A current limiter using a PTC element that suppresses an overcurrent by rapidly increasing the resistance value when the temperature of the element rises and the temperature reaches the predetermined resistance transition temperature. A half-width cylindrical PTC element body is formed into a half-width cylindrical PTC element body, and is tightly fixed to an outer surface of the half-width cylindrical PTC element body and is electrically connected to the same half-width cylindrical PTC element body. A semi-cylindrical outer terminal body having a U-shaped cross section provided with a protruding portion in a longitudinal direction, and an outer terminal body tightly fixed to an inner surface of the semi-cylindrical cylindrical PTC element body and electrically connected to the semi-circular cylindrical PTC element body Occurred on the same half-width cylindrical PTC element body An inner terminal body also serving as a heat accumulator, which is made of a heat accumulator and has a protruding portion in the longitudinal direction for absorbing heat and storing the heat; A current limiter using a PTC element, comprising: a heat radiator made of a good heat conductive material that radiates heat stored in the terminal body.
【請求項9】 前記外側端子体または前記蓄熱器兼内側
端子の前記突出部のどちらか一方は前記電路の電源側に
接続され、その他方は前記電路の負荷側に接続されると
ともに、 前記蓄熱器兼用の内側端子体は金属製の容器内に充填さ
れる低融点金属を密閉して構成され、 前記放熱体は多数の放熱フィンを備えるようにしたこと
を特徴とする請求項8に記載のPTC素子を用いた限流
器。
9. One of the outer terminal body and the protruding portion of the regenerator / inner terminal is connected to a power supply side of the electric circuit, and the other is connected to a load side of the electric circuit. 9. The device according to claim 8, wherein the inner terminal body serving also as a container is configured by hermetically sealing a low melting point metal filled in a metal container, and the heat radiator is provided with a large number of heat radiation fins. Current limiter using PTC element.
【請求項10】 所定の抵抗転移温度になると急激にそ
の抵抗値が増大する正の抵抗温度係数を有するPTC素
子を電路に備えて同電路に短絡電流のような過電流が流
れることにより同PTC素子の温度が上昇してその温度
が前記所定の抵抗転移温度になると急激にその抵抗値が
増大して過電流を抑制するPTC素子を用いた限流器で
あって、 前記PTC素子を円筒状に形成して円筒状PTC素子体
とし、 前記円筒状PTC素子体の内表面に緊密に固着されて同
円筒状PTC素子体に電気的に接続されるとともにその
長手方向に突出部を備えた円柱状内側端子体と、 前記円筒状PTC素子体の外表面に緊密に固着されて同
円筒状PTC素子体に電気的に接続されて同円筒状PT
C素子体に発生した熱を吸収して蓄熱する蓄熱材からな
る円筒状蓄熱器と、 前記円筒状蓄熱器に緊密に固着されて同円筒状蓄熱器に
電気的に接続されて同円筒状蓄熱器に蓄熱された熱を放
熱するとともにその長手方向に突出部を備えた良熱伝導
材からなる円筒状放熱体兼用の外側端子体とを備えたこ
とを特徴とするPTC素子を用いた限流器。
10. A PTC element having a positive temperature coefficient of resistance, whose resistance value rapidly increases when a predetermined resistance transition temperature is reached, is provided in an electric circuit, and an overcurrent such as a short-circuit current flows through the electric circuit to cause the PTC element to have a positive resistance temperature coefficient. A current limiter using a PTC element that suppresses an overcurrent by rapidly increasing the resistance value when the temperature of the element rises and the temperature reaches the predetermined resistance transition temperature, wherein the PTC element has a cylindrical shape. A cylindrical PTC element body, which is tightly fixed to the inner surface of the cylindrical PTC element body, is electrically connected to the cylindrical PTC element body, and has a protruding portion in the longitudinal direction thereof. A columnar inner terminal body; a cylindrical PTC element which is tightly fixed to an outer surface of the cylindrical PTC element body and is electrically connected to the cylindrical PTC element body;
A cylindrical heat accumulator made of a heat storage material that absorbs heat generated in the C element body and stores the heat; a cylindrical heat accumulator tightly fixed to the cylindrical heat accumulator and electrically connected to the cylindrical heat accumulator; Current limiter using a PTC element characterized by comprising a cylindrical heat radiator and an outer terminal body which is made of a good heat conductive material and has a protrusion in a longitudinal direction of the heat radiator. vessel.
【請求項11】 前記円筒状放熱体兼用の外側端子体ま
たは前記円柱状内側端子体の前記突出部のどちらか一方
は前記電路の電源側に接続され、その他方は前記電路の
負荷側に接続されるとともに、 前記円筒状蓄熱器は金属製の容器内に充填される低融点
金属を密閉して構成され、 前記円筒状放熱体兼用の外側端子体の外表面に多数の放
熱フィンを備えるようにしたことを特徴とする請求項1
0に記載のPTC素子を用いた限流器。
11. One of the outer terminal body serving also as the cylindrical heat radiator and the protruding portion of the cylindrical inner terminal body is connected to the power supply side of the electric circuit, and the other is connected to the load side of the electric circuit. In addition, the cylindrical regenerator is configured by hermetically sealing a low melting point metal filled in a metal container, and has a large number of radiating fins on an outer surface of the outer terminal body also serving as the cylindrical radiator. 2. The method according to claim 1, wherein
0. A current limiting device using the PTC element described in 0.
【請求項12】 所定の抵抗転移温度になると急激にそ
の抵抗値が増大する正の抵抗温度係数を有するPTC素
子を電路に備えて同電路に短絡電流のような過電流が流
れることにより同PTC素子の温度が上昇してその温度
が前記所定の抵抗転移温度になると急激にその抵抗値が
増大して過電流を抑制するPTC素子を用いた限流器で
あって、 前記PTC素子を板状に形成して複数枚のPTC素子板
とし、 その長手方向に突出部を備えるとともに高さ方向に断面
三角形状に突起した突起部を少なくとも1つ備え、前記
PTC素子板に発生した熱を吸収して蓄熱する蓄熱材か
らなる下側端子体と、 その長手方向に突出部を備えるとともに前記下側端子体
の突起部に嵌合する断面三角形状の溝部をその高さ方向
に少なくとも1つ備え、前記PTC素子板に発生した熱
を吸収して蓄熱する蓄熱材からなる上側端子体と、 前記上側端子体の上部に配設されて同上側端子体に蓄熱
された熱を放熱する良熱伝導材からなる放熱体とを備
え、 前記下側端子体の断面三角形状の突起部の傾斜面と同断
面三角形状の突起部に嵌合する前記上側端子体の断面三
角形状の溝部の傾斜面との間に前記PTC素子板を狭着
したことを特徴とするPTC素子を用いた限流器。
12. A PTC element having a positive temperature coefficient of resistance, whose resistance value rapidly increases when a predetermined resistance transition temperature is reached, is provided in an electric circuit, and an overcurrent such as a short-circuit current flows through the electric circuit to cause the PTC element to have a positive resistance temperature coefficient. A current limiter using a PTC element that suppresses an overcurrent by rapidly increasing the resistance value when the temperature of the element rises and the temperature reaches the predetermined resistance transition temperature, wherein the PTC element has a plate shape. To form a plurality of PTC element plates, each of which has a protrusion in the longitudinal direction and at least one protrusion having a triangular cross section in the height direction to absorb heat generated in the PTC element plate. A lower terminal body made of a heat storage material for storing heat, and having at least one groove having a triangular cross section in the height direction, the groove having a protrusion in the longitudinal direction thereof and being fitted to the protrusion of the lower terminal. The PTC An upper terminal body made of a heat storage material that absorbs heat generated in the element plate and stores the heat, and a good heat conductive material that is disposed above the upper terminal body and radiates heat stored in the upper terminal body. A heat radiator, between the inclined surface of the triangular cross-sectional projection of the lower terminal body and the inclined surface of the triangular cross-sectional groove of the upper terminal body fitted to the triangular cross-sectional projection. A current limiter using a PTC element, wherein the PTC element plate is narrowly attached.
【請求項13】 前記上側端子体または前記下側端子体
の前記突出部のどちらか一方は前記電路の電源側に接続
され、その他方は前記電路の負荷側に接続されるととも
に、 前記上側端子体および前記下側端子体は金属製の容器内
に充填される低融点金属を密閉して構成され、 前記放熱体の外表面に多数の放熱フィンを備えるように
したことを特徴とする請求項12に記載のPTC素子を
用いた限流器。
13. One of the protruding portions of the upper terminal body and the lower terminal body is connected to a power supply side of the electric circuit, and the other is connected to a load side of the electric circuit. The body and the lower terminal body are configured by hermetically sealing a low melting point metal filled in a metal container, and provided with a large number of radiating fins on an outer surface of the radiator. 13. A current limiter using the PTC element according to 12.
【請求項14】 前記PTC素子は常温抵抗率が小さく
かつ常温抵抗率に対する抵抗上昇率が大きいクリストバ
ライト系セラミックスであることを特徴とする請求項1
から請求項13のいずれかに記載のPTC素子を用いた
限流器。
14. The CTC element according to claim 1, wherein the PTC element is a cristobalite-based ceramic having a small room temperature resistivity and a large resistance increase with respect to the room temperature resistivity.
A current limiter using the PTC element according to any one of claims 1 to 13.
【請求項15】 電路に短絡電流のような過電流が流れ
ると温度上昇してその温度が所定の抵抗転移温度になる
と急激にその抵抗値が増大してこの過電流を抑制するP
TC素子を用いた限流器をその電源側に接続したPTC
素子を用いた限流器を備えた遮断器であって、 前記電路に定格電流以上の過負荷電流が流れる場合は前
記PTC素子は前記抵抗転移温度にならないようにする
とともに 前記電路に短絡電流のような過電流が流れる場合は前記
PTC素子は前記抵抗転移温度になってその過電流を抑
制するようにし、 前記電路に前記過電流あるいは前記過負荷電流が予め設
定された時間だけ継続して流れるとこれらの過電流ある
いは過負荷電流を遮断するようにしたことを特徴とする
PTC素子を用いた限流器を備えた遮断器。
15. When an overcurrent such as a short-circuit current flows through an electric circuit, the temperature rises, and when the temperature reaches a predetermined resistance transition temperature, the resistance value sharply increases to suppress the overcurrent.
PTC with current limiter using TC element connected to its power supply side
A circuit breaker provided with a current limiting device using an element, wherein when an overload current exceeding a rated current flows through the electric circuit, the PTC element is prevented from reaching the resistance transition temperature and a short-circuit current of When such an overcurrent flows, the PTC element reaches the resistance transition temperature to suppress the overcurrent, and the overcurrent or the overload current continuously flows in the electric circuit for a preset time. And a circuit breaker provided with a current limiter using a PTC element, wherein the overcurrent or the overload current is interrupted.
【請求項16】 請求項15に記載の限流器は請求項1
から請求項14のいずれかに記載の限流器であることを
特徴とするPTC素子を用いた限流器を備えた遮断器。
16. The current limiting device according to claim 15, wherein
A circuit breaker provided with a current limiter using a PTC element, which is the current limiter according to any one of claims 1 to 14.
JP7625697A 1996-11-21 1997-03-27 Current limiter employing ptc element and circuit breaker equipped with current limiter Pending JPH10208909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7625697A JPH10208909A (en) 1996-11-21 1997-03-27 Current limiter employing ptc element and circuit breaker equipped with current limiter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31092396 1996-11-21
JP8-310923 1996-11-21
JP7625697A JPH10208909A (en) 1996-11-21 1997-03-27 Current limiter employing ptc element and circuit breaker equipped with current limiter

Publications (1)

Publication Number Publication Date
JPH10208909A true JPH10208909A (en) 1998-08-07

Family

ID=26417413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7625697A Pending JPH10208909A (en) 1996-11-21 1997-03-27 Current limiter employing ptc element and circuit breaker equipped with current limiter

Country Status (1)

Country Link
JP (1) JPH10208909A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984552A2 (en) * 1998-08-31 2000-03-08 Asea Brown Boveri AG Power plant with a generator driven turbine and method for operating such a power plant
FR2891958A1 (en) * 2005-10-11 2007-04-13 Schneider Electric Ind Sas Current limiting device for circuit-breaker, has electrodes disposed on opposite parts more distant from positive temperature coefficient material element, and heat exchanger units exchanging heat with longitudinal part of element
EP1898475A1 (en) * 2006-09-05 2008-03-12 Nexans Resistive high temperature superconductor fault current limiter
JP2009290945A (en) * 2008-05-27 2009-12-10 Panasonic Electric Works Denro Co Ltd Distribution panel
JP2010110052A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Denro Co Ltd Distribution panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984552A2 (en) * 1998-08-31 2000-03-08 Asea Brown Boveri AG Power plant with a generator driven turbine and method for operating such a power plant
EP0984552A3 (en) * 1998-08-31 2002-07-24 Alstom Power plant with a generator driven turbine and method for operating such a power plant
FR2891958A1 (en) * 2005-10-11 2007-04-13 Schneider Electric Ind Sas Current limiting device for circuit-breaker, has electrodes disposed on opposite parts more distant from positive temperature coefficient material element, and heat exchanger units exchanging heat with longitudinal part of element
EP1898475A1 (en) * 2006-09-05 2008-03-12 Nexans Resistive high temperature superconductor fault current limiter
US7800871B2 (en) 2006-09-05 2010-09-21 Nexans Resistive high temperature superconductor fault current limiter
JP2009290945A (en) * 2008-05-27 2009-12-10 Panasonic Electric Works Denro Co Ltd Distribution panel
JP2010110052A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Denro Co Ltd Distribution panel

Similar Documents

Publication Publication Date Title
US10679814B2 (en) Surge protective device modules including integral thermal disconnect mechanisms and methods including same
US8780521B2 (en) Metal oxide varistor with built-in alloy-type thermal fuse
JP3609741B2 (en) Pack battery
US9355763B2 (en) Electronic protection component
EP0363746B2 (en) Overcurrent protection device for electrical networks and apparatuses
JP3416229B2 (en) Battery pack
US7532101B2 (en) Temperature protection device
US7038896B2 (en) Solid state motor protector
JPH10208909A (en) Current limiter employing ptc element and circuit breaker equipped with current limiter
KR20220065859A (en) How protection circuits, battery packs and protection circuits work
US11621138B2 (en) High-voltage fusing apparatus
KR20000038817A (en) Secondary lithium battery
JP2019009090A (en) Conductor with heat absorber and battery pack
JP3221860B2 (en) Secondary battery protection circuit
JPH10326554A (en) Current limiting device and/or circuit breaker equipped with ptc element
JPH11308763A (en) Current limiter with ptc element and circuit breaker with the current limiter
CN217485399U (en) Fuse, electronic device, and power module
CN210805903U (en) Battery pack
CN218482189U (en) Three-terminal fuse
JP4368039B2 (en) Thermal fuse having a self-heating element and a battery pack incorporating the thermal fuse
CN220604605U (en) Low-voltage protection quick fuse
JPH10270216A (en) Current limiter and wiring breaker
WO2021015154A1 (en) Protective element and protective circuit
JPH10271667A (en) Current limiter and breaker for wiring
JPS5841699Y2 (en) Protective devices for electrical equipment