JPH10206313A - Feeble light measuring apparatus, sample vessel and feeble light measuring system - Google Patents

Feeble light measuring apparatus, sample vessel and feeble light measuring system

Info

Publication number
JPH10206313A
JPH10206313A JP25672297A JP25672297A JPH10206313A JP H10206313 A JPH10206313 A JP H10206313A JP 25672297 A JP25672297 A JP 25672297A JP 25672297 A JP25672297 A JP 25672297A JP H10206313 A JPH10206313 A JP H10206313A
Authority
JP
Japan
Prior art keywords
sample
light
receiving
window
windows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25672297A
Other languages
Japanese (ja)
Inventor
Masao Makiuchi
正男 牧内
Katsuko Kakinuma
カツ子 柿沼
Takuo Shiraishi
卓夫 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI HIKARI JOHO KENKYUSHO K
SEITAI HIKARI JOHO KENKYUSHO KK
Original Assignee
SEITAI HIKARI JOHO KENKYUSHO K
SEITAI HIKARI JOHO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI HIKARI JOHO KENKYUSHO K, SEITAI HIKARI JOHO KENKYUSHO KK filed Critical SEITAI HIKARI JOHO KENKYUSHO K
Priority to JP25672297A priority Critical patent/JPH10206313A/en
Publication of JPH10206313A publication Critical patent/JPH10206313A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the feeble light with high accuracy in a feeble light measuring apparatus, a sample vessel and a feeble light measuring system used to measure the scattered feeble light. SOLUTION: A sample vessel 20 having a sample receiving part 21-1 to receive a measuring object sample and a sample receiving part 21-2 to receive a dummy sample, is arranged in an upper light shielding sample chamber 11 provided in a feeble light measuring apparatus 10, and the measuring light 100 and the background light 101-1 and 101-2 are emitted downward, and a light receiving circuit 30 having two light receiving elements 31-1 and 31-2 and a differential amplifier 32, is arranged in a light shielding light receiving chamber 12 partitioned by a light transmissive window 13, and the light shielding light receiving chamber 12 is put in a vacuum and at a very low temperature at measuring time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、散乱微弱光の測定
に用いられる微弱光測定器、試料容器、および微弱光測
定システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a weak light measuring instrument, a sample container, and a weak light measuring system used for measuring scattered weak light.

【0002】[0002]

【従来の技術】微弱光の検出技術は、生物学、医薬分
野、天文分野、食品栄養分野など広範囲な応用が期待さ
れている。特に、活性酸素の一つであり、特定の励起状
態に置かれた、いわゆる一重項酸素からの波長1μm帯
の微弱光検出が学術的にも応用面でも重要でありなが
ら、従来技術では困難であり、これを打破することが期
待されている。
2. Description of the Related Art Weak light detection technology is expected to be applied to a wide range of applications such as biology, medicine, astronomy, and food and nutrition. In particular, the detection of weak light in the 1 μm wavelength band from so-called singlet oxygen, which is one of active oxygen and placed in a specific excited state, is important in academic and application aspects, but is difficult with conventional techniques. Yes, it is expected to break this.

【0003】一重項酸素は生体防御において重要な役割
を持つと同時に、これが生体に悪影響を与える場合があ
り、一重項酸素を生成する物質および除去する物質の探
索が重要であり、そのようなことが可能な検出システム
が必要である。
[0003] While singlet oxygen plays an important role in host defense, it can also have an adverse effect on living organisms, and it is important to search for substances that produce and remove singlet oxygen. A detection system that can perform this is required.

【0004】[0004]

【発明が解決しようとする課題】微弱光の検出には、従
来、光電子倍増管(PMT)等が使用されていたが、光
電子倍増管は量子効率が数パーセント以下と小さく、ま
た電子管であるので寸法も大きく、また雑音を低減する
には冷却を必要とするがマイナス80度以下に冷却する
のは困難であり、問題があった。このような装置と一体
で、溶液状の被測定試料を保持する容器は、試料から出
る光が透過できる材料で作られた単なる容器であり、微
弱光を光検出器に効率良く導くことができない。
Conventionally, a photomultiplier tube (PMT) or the like has been used for detecting weak light. However, the photomultiplier tube has a small quantum efficiency of several percent or less and is an electron tube. The size is large, and cooling is required to reduce noise, but it is difficult to cool the temperature to minus 80 degrees or less, which is problematic. The container holding the sample to be measured, which is integrated with such an apparatus, is a mere container made of a material through which light emitted from the sample can pass, and cannot efficiently guide weak light to the photodetector. .

【0005】一重項酸素は、生体内で非常に重要な役割
を担っており、その検出には従来、複雑な化学的検出法
が多く採られていた。最近では光電子倍増管を使用した
システムで700〜800nmの波長の微弱光を検出で
きるようになったが、他の発光種からの光と完全に区別
できないため、1μm帯での発光を検出することの必要
性が指摘されていた。しかしながら、化学物質の混合で
作った一重項酸素での検討がなされている程度で、生体
モデル系や生体内での一重項酸素からの1μm帯発光は
測定されていない。
[0005] Singlet oxygen plays a very important role in living organisms, and its detection has conventionally employed many complicated chemical detection methods. Recently, a system using a photomultiplier tube has been able to detect weak light with a wavelength of 700 to 800 nm. However, since it cannot be completely distinguished from light from other luminescent species, it is necessary to detect luminescence in the 1 μm band. The necessity of was pointed out. However, only studies on singlet oxygen made by mixing chemical substances have been made, and no emission in the 1 μm band from singlet oxygen in biological model systems or in vivo has been measured.

【0006】本発明は、上記事情に鑑み、微弱光の測定
に好適な微弱光測定器、試料容器および微弱光測定シス
テムを提供することを目的とする。
In view of the above circumstances, an object of the present invention is to provide a weak light measuring device, a sample container, and a weak light measuring system suitable for measuring weak light.

【0007】[0007]

【課題を解決するための手段】例えば生体モデル系や生
体内での一重項酸素からの1μm帯の微弱発光を検出す
るためには、S/N比を極限まで向上させる以外に方法
はない。S/N比を向上するには、(a)受光素子を冷
却して暗電流を減らす、(b)試料からの光を効率良く
受光素子に導く、(c)試料からの発光光以外の光や電
気的ノイズを無くす、等の対策が必要である。
For example, there is no method other than improving the S / N ratio to the utmost in order to detect weak emission in the 1 μm band from singlet oxygen in a living body model system or a living body. In order to improve the S / N ratio, (a) the light receiving element is cooled to reduce the dark current, (b) light from the sample is efficiently guided to the light receiving element, and (c) light other than light emitted from the sample. And electrical noise must be eliminated.

【0008】被測定試料は、例えば生体であり、受光素
子と同じように冷却することは困難である。したがっ
て、被測定物およびその容器類からの熱輻射(以下では
背景光と呼ぶ)が大きなノイズ源となる。被測定物から
出る測定光の波長が分かっている場合には、その波長の
み通過させる光学フィルタによってかなりの背景光を除
去できるが、被測定光と同じ波長域の背景光は取り除く
ことができない。
The sample to be measured is, for example, a living body, and it is difficult to cool it like a light receiving element. Therefore, heat radiation (hereinafter referred to as background light) from the device under test and its containers is a large noise source. If the wavelength of the measurement light emitted from the object to be measured is known, a considerable amount of background light can be removed by an optical filter that passes only that wavelength, but background light in the same wavelength region as the light to be measured cannot be removed.

【0009】本発明は、試料を保持し、試料から出る光
を効率良く受光素子に導くことを可能とし、従来取り除
くことができなかった背景光を除去するものである。上
記目的に叶う本発明の微弱光測定器は、 (1_1)試料を受け入れる試料受容部であって受け入
れた試料が発する光を出射する出射窓を備えた試料受容
部を、各試料受容部の出射窓が、同一平面上に並び、か
つ同一方向を向くように2つ備えてなる試料容器が、こ
れら2つの試料受容部の出射窓が下方を向くように着脱
自在に配置される遮光試料室 (1_2)上記遮光試料室に配置された試料容器の2つ
の出射窓から下向きに出射した光を透過する光透過部材
からなる透光窓を挟んで上記遮光試料室の下部に形成さ
れ、上記2つの出射窓それぞれから出射し透光窓を透過
してきた各光をそれぞれ受光して各受光信号を得る、受
光面を上向きにして配置される2つの受光素子と、これ
ら2つの受光信号の差分を増幅する増幅器とを含む受光
回路が配置される遮光受光室 を備えたことを特徴とする。
SUMMARY OF THE INVENTION The present invention is intended to hold a sample and efficiently guide light emitted from the sample to a light receiving element, and to remove background light which could not be removed conventionally. To achieve the above object, the present invention provides: (1_1) a sample receiving portion for receiving a sample, the sample receiving portion having an emission window for emitting light emitted from the received sample; A light-shielding sample chamber (2) in which two sample containers having windows arranged in the same plane and facing in the same direction are detachably arranged such that the emission windows of these two sample receiving portions face downward. 1_2) The light source is formed below the light-shielding sample chamber with a light-transmitting window made of a light-transmitting member that transmits light emitted downward from two emission windows of the sample container placed in the light-shielding sample chamber interposed therebetween. Two light-receiving elements arranged with their light-receiving surfaces facing upward to amplify the difference between these two light-receiving signals by receiving each light emitted from each of the emission windows and passing through each light-transmitting window to obtain each light-receiving signal. Receiving amplifier including Characterized by comprising a light-shielding receiving chamber road is located.

【0010】ここで、上記本発明の微弱光測定器におい
て、上記透光窓を構成する光透過部材が、所望の波長の
光を選択的に透過する光学フィルタを形成してなること
が好ましい。また、上記本発明の微弱光測定器におい
て、上記2つの受光素子の受光面の前面に、所望の波長
の光を選択的に透過する光学フィルタを備えることも好
ましい態様である。
Here, in the weak light measuring device of the present invention, it is preferable that the light transmitting member constituting the light transmitting window is formed by forming an optical filter that selectively transmits light having a desired wavelength. In a preferred embodiment of the weak light meter according to the present invention, an optical filter for selectively transmitting light of a desired wavelength is provided in front of the light receiving surfaces of the two light receiving elements.

【0011】また、上記本発明の微弱光測定器におい
て、上記出射窓それぞれと、上記透光窓との間に、各出
射窓それぞれに対応して互いに独立に設けられた2つの
光学フィルタを備えるとともに、上記透光窓が、上記2
つの出射窓それぞれに対応する、互いに独立に設けられ
た2つの透光窓からなることも好ましい。さらに、上記
遮光受光室内の、上記2つの受光素子の前面に、これら
2つの受光素子に入射する光を相互に所定の位相関係を
もってチョッピングするチョッパを備えることも好まし
い態様である。
Further, in the weak light measuring device according to the present invention, two optical filters are provided independently of each other in correspondence with each of the exit windows, between the exit window and the translucent window. And the translucent window is
It is also preferable to include two light-transmitting windows which are provided independently of each other and correspond to each of the two light-emitting windows. In a preferred embodiment, a chopper for chopping light incident on the two light receiving elements with a predetermined phase relationship with each other is provided in front of the two light receiving elements in the light-shielded light receiving chamber.

【0012】また、上記目的に叶う本発明の試料容器
は、 (2_1)内部に試料を受け入れる、受け入れた試料が
発する光を出射する出射窓を備えた第1の試料受容部 (2_2)内部に試料を受け入れる、受け入れた試料が
発する光を出射する出射窓を備えその出射窓が上記第1
の試料受容部の出射窓と同一平面上に並ぶとともに同一
方向を向くように上記第1の試料受容部に並んで配置さ
れた第2の試料受容部 を備えたことを特徴とする。
A sample container according to the present invention, which fulfills the above object, comprises: (2_1) a first sample receiving section (2_2) having an emission window for receiving a sample therein and emitting light emitted from the received sample. An emission window for receiving the sample and emitting light emitted from the received sample is provided, and the emission window is provided with the first window.
A second sample receiving portion arranged in the same plane as the emission window of the sample receiving portion and oriented in the same direction as the first sample receiving portion.

【0013】ここで、上記本発明の試料容器において、
上記第1および第2の試料受容部内壁のうちの第1およ
び第2の試料受容部それぞれの出射窓を除く部分に、第
1および第2の試料受容部それぞれに受け入れた各試料
が発した光を第1および第2の試料受容部それぞれの出
射窓に向けて反射する各反射面を有することが好まし
い。
Here, in the sample container of the present invention,
Each sample received in each of the first and second sample receiving portions was emitted from a portion of the inner wall of the first and second sample receiving portions except for the emission windows of the first and second sample receiving portions. It is preferable that each of the first and second sample receiving sections has a reflecting surface for reflecting the light toward the respective exit window.

【0014】また、上記本発明の試料容器において、上
記第1および第2の試料受容部それぞれの出射窓に、上
記第1および第2の試料受容部に受け入れた各試料が発
する各光を集光する各集光部材を備えることも好ましい
態様である。さらに、上記本発明の試料容器において、
上記第1および第2の試料受容部それぞれに対応して、
それぞれ複数の溶液流入口と、複数の溶液流入口から流
入した溶液が混合されて第1および第2の試料受容部そ
れぞれに流入する各溶液流入路と、第1および第2の試
料受容部それぞれに受け入れた各溶液をそれぞれ流出さ
せる各溶液流出路とを備えることが好ましい。
In the sample container of the present invention, each light emitted from each sample received in the first and second sample receiving portions is collected in the emission window of each of the first and second sample receiving portions. It is also a preferable embodiment to provide each light condensing member that emits light. Further, in the sample container of the present invention,
For each of the first and second sample receiving sections,
A plurality of solution inlets, respective solution inflow paths into which solutions flowing from the plurality of solution inlets are mixed and flow into the first and second sample receiving portions, respectively, and the first and second sample receiving portions; It is preferable to provide each solution outflow path for each of the solutions received in the first solution to flow out.

【0015】さらに、本発明の試料容器において、上記
第1および第2の試料受容部の出射窓に対向する側を開
放する着脱自在な蓋を備えることも好ましい態様であ
る。さらに、上記本発明の試料容器において、上記試料
容器を所定の温度に保持する手段を備えることが好まし
い。さらに、上記目的に叶う本発明の微弱光測定システ
ムは、 (3_1)内部に試料を受け入れる、受け入れた試料が
発する光を出射する出射窓を備えた第1の試料受容部、
内部に試料を受け入れる、受け入れた試料が発する光を
出射する出射窓を備えその出射窓が上記第1の試料受容
部の出射窓と同一平面上に並ぶとともに同一方向を向く
ように上記第1の試料受容部に並んで配置された第2の
試料受容部、および上記第1および第2の試料受容部そ
れぞれに対応して、それぞれ複数の溶液流入口と、それ
ぞれ複数の溶液流入口から流入した溶液が混合されてそ
の第1および第2の試料受容部それぞれに流入する各溶
液流入路と、その第1および第2の試料受容部それぞれ
に受け入れた各溶液をそれぞれ流出させる各溶液流出路
とからなる溶液流路を備えた第1の試料容器 (3_2)内部に試料を受け入れる、受け入れた試料が
発する光を出射する出射窓を備えた第3の試料受容部、
内部に試料を受け入れる、受け入れた試料が発する光を
出射する出射窓を備えその出射窓が上記第3の試料受容
部の出射窓と同一平面上に並ぶとともに同一方向を向く
ように上記第3の試料受容部に並んで配置された第4の
試料受容部、および上記第3および第4の試料受容部の
出射壁に対向する側を開放する着脱自在な蓋とを備えた
第2の試料容器 (3_3)上記第1および第2の試料容器が、交換自在
に、出射窓を下向きにして配置される遮光試料室、およ
び、その遮光試料室に配置された第1ないし第2の試料
容器の2つの出射窓から下向きに出射した光を透過する
光透過部材からなる透光窓を挟んで上記遮光試料室の下
部に形成され、上記2つの出射面それぞれから出射し透
光窓を透過してきた各光をそれぞれ受光して各受光信号
を得る、受光面を上向きにして配置される2つの受光素
子と、これら2つの受光信号の差分を増幅する増幅器と
を含む受光回路が配置される遮光受光室を備えた微弱光
測定器 を具備することを特徴とする。
Further, in a preferred embodiment, the sample container of the present invention further comprises a detachable lid for opening the side of the first and second sample receiving portions facing the emission window. Furthermore, it is preferable that the sample container of the present invention further includes a means for maintaining the sample container at a predetermined temperature. Further, the weak light measurement system of the present invention, which fulfills the above-mentioned object, comprises: (3_1) a first sample receiving portion provided with an emission window for receiving a sample therein and emitting light emitted from the received sample;
An emission window for receiving the sample therein and emitting light emitted from the received sample, the emission window being arranged on the same plane as the emission window of the first sample receiving portion and oriented in the same direction; A plurality of solution inlets and a plurality of solution inlets respectively flowed in corresponding to the second sample receiving portion arranged side by side in the sample receiving portion, and the first and second sample receiving portions, respectively. A solution inflow path into which the solution is mixed and flows into each of the first and second sample receiving sections; and a solution outflow path through which each solution received in each of the first and second sample receiving sections flows out. A first sample container provided with a solution flow path comprising: (3_2) a third sample receiving portion having an emission window for emitting light emitted by the received sample, the sample receiving portion receiving the sample inside;
An emission window for receiving the sample therein and emitting light emitted from the received sample, wherein the emission window is arranged on the same plane as the emission window of the third sample receiving portion and faces in the same direction as the third window. A second sample container comprising: a fourth sample receiving portion arranged side by side with the sample receiving portion; and a detachable lid that opens a side of the third and fourth sample receiving portions facing the emission wall. (3_3) The light-shielding sample chamber in which the first and second sample containers are interchangeably arranged with the emission window facing downward, and the first and second sample containers arranged in the light-shielding sample chamber. It is formed below the light-shielding sample chamber with a light-transmitting window made of a light-transmitting member that transmits light emitted downward from the two emission windows, and is emitted from each of the two emission surfaces and transmitted through the light-transmitting window. Each light is received individually and each light reception signal is A weak light measuring device having a light-shielded light-receiving chamber in which a light-receiving circuit including two light-receiving elements arranged so that the light-receiving surface faces upward and an amplifier for amplifying a difference between the two light-receiving signals is provided. It is characterized by the following.

【0016】ここで、上記本発明の微弱光測定システム
において、上記遮光試料室に、上記第1および第2の試
料容器と交換自在に配置される、上記2つの受光素子そ
れぞれに向かって光を発する2つの発光体を受容する校
正冶具を具備することが好ましい。また、上記本発明の
微弱光測定システムにおいて、上記試料容器に供給され
る試料が蓄えられる試料供給槽と、上記試料容器からの
廃液を受け入れる廃液受入槽と、上記試料供給槽内の試
料液面の高さと上記廃液受入槽内の廃液液面の高さとの
差を自在に調整する液面高低差調整手段とを備えること
も好ましい。
Here, in the weak light measurement system of the present invention, light is directed toward each of the two light receiving elements which are interchangeably disposed in the light-shielded sample chamber with the first and second sample containers. It is preferable to provide a calibration jig for receiving the two illuminants emitted. Further, in the weak light measurement system of the present invention, a sample supply tank for storing a sample supplied to the sample container, a waste liquid receiving tank for receiving waste liquid from the sample container, and a sample liquid level in the sample supply tank. It is also preferable to provide a liquid level difference adjusting means for freely adjusting the difference between the height of the waste liquid and the height of the waste liquid level in the waste liquid receiving tank.

【0017】さらに、上記本発明の微弱光測定システム
において、上記試料容器に試料を導入する管路の途中
に、互いに接近した位置に同一方向への試料の流れを許
す2つの逆止め弁、これら2つの逆止め弁を結ぶ管路か
ら分岐した管路への試料の流入およびこれらの管路から
の試料の流出を行わせるピストンを有する試料定量供給
装置を備えることも好ましい態様である。
Further, in the weak light measurement system according to the present invention, two check valves permitting the flow of the sample in the same direction at positions close to each other in the conduit for introducing the sample into the sample container. It is also a preferable embodiment to provide a sample quantitative supply device having a piston for allowing a sample to flow into and branch out of a pipe from a pipe connecting two check valves.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1〜図3は、本発明の試料容器の一実施形
態が内部に配置された状態の、本発明の微弱光測定器の
一実施形態を示す、それぞれ、正面から見た模式断面
図、側面から見た模式断面図、上面から見た模式断面図
である。
Embodiments of the present invention will be described below. 1 to 3 are schematic cross-sectional views and a side view, respectively, showing an embodiment of the weak light measuring device of the present invention in a state where an embodiment of the sample container of the present invention is disposed inside. FIG. 2 is a schematic cross-sectional view as viewed from above, and a schematic cross-sectional view as viewed from above.

【0019】ここに示す微弱光測定器10は、試料容器
20が着脱自在に配置される遮光試料室11と、受光回
路30が配置される遮光受光室12を有している。遮光
試料室は大気圧、室温に保たれ、遮光受光室12は、測
定にあたっては、真空、極低温に保たれる。遮光試料室
11は、遮光受光室12の上部に形成されており、それ
ら遮光試料室11と遮光受光室12との間は、一重項酸
素からの1.268μmの光を選択的に透過する光学フ
ィルタを兼ねる透光窓13で仕切られている。さらに遮
光試料室11には、試料容器20を出し入れするための
ドア14が備えられている。
The weak light measuring device 10 shown here has a light-shielding sample chamber 11 in which a sample container 20 is removably arranged, and a light-shielding light-receiving chamber 12 in which a light-receiving circuit 30 is arranged. The light-shielded sample chamber is kept at atmospheric pressure and room temperature, and the light-shielded light-receiving chamber 12 is kept at vacuum and cryogenic temperature for measurement. The light-shielding sample chamber 11 is formed above the light-shielding light-receiving chamber 12, and between the light-shielding sample chamber 11 and the light-shielding light-receiving chamber 12, an optical element selectively transmitting 1.268 μm light from singlet oxygen. It is partitioned by a light-transmitting window 13 also serving as a filter. Further, the light-shielding sample chamber 11 is provided with a door 14 for taking the sample container 20 in and out.

【0020】試料容器20は、各試料を受け入れる2つ
の試料受容室21_1,21_2を有しており、各試料
受容室21_1,21_2の下面は、それら各試料受容
室21_1,21_2に受け入れた各試料が発する光を
出射する出射窓22_1,22_2が形成され、それら
各出射窓22_1,22_2には、それぞれ集光用の石
英レンズ23_1,23_2が配置されている。また、
各試料受容室21_1,21_2の内壁面の、出射窓2
2_1,22_2を除く部分21_1a,21_2aに
は金メッキが施され、その内部に受け入れた各試料が発
光する光を各出射窓22_1,22_2に向けて反射す
るように構成されている。また、この試料容器20には
各試料受容室21_1,21_2それぞれに対応して、
各試料受容室21_1,21_2それぞれに溶液を注入
するそれぞれ3つの溶液流入口24_1a,24_1
b,24_1c;24_2a,24_2b,24_2c
と各1つの溶液流出口25_1,25_2が備えられて
いる。
The sample container 20 has two sample receiving chambers 21_1 and 21_2 for receiving the respective samples, and the lower surfaces of the sample receiving chambers 21_1 and 21_2 have the lower surfaces of the respective samples received in the respective sample receiving chambers 21_1 and 21_2. Outgoing windows 22_1 and 22_2 for emitting the light emitted from are formed, and converging quartz lenses 23_1 and 23_2 are arranged in the respective outgoing windows 22_1 and 22_2. Also,
Exit window 2 on the inner wall surface of each sample receiving chamber 21_1, 21_2
The portions 21_1a and 21_2a except for 2_1 and 22_2 are plated with gold, and are configured to reflect light emitted from each sample received therein toward each of the emission windows 22_1 and 22_2. In addition, the sample container 20 corresponds to each of the sample receiving chambers 21_1 and 21_2,
Three solution inlets 24_1a and 24_1 respectively for injecting a solution into each of the sample receiving chambers 21_1 and 21_2.
b, 24_1c; 24_2a, 24_2b, 24_2c
And one solution outlet 25_1 and 25_2, respectively.

【0021】さらにこの試料容器20には、この試料容
器20を一定の温度に保持するための定温度循環水Wの
流入口26、内部流路27、および流出口28が形成さ
れている。図1〜図3に示す試料容器20は、複数の溶
液を瞬時的に混合して試料を形成する、いわゆるラピッ
ド・ミキシング容器であり、in vitro系(酵素
系)の試料の測定に適している。
Further, the sample container 20 has an inlet 26, an internal channel 27, and an outlet 28 for the constant temperature circulating water W for maintaining the sample container 20 at a constant temperature. The sample container 20 shown in FIGS. 1 to 3 is a so-called rapid mixing container that instantaneously mixes a plurality of solutions to form a sample, and is suitable for measuring an in vitro (enzymatic) sample. .

【0022】2つの試料受容部21_1,21_2に対
応して備えられたそれぞれ3つの溶液流入口24_1
a,24_1b,24_1c;24_2a,24_2
b,24_2cには、超高速分注器40を構成する各シ
リンジ(注射器)41_1a,41_1b,41_1
c;41_2a,41_2b,41_2cが接続されて
おり、それらのシリンジ41_1a,41_1b,41
_1c;41_2a,41_2b,41_2cから各溶
液流入口24_1a,24_1b,24_1c;24_
2a,24_2b,24_2cを経由して各溶液が注入
されると、それらの溶液は、それら各3つの溶液流入口
24_1a,24_1b,24_1c;24_2a,2
4_2b,24_2cと各試料受容部21_1,21_
2とをつなぐ各溶液流入路29_1,29_2の途中で
瞬間的に混合されて各試料を形成し、本実施形態では数
十ms以下の時間で各試料受容部21_1,21_2に
注入される。各試料受容部21_1,21_2の容積
は、200〜500マイクロリットルである。各試料受
容部21_1,21_2から溢れた試料は、各溶液流出
口25_1,25_2を経由して試料容器20の外部に
排出される。
Three solution inlets 24_1 provided corresponding to the two sample receiving portions 21_1 and 21_2, respectively.
a, 24_1b, 24_1c; 24_2a, 24_2
b, 24_2c, each syringe (injector) 41_1a, 41_1b, 41_1 constituting the ultra-high-speed dispenser 40
c; 41_2a, 41_2b, 41_2c are connected and their syringes 41_1a, 41_1b, 41
_1c; 41_2a, 41_2b, 41_2c to each solution inlet 24_1a, 24_1b, 24_1c;
When each solution is injected via 2a, 24_2b, 24_2c, the solutions are injected into the three solution inlets 24_1a, 24_1b, 24_1c; 24_2a, 2
4_2b, 24_2c and each sample receiving section 21_1, 21_
Each sample is instantaneously mixed in the middle of each of the solution inflow paths 29_1 and 29_2 connecting the sample Nos. 2 and 2, and is injected into each sample receiving portion 21_1 and 21_2 in a time of several tens ms or less in this embodiment. Each sample receiving part 21_1, 21_2 has a volume of 200 to 500 microliters. The samples overflowing from the sample receiving portions 21_1 and 21_2 are discharged to the outside of the sample container 20 via the solution outlets 25_1 and 25_2.

【0023】各シリンジ41_1a,41_1b,41
_1c;41_2a,41_2b,41_2cには、図
3に示すように、各溶液S,B,A;So,C,Aが入
っている。ここで、A+Bで一重項酸素からの1.26
8μmの微弱光を発光させ、Sの添加によってその発光
強度がどのようになるかを測定する。例えばSの添加で
発光が消えれば、Sは一重項酸素消去能の強い溶液とい
うことになる。A+Cは発光しないが混合条件がA+B
に近いものを用いる。こうすることにより、後述するよ
うにして背景光(バックグラウンド)を差し引くことが
できる。SoはSの溶媒と同一の溶液であり、Sの注入
と同時にSoを注入することにより背景光を正確に差し
引くことができる。一例を挙げると、例えば、Aがハイ
ポクロライド溶液(NaOCl),Bが過酸化水素水溶
液(H22 ),Cが水(H2 O),Sが一重項酸素の
消去物質溶液(Sとしていろいろな物質が試されるが、
例えば、カロチン溶液)、Soは一重項酸素の消去物質
を溶かしている溶液(Sがカロチンの場合、そのカロチ
ンを溶かしている溶液)となる。
Each syringe 41_1a, 41_1b, 41
_1c; 41_2a, 41_2b, and 41_2c contain the respective solutions S, B, A; So, C, A as shown in FIG. Here, A + B is 1.26 from singlet oxygen.
A weak light of 8 μm is emitted, and the emission intensity is measured by adding S. For example, if light emission is extinguished by the addition of S, S is a solution having a strong singlet oxygen scavenging ability. A + C does not emit light, but the mixing condition is A + B
Use something close to. By doing so, the background light (background) can be subtracted as described later. So is the same solution as the solvent of S, and the background light can be accurately subtracted by injecting So at the same time as S is injected. For example, A is a hypochloride solution (NaOCl), B is a hydrogen peroxide solution (H 2 O 2 ), C is water (H 2 O), and S is a singlet oxygen erasing substance solution (S Various substances are tried,
For example, a carotene solution) and So are solutions in which a singlet oxygen eliminating substance is dissolved (when S is carotene, a solution in which carotene is dissolved).

【0024】上記のようにして、2つの試料受容部21
_1,21_2のうちの一方の試料受容部21_1に、
被測定試料が注入されると、その一方の試料受容部21
_1から、測定光100(ここでの例では一重項酸素に
よる、1.268μmの波長の光)と背景光101_1
が出射窓22_1および石英レンズ23_1を経由して
出射される。一方、2つの試料受容部21_1,21_
2のうちのもう一方の試料受容部21_2にはダミー試
料が注入されて、試料受容部21_1からの背景光10
1_1と同一波長分布かつ同一強度の背景光101_2
が、出射窓22_2および石英レンズ23_2を経由し
て出射される。尚、ここに示す例では、出射窓22_
1,22_2と、石英レンズ23_1,23_2との双
方を備えているが、石英レンズ23_1,23_2を省
き、平板状の出射窓22_1,22_2のみを備えても
よく、平板状の出射窓22_1,22_2の方を省き、
石英レンズ23_1,23_2のみを備えてもよい。
As described above, the two sample receiving portions 21
_1 and 21_2 in one sample receiving section 21_1,
When the sample to be measured is injected, one of the sample receiving portions 21
_1, the measurement light 100 (in this example, light with a wavelength of 1.268 μm due to singlet oxygen) and the background light 101_1
Is emitted through the emission window 22_1 and the quartz lens 23_1. On the other hand, the two sample receiving portions 21_1 and 21_
2, a dummy sample is injected into the other sample receiving portion 21_2, and the background light 10 from the sample receiving portion 21_1 is injected.
Background light 101_2 having the same wavelength distribution and the same intensity as 1_1
Is emitted through the emission window 22_2 and the quartz lens 23_2. In the example shown here, the emission window 22_
Although both the lenses 22_1 and 22_2 and the quartz lenses 23_1 and 23_2 are provided, the quartz lenses 23_1 and 23_2 may be omitted and only the flat emission windows 22_1 and 22_2 may be provided, or the flat emission windows 22_1 and 22_2 may be provided. Omit
Only the quartz lenses 23_1 and 23_2 may be provided.

【0025】遮光受光室12には、試料受光部21_1
の出射窓22_1に対し透光窓13を挟んで向き合う位
置に、受光面を上にした受光素子31_1が備えられて
おり、またこれとともに、試料受光部21_2の出射窓
22_2に対し透光窓13を挟んで向き合う位置に、受
光面を上にしたもう1つの受光素子31_2が備えられ
ている。それら2つの受光素子31_1,31_2で得
られた2つの受光信号はプリアンプとしての差動増幅器
32に入力され、それら2つの受光信号の差分が演算さ
れるとともにその差分が増幅される。
The light-shielding light-receiving chamber 12 has a sample light-receiving section 21_1.
A light-receiving element 31_1 having a light-receiving surface facing upward is provided at a position facing the light-emitting window 22_1 with the light-transmitting window 13 interposed therebetween. In addition, the light-transmitting window 13_2 is provided with respect to the light-emitting window 22_2 of the sample light-receiving section 21_2. Another light receiving element 31_2 having a light receiving surface facing upward is provided at a position facing each other with the light receiving element 31_2 therebetween. The two light receiving signals obtained by the two light receiving elements 31_1 and 31_2 are input to a differential amplifier 32 as a preamplifier, and the difference between the two light receiving signals is calculated and the difference is amplified.

【0026】2つの試料受容部21_1,21_2のう
ちの被測定試料が注入された試料受容部21_1から
は、上述のように測定光100と背景光101_1が出
射され、測定光100は透光窓13をそのまま透過して
受光素子31_1に入射し、背景光101_1は透光窓
13のフィルタ作用により弱められて受光素子31_1
に入射し、受光素子31_1では、これらの測定光10
0と、透光窓13で弱められた背景光101_1との双
方の光が受光される。
As described above, the measurement light 100 and the background light 101_1 are emitted from the sample receiving portion 21_1 into which the sample to be measured is injected out of the two sample receiving portions 21_1 and 21_2. 13 as it is and enters the light receiving element 31_1, and the background light 101_1 is weakened by the filter function of the light transmitting window 13 and is thus received by the light receiving element 31_1.
And the light receiving element 31_1 receives the measurement light 10
0 and the background light 101_1 weakened by the light transmitting window 13 are received.

【0027】一方、2つの試料受容部21_1,21_
2のうちのダミー試料が注入された試料受容部21_2
からは、背景光101_2が出射され、透光窓13のフ
ィルタ作用により弱められて受光素子31_2に入射
し、受光素子31_2では、その弱められた背景光10
1_2が受光される。この背景光101_2は、背景光
101_1と同一の強度を有している。したがって差動
増幅器32では背景光101_1と背景光101_2は
互いにキャンセルされ、差動増幅器32からは、測定光
100の強度に比例した信号が出力される。この受光回
路30の具体的な構成としては特願平8−032235
号にて提案した回路が好適である。
On the other hand, the two sample receiving portions 21_1 and 21_
Sample receiving portion 21_2 into which the dummy sample of the sample No. 2 has been injected
, The background light 101_2 is emitted, is weakened by the filter function of the light transmitting window 13, and enters the light receiving element 31_2, and the light receiving element 31_2 receives the weakened background light 10_2.
1_2 is received. This background light 101_2 has the same intensity as the background light 101_1. Therefore, in the differential amplifier 32, the background light 101_1 and the background light 101_2 are canceled each other, and a signal proportional to the intensity of the measurement light 100 is output from the differential amplifier 32. A specific configuration of the light receiving circuit 30 is disclosed in Japanese Patent Application No. Hei 8-032235.
The circuit proposed in the above is preferred.

【0028】尚、ここでは試料容器20に形成された2
つの出射窓22_1,22_2に集光用の石英レンズ2
3_1,23_2を備え、透光窓13がフィルタ作用を
成すものとして説明したが、透光窓13に集光レンズの
機能を備えてもよく、出射窓22_1,22_2に光学
フィルタとしての作用を担わせてもよく、あるいは受光
素子31_1,31_2の前面に、光学フィルタ15_
1,15_2を備えてもよい。
It should be noted that here, the 2
Quartz lens 2 for condensing light into two emission windows 22_1 and 22_2
3_1 and 23_2, and the light-transmitting window 13 has been described as having a filtering function. However, the light-transmitting window 13 may have a function of a condenser lens, and the light-emitting windows 22_1 and 22_2 may have the function of an optical filter. Alternatively, the optical filter 15_ may be provided on the front surface of the light receiving elements 31_1 and 31_2.
1, 15_2 may be provided.

【0029】次に、本発明の微弱光測定器の他の実施形
態について説明する。図4は、本発明の微弱光測定器の
第2の実施形態を示す断面図である。ここに示す微弱光
測定器110は、図1に示す微弱光測定器10と同様、
試料が発する光を出射する出射窓122_1,122_
2を備えた試料受容部121_1,121_2を備えて
なる試料容器120が着脱自在に配置される遮光試料室
111を備えるとともに、遮光試料室111の下部に形
成され受光面を上向きにして配置される2つの受光素子
131_1,131_2と、これら2つの受光素子13
1_1,131_2からの受光信号の差分を増幅する差
動増幅器132とを含む受光回路130が配置される遮
光受光室112を備えているが、図1に示す微弱光測定
器10と異なり、光学フィルタ115は、出射窓122
_1,122_2と透光窓113との間に備えられてい
る。このように光学フィルタを配置する位置は、透光窓
と受光素子との間、あるいは出射窓と透光窓との間のい
ずれでもよく、さらには、透光窓あるいは出射窓が光学
フィルタの作用を兼ねるものであってもよい。
Next, another embodiment of the weak light measuring device of the present invention will be described. FIG. 4 is a sectional view showing a second embodiment of the weak light measuring instrument according to the present invention. The weak light measuring device 110 shown here is similar to the weak light measuring device 10 shown in FIG.
Emission windows 122_1 and 122_ for emitting light emitted from a sample
A sample container 120 having sample receiving portions 121_1 and 121_2 each having a sample holder 120 is provided with a light-shielding sample chamber 111 in which the sample container 120 is detachably mounted, and is formed below the light-shielding sample chamber 111 and is arranged with the light receiving surface facing upward. Two light receiving elements 131_1 and 131_2 and these two light receiving elements 13
The light receiving circuit 112 includes a light receiving circuit 130 including a differential amplifier 132 for amplifying a difference between light receiving signals from the light receiving signals 1_1 and 131_2. 115 is an emission window 122
_1, 122_2 and the light transmitting window 113. The position where the optical filter is arranged may be any position between the light transmitting window and the light receiving element or between the light emitting window and the light transmitting window. May also be used.

【0030】次に、本発明の微弱光測定器の第3の実施
形態について説明する。図5は、本発明の微弱光測定器
の第3の実施形態を示す断面図である。ここに示す微弱
光測定器210は、図4に示す微弱光測定器110と類
似の構成を有しており、図4に示す微弱光測定器110
における遮光試料室111と同様の遮光試料室211お
よび遮光受光室212を備えている。この図5に示す微
弱光測定器210が図4に示す微弱光測定器110と異
なる点は、遮光試料室211に備えられた出射窓222
_1,222_2と透光窓との間に、各出射窓それぞれ
に対応して互いに独立に設けられた2つの光学フィルタ
215_1,215_2を備えるとともに、透光窓が、
2つの出射窓222_1,222_2に対応する互いに
独立に設けられた2つの透光窓213_1,213_2
からなる点である。
Next, a third embodiment of the weak light meter according to the present invention will be described. FIG. 5 is a sectional view showing a weak light measuring device according to a third embodiment of the present invention. The weak light measuring device 210 shown here has a configuration similar to that of the weak light measuring device 110 shown in FIG.
The light-shielding sample chamber 211 and the light-shielding light-receiving chamber 212 similar to the light-shielding sample chamber 111 in FIG. The weak light measuring device 210 shown in FIG. 5 is different from the weak light measuring device 110 shown in FIG.
_1 and 222_2, and two optical filters 215_1 and 215_2 provided independently of each other in correspondence with each of the emission windows, respectively, between the light transmission windows.
Two translucent windows 213_1, 213_2 provided independently of each other corresponding to the two emission windows 222_1, 222_2.
It consists of

【0031】このように、第3の実施形態においては、
光学フィルタ215_1,215_2および透光窓21
3_1,213_2は2つの試料受容部221_1,2
21_2に対応して2つに分離されている。従って2つ
の試料受容部221_1,221_2のそれぞれの出射
窓222_1,222_2から出射した光が互いに干渉
し合うことが防止されクロストークを最小に抑えること
ができる。
As described above, in the third embodiment,
Optical filters 215_1, 215_2 and translucent window 21
3_1 and 213_2 are two sample receiving sections 221_1 and 221_1.
21_2. Therefore, it is possible to prevent the lights emitted from the emission windows 222_1 and 222_2 of the two sample receiving portions 221_1 and 221_2 from interfering with each other, and to minimize crosstalk.

【0032】次に、本発明の微弱光測定器の第4の実施
形態について説明する。図6は、本発明の微弱光測定器
の第4の実施形態を示す断面図である。ここに示す微弱
光測定器310は、図5に示す微弱光測定器210と類
似の構成を有しており、図5に示す微弱光測定器210
における遮光試料室211、および遮光受光室212と
同様の遮光試料室311、および遮光受光室312を備
えている。この図6に示す微弱光測定器310が図5に
示す微弱光測定器210と異なる点は、遮光受光室31
2内の、2つの受光素子331_1,331_2の前面
に、これら2つの受光素子331_1,331_2に入
射する光を相互に所定の位相関係をもってチョッピング
する回転シャッタ式のチョッパ71およびそれを駆動す
るチョッパ駆動部72を備えている点である。
Next, a fourth embodiment of the weak light measuring device of the present invention will be described. FIG. 6 is a sectional view showing a fourth embodiment of the weak light measuring instrument according to the present invention. The weak light measuring device 310 shown here has a configuration similar to that of the weak light measuring device 210 shown in FIG.
, A light-shielding sample chamber 311 and a light-shielding light-receiving chamber 312 similar to the light-shielding sample chamber 211 and the light-shielding light-receiving chamber 212 are provided. The weak light measuring device 310 shown in FIG. 6 is different from the weak light measuring device 210 shown in FIG.
2, a rotary shutter type chopper 71 for chopping light incident on the two light receiving elements 331_1 and 331_2 with a predetermined phase relationship on the front surface of the two light receiving elements 331_1 and 331_2 and a chopper drive for driving the same. This is the point that the unit 72 is provided.

【0033】このように、受光素子331_1,331
_2に入射する光をチョッピングすることにより、信号
光が1/fノイズが十分に小さくなる周波数に変換さ
れ、受光素子や電子回路から発生する1/fノイズの受
光信号への影響を抑えることができる。なお、チョッパ
としては上記の回転シャッタ式のチョッパの代わりに音
叉を利用したものや、電磁的あるいは電子的なチョッパ
を用いてもよい。受光素子で電気に変換された信号を、
電子回路で交流信号に変換することもできるが、この方
法では受光素子自身から発生するノイズを除去できない
ので機械的にチョッピングする方が好ましい。なお、チ
ョッパ71は2つの受光信号を同相で変調してもよく、
あるいは逆相で変調してもよい。
As described above, the light receiving elements 331_1 and 331
By chopping the light incident on _2, the signal light is converted into a frequency at which the 1 / f noise is sufficiently reduced, and the effect of the 1 / f noise generated from the light receiving element or the electronic circuit on the light receiving signal is suppressed. it can. As the chopper, a chopper using a tuning fork or an electromagnetic or electronic chopper may be used instead of the rotary shutter chopper. The signal converted to electricity by the light receiving element is
Although it can be converted into an AC signal by an electronic circuit, this method cannot remove noise generated from the light receiving element itself, so that mechanical chopping is preferable. Note that the chopper 71 may modulate the two received light signals in phase.
Alternatively, modulation may be performed in the opposite phase.

【0034】次に、上記の各実施形態の微弱光測定器に
用いられる本発明の試料容器について説明する。図7
は、図1〜図3に示す試料容器20と交換自在に遮光試
料室11に配置されるもう1種類の試料容器を示す図で
ある。試料容器50には円筒形の2つの試料受容部51
_1,51_2が形成されており、それら2つの試料受
容部51_1,51_2の下面には、試料受容部51_
1,51_2内に受け入れた試料が発する光を出射する
各出射窓52_1,52_2が形成され、さらに各出射
窓52_1,52_2には、集光用の各石英レンズ53
_1,53_2が固定されている。ただし、この図7に
示す例においては、出射窓52_1,52_2と、石英
レンズ53_1,53_2との双方を備えているが、石
英レンズ53_1,53_2を省き、平板状の出射窓5
2_1,52_2のみを備えてもよく、平板状の出射窓
52_1,52_2の方を省き、石英レンズ53_1,
53_2のみを備えてもよい。
Next, the sample container of the present invention used in the weak light measuring device of each of the above embodiments will be described. FIG.
FIG. 4 is a view showing another type of sample container which is disposed in the light-shielded sample chamber 11 so as to be interchangeable with the sample container 20 shown in FIGS. The sample container 50 has two cylindrical sample receiving portions 51.
_1 and 51_2 are formed, and the sample receiving portions 51_ are provided on the lower surfaces of the two sample receiving portions 51_1 and 51_2.
1, 51_2 are formed with emission windows 52_1, 52_2 for emitting light emitted from the sample received therein, and the emission windows 52_1, 52_2 are further provided with respective quartz lenses 53 for focusing.
_1 and 53_2 are fixed. However, in the example shown in FIG. 7, although both the exit windows 52_1 and 52_2 and the quartz lenses 53_1 and 53_2 are provided, the quartz lenses 53_1 and 53_2 are omitted, and
2_1 and 52_2 may be provided, and the flat emission windows 52_1 and 52_2 are omitted, and the quartz lens 53_1 and 52_2 are omitted.
Only 53_2 may be provided.

【0035】また、この試料容器50の、試料受容部5
1_1,51_2が形成された部材50Aの上部には定
温度循環水の流入口56および図示しない流出口が形成
された部材50Bが固定されており、流入口56から定
温度循環水が流入され、内部流路57を経由して流出口
から流出し、これにより、この試料容器50が一定温度
に保たれるようになっている。
The sample container 50 has a sample receiving section 5.
A fixed temperature circulating water inlet 56 and a member 50B formed with an unillustrated outlet are fixed to the upper part of the member 50A in which the 1_1 and 51_2 are formed, and the constant temperature circulating water flows in from the inlet 56, The sample flows out of the outlet through the internal flow path 57, whereby the sample container 50 is maintained at a constant temperature.

【0036】また、この試料容器50には2つの試料受
容部51_1,51_2の上面を塞ぐ、着脱自在な蓋5
9が備えられている。2つの試料受容部51_1,51
_2の円筒形の側面51_1a,51_2、および蓋5
9の、2つの試料受容部51_1,51_2の各上面を
形成する部分には、試料から発せられた光を反射するた
めの金メッキが施されている。
The sample container 50 has a detachable lid 5 for closing the upper surfaces of the two sample receiving portions 51_1 and 51_2.
9 are provided. Two sample receiving portions 51_1 and 51
_2 cylindrical side surface 51_1a, 51_2, and lid 5
9 is provided with gold plating for reflecting the light emitted from the sample on portions forming the upper surfaces of the two sample receiving portions 51_1 and 51_2.

【0037】この図7に示す試料容器50は、いわゆる
キュベット型容器であって、invivo系(細胞およ
び組織)の測定に適している。この場合、細胞等が重力
に引かれて下部に沈澱するので、細胞等が受光素子31
_1,31_2(図1〜図3参照)にできるだけ近づく
ように、試料容器50の出射面52_1,52_2を下
向きにして配置される。
The sample container 50 shown in FIG. 7 is a so-called cuvette type container, which is suitable for measuring in vivo systems (cells and tissues). In this case, the cells and the like are attracted by gravity and settle at the bottom, so that the cells and the like
_1 and 31_2 (see FIGS. 1 to 3) are arranged with the emission surfaces 52_1 and 52_2 of the sample container 50 facing downward as close as possible.

【0038】図1〜図3に示すラピッド・ミキシング型
の試料容器20の場合、シリンジにより溶液が注入され
るが、この図7に示すキュベッド型の試料容器50の場
合、蓋59を開けて各試料受容部51_1,51_2に
各試料が配置される。この点を除き、試料からの発光光
の測定に関しては図1〜図3に示す試料容器20の場合
と同様であり、この図7に示す試料容器50を用いた微
弱光の測定方法の説明は省略する。
In the case of the rapid mixing type sample container 20 shown in FIGS. 1 to 3, the solution is injected by a syringe. In the case of the cuvette type sample container 50 shown in FIG. Each sample is placed in the sample receiving sections 51_1 and 51_2. Except for this point, the measurement of the emitted light from the sample is the same as in the case of the sample container 20 shown in FIGS. 1 to 3, and the description of the method of measuring the weak light using the sample container 50 shown in FIG. Omitted.

【0039】図8は、校正冶具の断面図である。この校
正冶具60は、図1〜図3に示す試料容器20および試
料容器50の代わりに遮光試料室に配置され、受光回路
30に校正に用いられる。この校正冶具60には、2本
の光ファイバ(図示せず)の各先端部(ここでは、これ
ら2本の光ファイバの先端部が本発明にいう2つの発光
体に相当する)を受け入れる2つの受光部61_1,6
1_2が形成されている。また、この校正冶具60に
も、試料容器20,50と同様に定温循環水の流入口6
6、内部流路67、および図示しない流出口が形成さ
れ、校正に際し、この校正冶具60が一定温度に保たれ
るようになっている。
FIG. 8 is a sectional view of the calibration jig. The calibration jig 60 is arranged in the light-shielded sample chamber instead of the sample container 20 and the sample container 50 shown in FIGS. The calibration jig 60 receives the respective ends of two optical fibers (not shown) (here, the ends of these two optical fibers correspond to the two light emitters according to the present invention). Light receiving units 61_1, 6
1_2 is formed. In addition, the calibration jig 60 also has an inlet 6 for the constant temperature circulating water, like the sample containers 20 and 50.
6, an internal flow path 67, and an outlet (not shown) are formed so that the calibration jig 60 is maintained at a constant temperature during calibration.

【0040】この校正冶具60は、2つの受容部61_
1,61_2に2つの光ファイバの各先端部を受け入れ
た状態で、試料容器20,50に代えて遮光試料室11
に配置され、それら2本の光ファイバの各先端部から、
測定光ないし背景光に相当する光を出射し、受光素子3
1_1,31_2で受光することにより、受光回路30
の校正が行なわれる。
The calibration jig 60 has two receiving portions 61_
The light-shielding sample chamber 11 is used instead of the sample containers 20 and 50 in a state where the respective end portions of the two optical fibers are received in the optical fiber 1, 61_2.
And from each tip of the two optical fibers,
The light corresponding to the measuring light or the background light is emitted, and the light receiving element 3
By receiving light at 1_1 and 31_2, the light receiving circuit 30
Is calibrated.

【0041】以上のように、本実施形態では、校正冶具
60で受光回路30が校正され、2種類の試料容器2
0,50により、in vitro系とin vivo
系との双方の微弱光の測定を行なうことができる。ま
た、本実施形態では、上述のように光ノイズ、電気ノイ
ズが徹底的に抑えられており、したがって極微弱光の高
精度な測定が可能である。
As described above, in the present embodiment, the light receiving circuit 30 is calibrated by the calibration jig 60 and the two types of sample containers 2
0,50, in vitro and in vivo
Weak light measurements can be made both with the system. Further, in the present embodiment, as described above, the optical noise and the electrical noise are thoroughly suppressed, and therefore, it is possible to measure the extremely weak light with high accuracy.

【0042】尚、上記実施形態では、図1〜図3に示す
試料容器20および図7に示す試料容器50のいずれに
おいても、各出射窓22_1,22_2;52_1,5
2_2に集光用の石英レンズ23_1,23_2;53
_1,53_2が備えられているが、これら集光用の石
英レンズ23_1,23_2;53_1,53_2は必
ずしも備えなくてもよい。なぜならば、石英レンズは肉
厚が6mm近くになり、その分試料と受光素子との距離
が離れてしまうこと、および試料から発せられる光はそ
の進行方向がランダムであり集光機能を備える割には集
光性が向上しないことから、石英レンズ23_1,23
_2;53_1,53_2を取り除き、各出射窓22_
1,22_2;52_1,52_2の肉厚を薄くして試
料と受光素子を極力近づけることによっても光結合効率
を向上させることができるからである。あるいは、図1
〜図3、図7に示す形状の石英レンズ23_1,23_
2;53_1,53_2に代えて、各出射窓に肉圧が薄
くて済むフレネルレンズを備えてもよい。
In the above embodiment, in each of the sample container 20 shown in FIGS. 1 to 3 and the sample container 50 shown in FIG. 7, each of the exit windows 22_1, 22_2;
Concentrating quartz lenses 23_1, 23_2; 53 at 2_2
_1 and 53_2 are provided, but these quartz lenses 23_1 and 23_2 for condensing light; 53_1 and 53_2 may not necessarily be provided. The reason is that the thickness of the quartz lens becomes close to 6 mm, so that the distance between the sample and the light receiving element increases, and that the light emitted from the sample has a random traveling direction and has a light collecting function. Does not improve the light-gathering properties, so the quartz lenses 23_1, 23
_2; 53_1 and 53_2 are removed, and each emission window 22_
This is because the optical coupling efficiency can be improved by making the thickness of the sample and the light receiving element as close as possible by reducing the thickness of 1,2_2, 52_1 and 52_2. Alternatively, FIG.
-Quartz lenses 23_1, 23_ having the shapes shown in FIGS.
2: Each of the exit windows may be provided with a Fresnel lens that requires only a small wall pressure in place of 53_1 and 53_2.

【0043】次に、本発明の微弱光測定システムの他の
実施形態について説明する。図9は、本発明の微弱光測
定システムに備えられた試料供給装置を含めた構成全体
を示す図である。図9に示すように、この微弱光測定シ
ステムには、(1)試料が発する光を出射する出射窓4
22_1,422_2を備えた2つの試料受容部421
_1,421_2と各出射窓から出射する光を選択的に
透過する光学的フィルタ415_1,415_2とを備
えてなる試料容器420が交換自在に配置される遮光試
料室411と、試料受容部421_1,421_2の各
出射窓から出射した光を透過する透光窓413_1,4
13_2を透過してきた各光を受光して各受光信号を得
る2つの受光素子431_1,431_2とこれら2つ
の受光素子からの受光信号の差分を増幅する増幅器43
2とを含む受光回路430が配置される遮光受光室41
2とを備えた微弱光測定器410、(2)試料容器42
0に供給される試料が蓄えられる試料供給槽470、
(3)試料容器420からの廃液を受け入れる廃液受入
槽480、(4)試料供給槽470内の試料液面の高さ
と廃液受入槽480内の廃液液面の高さとの差を自在に
調整する液面高低差調整手段490、および(5)試料
供給槽470から試料容器420に試料を導入する管路
510aの途中に設けられたマイクロポンプ530を有
する試料定量供給装置500が備えられている。
Next, another embodiment of the weak light measurement system of the present invention will be described. FIG. 9 is a diagram showing the entire configuration including the sample supply device provided in the weak light measurement system of the present invention. As shown in FIG. 9, this weak light measurement system includes (1) an emission window 4 for emitting light emitted from a sample.
Two sample receiving portions 421 provided with 22_1 and 422_2
_1, 421_2 and optical filters 415_1, 415_2 selectively transmitting light emitted from the respective exit windows, a light-shielding sample chamber 411 in which a sample container 420 is exchangeably arranged, and sample receiving portions 421_1, 421_2. Light-transmitting windows 413_1 and 413_1 that transmit light emitted from the respective emission windows
Two light receiving elements 431_1 and 431_2 for receiving each light transmitted through 13_2 and obtaining respective light receiving signals, and an amplifier 43 for amplifying a difference between light receiving signals from these two light receiving elements.
Light-shielding light-receiving chamber 41 in which the light-receiving circuit 430 including
(2) the sample container 42
A sample supply tank 470 in which the sample supplied to the sample supply tank 0 is stored;
(3) A waste liquid receiving tank 480 for receiving the waste liquid from the sample container 420, (4) The difference between the height of the sample liquid in the sample supply tank 470 and the height of the waste liquid in the waste liquid receiving tank 480 is freely adjusted. A liquid level height difference adjusting means 490 and (5) a sample quantitative supply device 500 having a micropump 530 provided in the middle of a pipe 510a for introducing a sample from the sample supply tank 470 to the sample container 420 are provided.

【0044】図10は、図9に示す試料定量供給装置の
一部詳細図である。図9および図10に示すように、こ
の試料定量供給装置500には、試料供給槽470から
試料容器420に試料を導入する管路510aの途中に
互いに接近した位置に、同一方向への試料の流れを許す
2つの逆止め弁531a,531b、逆止め弁531a
と逆止め弁531bとを結ぶ管路511から分岐した管
路512への試料の流入およびその管路512からの試
料の流出を行わせるピストン520からなるマイクロポ
ンプ530と、ピストン520を駆動するガス駆動方式
のアクチュエータ540とが備えられている。
FIG. 10 is a partially detailed view of the sample quantitative supply apparatus shown in FIG. As shown in FIGS. 9 and 10, the sample quantitative supply device 500 is provided with a sample in the same direction at a position close to each other in a pipe 510 a for introducing a sample from the sample supply tank 470 to the sample container 420. Two check valves 531a, 531b, 531a to allow flow
And a check pump 531b, a micro pump 530 having a piston 520 for flowing a sample into a pipe 512 branched from a pipe 511 and flowing out of the sample from the pipe 512, and a gas for driving the piston 520. A drive type actuator 540 is provided.

【0045】逆止め弁531a,531bはそれぞれ、
小径のルビー球532a,532b、ルビー球532
a,532bの弁座である円錐面533a,533b、
円錐面533a,533bの中央に開口した管路534
a,534b、およびルビー球532a,532bを円
錐面533a,533bとの間に試料の流通を許す間隙
が保たれるような位置にルビー球532a,532bを
保持する耐薬品性のスプリング535a,535bを備
えている。
The check valves 531a and 531b are respectively
Ruby balls 532a, 532b and 532 of small diameter
a, 532b, conical surfaces 533a, 533b, which are valve seats,
Pipe line 534 opened at the center of conical surfaces 533a, 533b
a, 534b and the ruby balls 532a, 532b and the conical surfaces 533a, 533b. Chemical-resistant springs 535a, 535b for holding the ruby balls 532a, 532b at positions such that a gap allowing the flow of the sample is maintained. It has.

【0046】この微弱光測定システムでは、液面高低差
調整手段490により試料供給槽470内の試料液面の
高さと廃液受入槽480内の廃液液面の高さとの差ΔH
は自在に調整可能に構成されている。上記のように、ル
ビー球532a,532bと円錐面533a,533b
との間には試料の流通を許す間隙が保たれているので、
液面高低差調整手段490により試料供給槽470内の
試料液面の高さを廃液受入槽480内の廃液液面の高さ
より高くすることにより、ピストン520を作動させな
いでもサイフォンの原理により試料供給槽470の試料
を試料容器420内に連続的に供給することができる。
同時に試料容器420内の廃液は廃液受入槽480内に
自然に排出される。
In this weak light measurement system, the difference ΔH between the height of the sample liquid in the sample supply tank 470 and the height of the waste liquid in the waste liquid receiving tank 480 is adjusted by the liquid level difference adjusting means 490.
Is configured to be freely adjustable. As described above, the ruby balls 532a, 532b and the conical surfaces 533a, 533b
There is a gap between the sample and the sample that allows the sample to flow,
By making the height of the sample liquid in the sample supply tank 470 higher than the height of the waste liquid in the waste liquid receiving tank 480 by the liquid level difference adjusting means 490, the sample is supplied by the siphon principle without operating the piston 520. The sample in the tank 470 can be continuously supplied into the sample container 420.
At the same time, the waste liquid in the sample container 420 is naturally discharged into the waste liquid receiving tank 480.

【0047】なお、スタンバイの時、すなわち、試料の
流れを停止したい時には、廃液受入槽480内の廃液液
面の高さを試料供給槽470の試料液面の高さより40
cm〜50cm程度高くすることによりサイフォンの原
理による試料の流れを停止させることができる。この
時、液面の高低差ΔHにより逆流しようとする試料の流
れはルビー球532a,532bがそれぞれ円錐面53
3a,533bに押し付けられるため阻止されるので、
廃液受入槽480内の廃液が試料容器420内に逆流す
ることはない。
In the standby mode, that is, when the flow of the sample is to be stopped, the height of the waste liquid in the waste liquid receiving tank 480 is set to be 40 times higher than the height of the sample liquid in the sample supply tank 470.
By increasing the height by about cm to 50 cm, the flow of the sample based on the siphon principle can be stopped. At this time, the ruby spheres 532a and 532b each have a conical surface 53
3a, 533b will be blocked because it is pressed against
The waste liquid in the waste liquid receiving tank 480 does not flow back into the sample container 420.

【0048】アクチュエータ540を作動させてピスト
ン520の往復動を開始させると、ピストン520が図
面に向って右側に移動した時は管路512内は負圧とな
り、試料供給槽470内の試料は管路534aからルビ
ー球532aと円錐面533aとの間隙を通って管路5
11内に流入する。この時、ルビー球532bは円錐面
533bに押し付けられるので試料容器420からの試
料が管路511内に逆流することはない。ピストン52
0が図面に向って左側に移動した時は管路512内は加
圧され、管路511内の試料はルビー球532bと円錐
面533bとの間隙を通り管路534bおよび管路51
0bを経て試料容器420に供給される。この時、ルビ
ー球532aは円錐面533aに押し付けられるので管
路511内の試料が試料供給槽470に逆流することは
ない。
When the reciprocating motion of the piston 520 is started by operating the actuator 540, when the piston 520 moves to the right side in the drawing, the pressure in the pipe line 512 becomes negative, and the sample in the sample supply tank 470 is removed from the pipe. From the channel 534a, through the gap between the ruby ball 532a and the conical surface 533a, the line 5
11 flows into. At this time, the ruby ball 532b is pressed against the conical surface 533b, so that the sample from the sample container 420 does not flow back into the conduit 511. Piston 52
When 0 moves to the left side in the drawing, the inside of the pipe 512 is pressurized, and the sample in the pipe 511 passes through the gap between the ruby ball 532b and the conical surface 533b, and the pipe 534b and the pipe 51 are moved.
Ob is supplied to the sample container 420. At this time, since the ruby ball 532a is pressed against the conical surface 533a, the sample in the pipeline 511 does not flow backward to the sample supply tank 470.

【0049】なお、このピストン520を作動させてい
る時に、液面高低差調整手段490により液面の高さの
差ΔHを変えることにより試料供給槽470から試料容
器420への試料供給量を調整することができる。
When the piston 520 is operated, the liquid level difference ΔH is changed by the liquid level difference adjusting means 490 to adjust the amount of sample supplied from the sample supply tank 470 to the sample container 420. can do.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
高精度の微弱光測定ないし極微弱光測定を行なうことが
できる。
As described above, according to the present invention,
Highly accurate weak light measurement or extremely weak light measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の試料容器の一実施形態が内部に配置さ
れた状態の、本発明の微弱光測定器の一実施形態を示す
正面から見た模式断面図である。
FIG. 1 is a schematic cross-sectional view from the front showing an embodiment of a weak light measurement device of the present invention in a state in which an embodiment of a sample container of the present invention is disposed inside.

【図2】本発明の試料容器の一実施形態が内部に配置さ
れた状態の、本発明の微弱光測定器の一実施形態を示す
側面から見た模式断面図である。
FIG. 2 is a schematic cross-sectional view showing one embodiment of the weak light measuring device of the present invention in a state where an embodiment of the sample container of the present invention is disposed inside.

【図3】本発明の試料容器の一実施形態が内部に配置さ
れた状態の、本発明の微弱光測定器の一実施形態を示す
上面から見た模式断面図である。
FIG. 3 is a schematic cross-sectional view of an embodiment of the weak light measuring device of the present invention viewed from above, with one embodiment of the sample container of the present invention disposed therein.

【図4】本発明の微弱光測定器の第2の実施形態を示す
断面図である。
FIG. 4 is a sectional view showing a second embodiment of the weak light measuring instrument according to the present invention.

【図5】本発明の微弱光測定器の第3の実施形態を示す
断面図である。
FIG. 5 is a cross-sectional view showing a weak light measuring device according to a third embodiment of the present invention.

【図6】本発明の微弱光測定器の第4の実施形態を示す
断面図である。
FIG. 6 is a cross-sectional view illustrating a weak light measuring device according to a fourth embodiment of the present invention.

【図7】図1〜図3に示す試料容器と交換自在に遮光試
料室に配置されるもう1種類の試料容器を示す図であ
る。
FIG. 7 is a diagram showing another type of sample container which is disposed in the light-shielded sample chamber so as to be interchangeable with the sample containers shown in FIGS.

【図8】校正冶具の断面図である。FIG. 8 is a sectional view of a calibration jig.

【図9】本発明の微弱光測定システムに備えられた試料
供給装置を含めた構成全体を示す図である。
FIG. 9 is a diagram showing an entire configuration including a sample supply device provided in the weak light measurement system of the present invention.

【図10】図9に示す試料定量供給装置の一部詳細図で
ある。
FIG. 10 is a partially detailed view of the sample quantitative supply device shown in FIG. 9;

【符号の説明】[Explanation of symbols]

10 微弱光測定器 11 遮光試料室 12 遮光受光室 13 透光窓 14 ドア 15_1,15_2 光学フィルタ 20 試料容器 21_1,21_2 試料受容室 22_1,22_2 出射窓 23_1,23_2 石英レンズ 24_1a,24_1b,24_1c;24_2a,2
4_2b,24_2c溶液流入口 25_1,25_2 溶液流出口 26 流入口 27 内部流路 28 流出口 30 受光回路 31_1,31_2 受光素子 32 差動増幅器 40 超高速分注器 41_1a,41_1b,41_1c;41_2a,4
1_2b,41_2cシリンジ 50 試料容器 51_1,51_2 試料受容器 51_1a,51_2a 側面 53_1,53_2 石英レンズ 56 流入口 57 内部流路 59 蓋 60 校正冶具 61_1,61_2 受容部 66 流入口 67 内部流路 71 チョッパ 72 チョッパ駆動部 100 測定光 101_1,101_2 背景光 110,210,310 微弱光測定器 111,211,311 遮光試料室 112,212,312 遮光受光室 115,215_1,215_2 光学フィルタ 120 試料容器 121_1,121_2,221_1,221_2 試
料受容部 122_1,122_2,222_1,222_2 出
射窓 130 受光回路 131_1,131_2,331_1,331_2 受
光素子 132 差動増幅器 213_1,213_2 透光窓 410 微弱光測定器 411 遮光試料室 412 遮光受光室 413_1,413_2 透光窓 415_1,415_2 光学的フィルタ 420 試料容器 421_1,421_2 試料受容部 422_1,422_2 出射窓 430 受光回路 431_1,431_2 受光素子 432 増幅器 470 試料供給槽 480 廃液受入槽 490 液面高低差調整手段 500 試料定量供給装置 510a,510b,511,512,534a,53
4b 管路 520 ピストン 530 マイクロポンプ 531a,531b 逆止め弁 532a,532b ルビー球 533a,533b 円錐面 535a,535bスプリング 540 アクチュエータ
DESCRIPTION OF SYMBOLS 10 Weak light measuring device 11 Shielded sample chamber 12 Shielded light receiving chamber 13 Translucent window 14 Door 15_1, 15_2 Optical filter 20 Sample container 21_1, 21_2 Sample receiving chamber 22_1, 22_2 Emission window 23_1, 23_2 Quartz lens 24_1a, 24_1b, 24_1c; , 2
4_2b, 24_2c Solution inlet 25_1, 25_2 Solution outlet 26 Inlet 27 Internal flow path 28 Outlet 30 Light receiving circuit 31_1, 31_2 Light receiving element 32 Differential amplifier 40 Ultra high-speed dispenser 41_1a, 41_1b, 41_1c; 41_2a, 4
1_2b, 41_2c Syringe 50 Sample Container 51_1, 51_2 Sample Receptor 51_1a, 51_2a Side 53_1, 53_2 Quartz Lens 56 Inflow 57 Internal Flow Path 59 Lid 60 Calibration Jig 61_1, 61_2 Receptor 66 Inflow 67 Chopper 72 Chopper 72 Driving unit 100 Measurement light 101_1, 101_2 Background light 110, 210, 310 Weak light measurement device 111, 211, 311 Shielded sample chamber 112, 212, 312 Shielded light receiving chamber 115, 215_1, 215_2 Optical filter 120 Sample container 121_1, 121_2, 221_1 , 221_2 Sample receiving section 122_1, 122_2, 222_1, 222_2 Outgoing window 130 Light receiving circuit 131_1, 131_2, 331_1, 331_2 Light receiving element 132 Differential amplifier 213_ , 213_2 Transmissive window 410 Low light measuring device 411 Shielded sample chamber 412 Shielded light receiving chamber 413_1, 413_2 Translucent windows 415_1, 415_2 Optical filter 420 Sample container 421_1, 421_2 Sample receiving part 422_1, 422_2 Outgoing window 431_431 Light receiving circuit 431_431 Light receiving element 432 Amplifier 470 Sample supply tank 480 Waste liquid receiving tank 490 Liquid level difference adjusting means 500 Sample quantitative supply device 510a, 510b, 511, 512, 534a, 53
4b Pipe 520 Piston 530 Micropump 531a, 531b Check valve 532a, 532b Ruby ball 533a, 533b Conical surface 535a, 535b Spring 540 Actuator

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 試料を受け入れる試料受容部であって受
け入れた試料が発する光を出射する出射窓を備えた試料
受容部を、各試料受容部の出射窓が、同一平面上に並
び、かつ同一方向を向くように2つ備えてなる試料容器
が、これら2つの試料受容部の出射窓が下方を向くよう
に着脱自在に配置される遮光試料室、および前記遮光試
料室に配置された試料容器の2つの出射窓から下向きに
出射した光を透過する光透過部材からなる透光窓を挟ん
で前記遮光試料室の下部に形成され、前記2つの出射窓
それぞれから出射し前記透光窓を透過してきた各光をそ
れぞれ受光して各受光信号を得る、受光面を上向きにし
て配置される2つの受光素子と、これら2つの受光信号
の差分を増幅する増幅器とを含む受光回路が配置される
遮光受光室を備えたことを特徴とする微弱光測定器。
1. A sample receiving section having a sample receiving section for receiving a sample and having an output window for emitting light emitted from the received sample, wherein the output windows of each sample receiving section are arranged on the same plane and are identical. A light-shielding sample chamber in which two sample containers provided so as to face each other are detachably disposed such that emission windows of these two sample receiving portions face downward, and a sample container disposed in the light-shielding sample chamber. Are formed at the lower part of the light-shielding sample chamber with a light-transmitting member made of a light-transmitting member that transmits light emitted downward from the two light-emitting windows, and are emitted from the two light-emitting windows and transmitted through the light-transmitting windows. A light receiving circuit including two light receiving elements arranged with their light receiving surfaces facing upward and an amplifier for amplifying the difference between these two light receiving signals, for receiving each of the received lights to obtain respective light receiving signals, is arranged. Equipped with a shading light receiving chamber And a weak light measuring device.
【請求項2】 前記透光窓を構成する光透過部材が、所
望の波長の光を選択的に透過する光学フィルタを形成し
てなることを特徴とする請求項1記載の微弱光測定器。
2. The weak light measuring instrument according to claim 1, wherein the light transmitting member constituting the light transmitting window is formed with an optical filter that selectively transmits light having a desired wavelength.
【請求項3】 前記2つの受光素子の受光面の前面に、
所望の波長の光を選択的に透過する光学フィルタを備え
たことを特徴とする請求項1記載の微弱光測定器。
3. A front face of a light receiving surface of the two light receiving elements,
2. The weak light measuring device according to claim 1, further comprising an optical filter that selectively transmits light having a desired wavelength.
【請求項4】 前記出射窓それぞれと、前記透光窓との
間に、各出射窓それぞれに対応して互いに独立に設けら
れた2つの光学フィルタを備えるとともに、 前記透光窓が、前記2つの出射窓それぞれに対応する、
互いに独立に設けられた2つの透光窓からなることを特
徴とする請求項1記載の微弱光測定器。
4. An optical system according to claim 1, further comprising: two optical filters provided independently of each other in correspondence with each of the exit windows, between the exit windows and the translucent windows, respectively. Corresponding to each of the two exit windows,
The weak light measuring device according to claim 1, comprising two translucent windows provided independently of each other.
【請求項5】 前記遮光受光室内の、前記2つの受光素
子の前面に、これら2つの受光素子に入射する光を相互
に所定の位相関係をもってチョッピングするチョッパを
備えたことを特徴とする請求項1記載の微弱光測定器。
5. A chopper for chopping light incident on these two light receiving elements with a predetermined phase relationship with each other, in front of the two light receiving elements in the light-shielded light receiving chamber. 2. The weak light measuring device according to 1.
【請求項6】 内部に試料を受け入れる、受け入れた試
料が発する光を出射する出射窓を備えた第1の試料受容
部と、 内部に試料を受け入れる、受け入れた試料が発する光を
出射する出射窓を備え該出射窓が前記第1の試料受容部
の出射窓と同一平面上に並ぶとともに同一方向を向くよ
うに前記第1の試料受容部に並んで配置された第2の試
料受容部とを備えたことを特徴とする試料容器。
6. A first sample receiving portion having an emission window for receiving a sample therein and emitting light emitted from the received sample, and an emission window for receiving light therein and emitting light emitted from the received sample. And a second sample receiving portion arranged side by side with the first sample receiving portion so that the exit window is arranged on the same plane as the exit window of the first sample receiving portion and faces in the same direction. A sample container, comprising:
【請求項7】 前記第1および第2の試料受容部内壁の
うちの第1および第2の試料受容部それぞれの出射窓を
除く部分に、該第1および第2の試料受容部それぞれに
受け入れた各試料が発した光を該第1および第2の試料
受容部それぞれの出射窓に向けて反射する各反射面を有
することを特徴とする請求項6記載の試料容器。
7. An inner wall of the first and second sample receiving portions, except for an emission window of each of the first and second sample receiving portions, is received by each of the first and second sample receiving portions. 7. The sample container according to claim 6, further comprising a reflecting surface for reflecting light emitted from each sample toward the emission windows of the first and second sample receiving portions.
【請求項8】 前記第1および第2の試料受容部それぞ
れの出射窓に、前記第1および第2の試料受容部に受け
入れた各試料が発する各光を集光する各集光部材を備え
たことを特徴とする請求項6記載の試料容器。
8. A light-collecting member for condensing each light emitted from each sample received in the first and second sample receiving portions, in each of the emission windows of the first and second sample receiving portions. 7. The sample container according to claim 6, wherein:
【請求項9】 前記第1および第2の試料受容部それぞ
れに対応して、それぞれ複数の溶液流入口と、複数の溶
液流入口から流入した溶液が混合されて該第1および第
2の試料受容部それぞれに流入する各溶液流入路と、該
第1および第2の試料受容部それぞれに受け入れた各溶
液をそれぞれ流出させる各溶液流出路とを備えたことを
特徴とする請求項6記載の試料容器。
9. A plurality of solution inlets corresponding to the first and second sample receiving portions, respectively, and the solutions flowing from the plurality of solution inlets are mixed to form the first and second samples. 7. The apparatus according to claim 6, further comprising: a solution inflow path for flowing into each of the receiving sections; and a solution outflow path for flowing out each of the solutions received in each of the first and second sample receiving sections. Sample container.
【請求項10】 前記第1および第2の試料受容部の出
射窓に対向する側を開放する着脱自在な蓋を備えたこと
を特徴とする請求項6記載の試料容器。
10. The sample container according to claim 6, further comprising a detachable lid that opens a side of the first and second sample receiving portions that faces the emission window.
【請求項11】 前記試料容器を所定の温度に保持する
手段を備えたことを特徴とする請求項4記載の試料容
器。
11. The sample container according to claim 4, further comprising means for maintaining said sample container at a predetermined temperature.
【請求項12】 内部に試料を受け入れる、受け入れた
試料が発する光を出射する出射窓を備えた第1の試料受
容部、内部に試料を受け入れる、受け入れた試料が発す
る光を出射する出射窓を備え該出射窓が前記第1の試料
受容部の出射窓と同一平面上に並ぶとともに同一方向を
向くように前記第1の試料受容部に並んで配置された第
2の試料受容部、および前記第1および第2の試料受容
部それぞれに対応して、それぞれ複数の溶液流入口と、
それぞれ複数の溶液流入口から流入した溶液が混合され
て該第1および第2の試料受容部それぞれに流入する各
溶液流入路と、該第1および第2の試料受容部それぞれ
に受け入れた各溶液をそれぞれ流出させる各溶液流出路
とからなる溶液流路を備えた第1の試料容器と、 内部に試料を受け入れる、受け入れた試料が発する光を
出射する出射窓を備えた第3の試料受容部、内部に試料
を受け入れる、受け入れた試料が発する光を出射する出
射窓を備え該出射窓が前記第3の試料受容部の出射窓と
同一平面上に並ぶとともに同一方向を向くように前記第
3の試料受容部に並んで配置された第4の試料受容部、
および前記第3および第4の試料受容部の出射窓に対向
する側を開放する着脱自在な蓋とを備えた第2の試料容
器と、 前記第1および第2の試料容器が、交換自在に、前記出
射窓を下向きにして配置される遮光試料室、および該遮
光試料室に配置された前記第1ないし第2の試料容器の
2つの出射窓から下向きに出射した光を透過する光透過
部材からなる透光窓を挟んで前記遮光試料室の下部に形
成され、前記2つの出射面それぞれから出射し前記透光
窓を透過してきた各光をそれぞれ受光して各受光信号を
得る、受光面を上向きにして配置される2つの受光素子
と、これら2つの受光信号の差分を増幅する増幅器とを
含む受光回路が配置される遮光受光室を備えた微弱光測
定器とを具備することを特徴とする微弱光測定システ
ム。
12. A first sample receiving portion having an emission window for receiving a sample therein and emitting light emitted from the received sample, and an emission window for receiving the sample therein and emitting light emitted from the received sample. A second sample receiving section arranged alongside the first sample receiving section such that the exit window is arranged on the same plane as the exit window of the first sample receiving section and faces in the same direction; and A plurality of solution inlets respectively corresponding to the first and second sample receiving portions;
Solution inflow paths into which the solutions respectively flowing from the plurality of solution inlets are mixed and flow into the first and second sample receiving portions, respectively, and the solutions received into the first and second sample receiving portions, respectively. A first sample container provided with a solution flow path composed of solution outflow paths for allowing the sample to flow out, and a third sample receiving portion provided with an emission window for receiving a sample therein and emitting light emitted from the received sample. An emission window for receiving a sample therein and emitting light emitted from the received sample, the emission window being arranged on the same plane as the emission window of the third sample receiving portion and facing in the same direction. A fourth sample receiving portion arranged side by side with the sample receiving portion of
A second sample container having a detachable lid that opens a side of the third and fourth sample receiving portions facing the emission window, wherein the first and second sample containers are exchangeable. A light-shielding sample chamber arranged with the emission window facing downward, and a light transmitting member for transmitting light emitted downward from two emission windows of the first and second sample containers arranged in the light-shielding sample chamber. A light-receiving surface formed at a lower portion of the light-shielding sample chamber with a light-transmitting window formed therebetween and receiving each light emitted from each of the two emission surfaces and transmitted through the light-transmitting window to obtain each light-receiving signal; Characterized by comprising a weak light measuring device provided with a light-shielded light-receiving chamber in which a light-receiving circuit including two light-receiving elements arranged with the light-receiving element facing upward and an amplifier for amplifying the difference between these two light-receiving signals is arranged. Weak light measurement system.
【請求項13】 前記遮光試料室に、前記第1および第
2の試料容器と交換自在に配置される、前記2つの受光
素子それぞれに向かって光を発する2つの発光体を受容
する校正冶具を具備することを特徴とする請求項12記
載の微弱光測定システム。
13. A calibrating jig for receiving two illuminants emitting light toward each of the two light receiving elements, which is disposed in the light-shielded sample chamber so as to be interchangeable with the first and second sample containers. The low-light-level measuring system according to claim 12, comprising:
【請求項14】 前記試料容器に供給される試料が蓄え
られる試料供給槽と、 該試料容器からの廃液を受け入れる廃液受入槽と、 前記試料供給槽内の試料液面の高さと前記廃液受入槽内
の廃液液面の高さとの差を自在に調整する液面高低差調
整手段とを備えたことを特徴とする請求項12記載の微
弱光測定システム。
14. A sample supply tank for storing a sample to be supplied to the sample container, a waste liquid receiving tank for receiving a waste liquid from the sample container, a height of a sample liquid surface in the sample supply tank, and the waste liquid receiving tank. 13. The weak light measuring system according to claim 12, further comprising a liquid level height difference adjusting means for freely adjusting a difference between the liquid level and the liquid level in the liquid.
【請求項15】 前記試料容器に試料を導入する管路の
途中に、互いに接近した位置に同一方向への試料の流れ
を許す2つの逆止め弁、該2つの逆止め弁を結ぶ管路か
ら分岐した管路への試料の流入および該管路からの試料
の流出を行わせるピストンを有する試料定量供給装置を
備えたことを特徴とする請求項12記載の微弱光測定シ
ステム。
15. A two-way check valve for allowing a sample to flow in the same direction at a position close to each other in a pipe for introducing a sample into the sample container, and a pipe connecting the two check valves. 13. The weak light measurement system according to claim 12, further comprising a sample quantitative supply device having a piston for allowing a sample to flow into and out of the branched pipe.
JP25672297A 1996-11-22 1997-09-22 Feeble light measuring apparatus, sample vessel and feeble light measuring system Pending JPH10206313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25672297A JPH10206313A (en) 1996-11-22 1997-09-22 Feeble light measuring apparatus, sample vessel and feeble light measuring system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31220796 1996-11-22
JP8-312207 1996-11-22
JP25672297A JPH10206313A (en) 1996-11-22 1997-09-22 Feeble light measuring apparatus, sample vessel and feeble light measuring system

Publications (1)

Publication Number Publication Date
JPH10206313A true JPH10206313A (en) 1998-08-07

Family

ID=26542862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25672297A Pending JPH10206313A (en) 1996-11-22 1997-09-22 Feeble light measuring apparatus, sample vessel and feeble light measuring system

Country Status (1)

Country Link
JP (1) JPH10206313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310894A (en) * 2001-04-11 2002-10-23 Japan Science & Technology Corp Emission observing device, emitter sorting device and sorting method for emitter
US7491526B2 (en) 2002-08-19 2009-02-17 Olympus Corporation Incubator and culture device
JP2020130090A (en) * 2019-02-22 2020-08-31 東洋製罐グループホールディングス株式会社 Culture medium discharging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310894A (en) * 2001-04-11 2002-10-23 Japan Science & Technology Corp Emission observing device, emitter sorting device and sorting method for emitter
US7491526B2 (en) 2002-08-19 2009-02-17 Olympus Corporation Incubator and culture device
JP2020130090A (en) * 2019-02-22 2020-08-31 東洋製罐グループホールディングス株式会社 Culture medium discharging device

Similar Documents

Publication Publication Date Title
US7801394B2 (en) Sensitive emission light gathering and detection system
US7808641B2 (en) Interactive variable pathlength device
JPS6022649A (en) Optical method and device for measuring characteristic of substance by fluorescence of said substance
JP5167194B2 (en) Microbiological testing device
US7468789B2 (en) Flow cytometer for rapid bacteria detection
JP6790082B2 (en) Handheld Field Portable Surface Plasmon Resonator and Its Use in Detection of Chemical and Biological Agents
ES2534648T3 (en) Pipette, apparatus and assembly for light measurement and method
CN103926188A (en) Disposable Chip-type Flow Cell And Flow Cytometer Using Same
CA2373673C (en) Flow cytometer and ultraviolet light disinfecting systems
CN105358958A (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JPS586445A (en) Simultaneous measuring analyzing device for quantity of particle and fluorescent characteristic
CN110031384A (en) Flow cytometer
JP2021043209A6 (en) Handheld Field Portable Surface Plasmon Resonator and Its Use in Detection of Chemical and Biological Agents
US9291503B2 (en) Flow type single-particle spectrometer
RU2593623C2 (en) Device for photometric or spectrometric analysis of liquid sample
KR100948810B1 (en) Multi channel fluorescence detector On-line Monitoring Apparatus
US11150458B2 (en) Multi-mode imaging optical system
AU2007230753A1 (en) Optical design of a measurement system having multiple sensor or multiple light source paths
CN108489902A (en) A kind of the optical-fiber laser miniflow detector and detection method of high duplication
Dorman et al. [30] UV absorption and circular dichroism measurements on light scattering biological specimens; fluorescent cell and related large-angle light detection techniques
JPH10206313A (en) Feeble light measuring apparatus, sample vessel and feeble light measuring system
JP4594810B2 (en) Method for controlling position of particles in sample liquid and particle measuring apparatus
US20080019658A1 (en) Sensitive emission light gathering and flow through detection system
US7643146B2 (en) Methods and apparatus for reducing noise in scatterometry measurements
JP2011220947A (en) Microbiological testing apparatus and microbiological testing chip

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010807