JPH10206309A - Quality evaluating method for liquid repellent film - Google Patents

Quality evaluating method for liquid repellent film

Info

Publication number
JPH10206309A
JPH10206309A JP1044797A JP1044797A JPH10206309A JP H10206309 A JPH10206309 A JP H10206309A JP 1044797 A JP1044797 A JP 1044797A JP 1044797 A JP1044797 A JP 1044797A JP H10206309 A JPH10206309 A JP H10206309A
Authority
JP
Japan
Prior art keywords
liquid
repellent film
liquid crystal
evaluating
liquid repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1044797A
Other languages
Japanese (ja)
Inventor
Atsushi Shirasawa
淳 白澤
Masaji Nakanishi
正次 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1044797A priority Critical patent/JPH10206309A/en
Publication of JPH10206309A publication Critical patent/JPH10206309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quality evaluating method for a liquid repellent film to evaluate a characteristic of the liquid repellent film from a relationship map of a previously found film thickness and a contact angle and the film thickness and a dielectric constant by particularly forming a liquid crystal cell on the liquid repellent film, and measuring the contact angle or the dielectric constant by irradiation of the light in the method to evaluate liquid repellent capacity of a liquid repellent film processing part. SOLUTION: In a quality evaluating method of a liquid repellent film formed in a liquid repellent film processing part, a liquid crystal cell is formed on the liquid repellent film processing part, and a transparent base board 5 having a liquid crystal orientation film is arranged through a spacer 3 and a liquid crystal 4, and after the whole is packed (7) in a vacuum, and the light is applied, and the transmitted light or the reflected light is investigated, and a contact angle by water repellency is evaluated by the relationship between previously found orientation of the liquid crystal and a liquid repellent film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、撥液処理部品の撥
液能を評価する方法に関し、特に撥液膜に液晶セルを形
成し、光を照射することによって接触角または誘電率を
測定して、予め求めておいた膜厚および触角並びに膜厚
および誘電率の関係マップから撥液膜の特性を評価する
撥液膜の品質評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the liquid repellency of a liquid repellent component, and more particularly to a method for forming a liquid crystal cell on a liquid repellent film and irradiating light to measure a contact angle or a dielectric constant. Also, the present invention relates to a method for evaluating the quality of a liquid-repellent film, which evaluates the characteristics of the liquid-repellent film from a previously obtained relationship map of the film thickness and the antenna and the film thickness and the dielectric constant.

【0002】[0002]

【従来の技術】内燃機関等の燃料噴射弁(以下、インジ
ェクタと呼称する)では、バルブの開閉によって、確実
に燃料を遮断または適量の流量を流さなければならな
い。また、燃料中にはオイル、添加物、水分等の異物が
存在し、これが作動中に堆積しデポジットと称する堆積
物が、燃料等の流れの障害となる。デポジットが堆積す
るとインジェクタ構成部品が高精度に製作されていて
も、燃料流の障害となり内燃機関では問題となってく
る。最近では、このようなデポジットの付着低減等の目
的で各種部品に撥液膜を形成する処理を施すことが考え
られている。しかし、この種の薄膜は可視光域では無色
透明で膜厚も非常に薄いため膜自体の判別さえ困難な状
態である。この膜が予定どおり形成されていない場合に
は所望の効果が期待出来ないため、撥液膜が形成さてい
ることを確認・評価することが重要となる。
2. Description of the Related Art In a fuel injection valve (hereinafter, referred to as an injector) of an internal combustion engine or the like, it is necessary to reliably shut off fuel or flow an appropriate flow rate by opening and closing the valve. In addition, foreign substances such as oil, additives, and moisture are present in the fuel, and the foreign substances, which accumulate during operation and are referred to as deposits, impede the flow of the fuel and the like. When deposits accumulate, even if the injector components are manufactured with high precision, it becomes a hindrance to fuel flow and becomes a problem in internal combustion engines. Recently, it has been considered to perform a process of forming a liquid-repellent film on various components for the purpose of reducing the adhesion of the deposit. However, this type of thin film is colorless and transparent in the visible light region and has a very small thickness, so that it is difficult to identify the film itself. If this film is not formed as expected, a desired effect cannot be expected, so it is important to confirm and evaluate that a liquid-repellent film has been formed.

【0003】従来、電子部品や機械部品に用いられてい
る薄膜の膜厚は100nm〜0.1mm程度であり、こ
れらの測定に用いられている電子顕微鏡による断面観
察、蛍光X線膜計等は100nm以下である撥液膜の膜
厚測定には使用できない。そこで、撥液膜の有無の判別
は目視液体の静的接触角、絶縁抵抗値の大小、オージェ
電子分光法(以下AESと表記する)等により行われて
いた。上記非破壊評価方法では、ポイント測定はミリ単
位までで撥液膜ような薄膜の測定は困難であり、かつ再
現性がよくない等の問題がある。従来の撥液膜の評価法
の長所・短所を表1に示す。
Conventionally, the thickness of a thin film used for electronic parts and mechanical parts is about 100 nm to 0.1 mm. It cannot be used for measuring the thickness of a liquid-repellent film having a thickness of 100 nm or less. Therefore, the determination of the presence or absence of the liquid-repellent film has been performed by the static contact angle of the visual liquid, the magnitude of the insulation resistance value, Auger electron spectroscopy (hereinafter referred to as AES), or the like. In the nondestructive evaluation method described above, there are problems such as point measurement up to the millimeter, measurement of a thin film such as a liquid-repellent film is difficult, and reproducibility is poor. Table 1 shows the advantages and disadvantages of the conventional liquid repellent film evaluation method.

【0004】[0004]

【表1】 [Table 1]

【0005】上記の問題点を整理すると、非破壊評価手
法では、最表面の情報のみしか得られない、ポイン
ト測定はミリ単位程度まで、定量的な測定が困難、
再現性が悪い、測定に熟練が必要、破壊評価手法(材
料分析)では、イ.測定により試料が変質する、ロ.1
点の測定に長時間を要する。ハ.設備自体が非常に高
価、両者に共通するものとしては、試料形状に制約があ
ることが挙げられる。一方、撥液処理を施した細孔内壁
を有する部品の細孔内の撥液能を、その化学的構造から
評価する方法として、従来技術では細孔部を長さ方向に
切断して内壁を露出させ、X線による元素分析法やAE
Sによる分析が行われていた。上記従来の方法は、いず
れもノズルを半割りすることが前提となっており、ノズ
ルを半割りすることは熟練と多工程加工を必要とするた
め時間・費用が掛かると共に、ノズル半割内壁は凹面で
あるため、一般的な撥液能の評価に用いられている水滴
の接触角測定法が利用できないため、撥液能の直接評価
が困難という問題がある。そこで、ノズルを半割りする
必要のない非破壊評価方法が求められている。
[0005] To summarize the above problems, the nondestructive evaluation method can only obtain information on the outermost surface.
Poor reproducibility, skill required for measurement, destruction evaluation method (material analysis) The sample is altered by the measurement. 1
It takes a long time to measure points. C. The equipment itself is very expensive, and the common factor between the two is that there are restrictions on the sample shape. On the other hand, as a method of evaluating the liquid repellency in the pores of a component having a pore inner wall subjected to a liquid repellent treatment from the chemical structure, in the conventional technique, the pore portion is cut in the length direction to cut the inner wall. Exposure to X-ray elemental analysis or AE
Analysis by S was performed. All of the above-mentioned conventional methods are based on the premise that the nozzle is split in half.Since splitting the nozzle in half requires skill and multi-step processing, it takes time and cost, and the inner wall of the nozzle half is Because of the concave surface, the method for measuring the contact angle of a water drop, which is generally used for evaluating liquid repellency, cannot be used, so that there is a problem that direct evaluation of liquid repellency is difficult. Therefore, a non-destructive evaluation method that does not need to divide the nozzle in half is required.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、FA
S(フルオロアルキルシラン)を用いた撥液膜の撥液能
の評価方法を検討し、光を照射して液晶セルにより測定
した液体の接触角を、液晶の配向性との関係マップから
評価可能とする撥液膜の品質評価方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an FA
A method for evaluating the liquid repellency of a liquid repellent film using S (fluoroalkylsilane) has been studied, and the liquid contact angle measured by a liquid crystal cell upon irradiation with light can be evaluated from a map of the relationship with the orientation of the liquid crystal. It is an object of the present invention to provide a method for evaluating the quality of a liquid-repellent film.

【0007】また、本発明の他の目的は、FAS(フル
オロアルキルシラン)を用いた撥液膜の撥液能の評価方
法を検討し、光を照射して液晶セルにより測定した複素
誘電率を測定し、液晶の配向性との関係マップから評価
可能とする撥液膜の品質評価方法を提供することにあ
る。さらに、本発明の他の目的は、前記液晶を吸引し
て、液晶セルを形成し前記と同様に光を照射して液晶セ
ルにより測定した液体の接触角を、液晶の配向性との関
係マップから評価可能とする撥液膜の品質評価方法を提
供することにある。また、本発明の他の目的は、前記液
晶を吸引して、液晶セルを形成しこれに導電板を設け、
前記と同様に液晶セルにより測定した複素誘電率を測定
し、液晶の配向性との関係マップから評価可能とする撥
液膜の品質評価方法を提供することにある。
Another object of the present invention is to examine a method for evaluating the liquid repellency of a liquid repellent film using FAS (fluoroalkylsilane), and to determine the complex permittivity measured by a liquid crystal cell upon irradiation with light. It is an object of the present invention to provide a method for evaluating the quality of a liquid-repellent film, which can be measured and evaluated from a map relating to the orientation of liquid crystal. Further, another object of the present invention is to form a liquid crystal cell by sucking the liquid crystal, irradiate light in the same manner as described above, and map the contact angle of the liquid measured by the liquid crystal cell with the orientation of the liquid crystal. It is an object of the present invention to provide a method for evaluating the quality of a liquid-repellent film that can be evaluated from the viewpoint of a liquid repellent film. Another object of the present invention is to suck the liquid crystal, form a liquid crystal cell, and provide a conductive plate on the liquid crystal cell,
It is another object of the present invention to provide a method for evaluating the quality of a liquid-repellent film, in which a complex dielectric constant measured by a liquid crystal cell is measured in the same manner as described above and can be evaluated from a map showing a relationship with the orientation of the liquid crystal.

【0008】[0008]

【課題を解決するための手段】上記の目的は、撥液膜処
理部品に形成されている撥液膜の品質評価方法であっ
て、前記撥液膜処理部品の上に液晶セルを形成して、ス
ペーサと液晶を介して液晶配向膜付透明基板を配設し、
全体を真空パックした後に光を照射して透過光または反
射光を調べ、予め求めておいた液晶の配向性と撥液膜と
の関係より撥水性による接触角を評価することを特徴と
する撥液膜の品質評価方法によって達成される。
An object of the present invention is to provide a method for evaluating the quality of a liquid-repellent film formed on a liquid-repellent film-treated component, wherein a liquid crystal cell is formed on the liquid-repellent film-treated component. , A transparent substrate with a liquid crystal alignment film is arranged via a spacer and liquid crystal,
After the whole is vacuum-packed, light is irradiated to examine transmitted light or reflected light, and the contact angle due to water repellency is evaluated from the relationship between the orientation of the liquid crystal and the liquid repellent film determined in advance. This is achieved by a liquid film quality evaluation method.

【0009】また、上記の目的は、撥液膜処理部品に形
成されている撥液膜の品質評価方法であって、前記撥液
膜処理部品の上に液晶セルを形成して、スペーサと液晶
を介して液晶配向膜付導電板を配設し、全体を真空パッ
クした後に撥液膜処理部品と導電板間の複素誘電率を調
べ、予め求めておいた液晶の配向性と複素誘電率との関
係より撥水性を評価することを特徴とする撥液膜の品質
評価方法によっても達成される。さらに、上記の目的
は、ノズル状部品の細孔内壁に形成されている撥液膜の
品質評価方法であって、ノズル状部品の先端を液晶に浸
漬して毛管現象により細孔内に液晶を吸引し、細孔の一
方から照射した光の透過光を細孔の他方で検出し、予め
求めておいた液晶の配向性と撥液膜との関係より撥水性
による接触角を評価することを特徴とする撥液膜の品質
評価方法によっても達成される。
Another object of the present invention is a method for evaluating the quality of a liquid-repellent film formed on a liquid-repellent film-treated component, wherein a liquid crystal cell is formed on the liquid-repellent film-treated component, and a spacer and a liquid crystal are formed. A liquid crystal alignment film-equipped conductive plate is provided through the device, and after vacuum-packing the whole, the complex permittivity between the liquid-repellent film-treated component and the conductive plate is checked, and the liquid crystal orientation and complex permittivity obtained in advance are determined. This is also achieved by a method for evaluating the quality of a liquid repellent film, which is characterized by evaluating the water repellency from the relationship of Further, the above object is a method for evaluating the quality of a liquid-repellent film formed on the inner wall of a pore of a nozzle-like component, in which the tip of the nozzle-like component is immersed in the liquid crystal, and the liquid crystal is injected into the pore by capillary action. Aspirate, detect the transmitted light of the light irradiated from one of the pores at the other of the pores, and evaluate the contact angle due to water repellency from the relationship between the orientation of the liquid crystal and the liquid-repellent film, which is obtained in advance. It is also achieved by the characteristic quality evaluation method of the liquid repellent film.

【0010】また、上記の目的は、ノズル状部品の細孔
内壁に形成されている撥液膜の品質評価方法であって、
ノズル状部品の先端を液晶に浸漬して毛管現象により細
孔内に液晶を吸引し、この液晶内に導電性部材を挿入し
ノズル状部品と導電部材間の複素誘電率を測定すること
により、予め求めておいた液晶の配向性と複素誘電率と
の関係より撥水性を評価することを特徴とする撥液膜の
品質評価方法によっても達成される。
Another object of the present invention is to provide a method for evaluating the quality of a liquid-repellent film formed on the inner wall of a fine hole of a nozzle-like part,
By immersing the tip of the nozzle-like part in the liquid crystal and sucking the liquid crystal into the pores by capillary action, inserting a conductive member into this liquid crystal and measuring the complex dielectric constant between the nozzle-like part and the conductive member, It is also achieved by a method for evaluating the quality of a liquid-repellent film, which is characterized by evaluating the water-repellency from the relationship between the orientation of the liquid crystal and the complex permittivity, which is determined in advance.

【0011】[0011]

【発明の実施の形態】本発明では、撥液能を付与してい
る膜表面の官能基と液晶分子の末端基との相互作用によ
り液晶分子の配列が変化する。また、液晶分子の光学
的、電気的特性はその分子鎖の傾き加減で異なる。この
ため、液晶分子の傾きを電気的または光学的手段で検出
することにより、撥液能の大小を評価可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the arrangement of liquid crystal molecules is changed by the interaction between a functional group on the surface of the film imparting liquid repellency and a terminal group of the liquid crystal molecules. In addition, the optical and electrical characteristics of liquid crystal molecules differ depending on the tilt of the molecular chains. Therefore, the magnitude of the liquid repellency can be evaluated by detecting the inclination of the liquid crystal molecules by electrical or optical means.

【0012】本発明は、前記の実情に鑑みなされたもの
であり、FASを用いた撥液膜の品質に関して、非破
壊、再現性良く、定量的測定が可能、高感度、
点/面両方、撥液能の可視化、短時間で、撥液能の
初期特性およびその耐久性を評価可能な手法およびその
装置を提供することを目的とする。前述の問題点を解決
する発明の特徴は、FASを用いた撥液膜に関して、膜
に撥液能を付与している膜表面の官能基と液晶分子の末
端基との相互作用により、膜表面の官能基の配列、密度
等により液晶分子の配列が変化すること、および液晶分
子の物性が分子長軸方向と平行方向と直角方向で異なる
こと(図13)を用い、それを電気的または光学的手段
等により検出することにより、撥液膜および撥液膜上の
官能基の有無、撥液能の大小を評価可能とすることにあ
る。
The present invention has been made in view of the above-described circumstances, and is capable of performing nondestructive, reproducible, quantitative measurement, high sensitivity, and high quality on the quality of a liquid repellent film using FAS.
An object of the present invention is to provide a method and a device capable of visualizing the liquid repellency of both points / surfaces, and evaluating the initial characteristics of liquid repellency and its durability in a short time. The feature of the invention that solves the above-mentioned problems is that, with respect to the liquid repellent film using FAS, the interaction between the functional group on the film surface that imparts the liquid repellency to the film and the terminal group of the liquid crystal molecule causes And that the liquid crystal molecules are arranged differently depending on the arrangement, density, etc. of the functional groups, and that the physical properties of the liquid crystal molecules are different in the direction parallel to the long axis of the molecule and in the direction perpendicular to the molecule (FIG. 13). An object of the present invention is to make it possible to evaluate the presence / absence of a liquid-repellent film and a functional group on the liquid-repellent film and the magnitude of the liquid-repellent ability by detecting the liquid-repellent film.

【0013】[0013]

【実施例】以下、本発明の実施例に基づいてさらに詳述
する。 実施例1 本実施例は、平滑な平板上に成膜した撥液膜の一部分の
撥液能を、光学的手段を用いて評価する方法である。あ
る一面に一様に撥液膜1を成膜した光透過率あるいは光
反射率の高い材料で構成された平板2を図1(a)に示
す。この撥液膜の撥液能の評価を行うための処理を、図
1(b)〜(d)に示す。なお、本実施例では、平板2
として、ガラス(LCD用ファインガラス)の一面に平
滑化のために無機物薄膜を形成したもの、スペーサ3と
して、ポリスチレン製球状で粒径6μmを、液晶4とし
てホスト液晶市販多成分系ネマチックN型液晶、市販二
色性染料を使用した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. Example 1 This example is a method for evaluating the liquid repellency of a part of a liquid repellent film formed on a smooth flat plate using optical means. FIG. 1A shows a flat plate 2 made of a material having a high light transmittance or light reflectivity in which a liquid repellent film 1 is uniformly formed on a certain surface. The processing for evaluating the liquid repellency of the liquid repellent film is shown in FIGS. In this embodiment, the flat plate 2
A glass (fine glass for LCD) with an inorganic thin film formed on one side for smoothing; a spacer 3 having a polystyrene spherical particle diameter of 6 μm; and a liquid crystal 4 serving as a host liquid crystal commercially available multi-component nematic N-type liquid crystal. A commercially available dichroic dye was used.

【0014】まず、前記図1(a)のように、撥液膜上
にLCD等用のスペーサ3をある密度で一様に散布す
る。さらに、LCD等用の液晶4を一定量以上滴下する
(図1(b))。次に、光透過率の高い平板5上に液晶
配向膜6(撥液能が既知の撥液膜で可)を形成した基地
を、配向膜形成部位側が測定対象試料の液晶滴下面と接
するように重ね合わせる(図1(c))。次いで、基板
がずれないようにしながら、真空パック7用の袋に入
れ、真空パックする。この時の真空度は、セル間の液晶
が吸い出されない程度とすればよい。
First, as shown in FIG. 1A, spacers 3 for an LCD or the like are uniformly dispersed on a liquid-repellent film at a certain density. Further, a predetermined amount or more of liquid crystal 4 for an LCD or the like is dropped (FIG. 1B). Next, the base on which the liquid crystal alignment film 6 (a liquid repellent film having a known liquid repellency is possible) is formed on the flat plate 5 having a high light transmittance so that the alignment film forming site side is in contact with the liquid crystal dropping surface of the sample to be measured. (FIG. 1 (c)). Next, the substrate is put in a bag for the vacuum pack 7 and vacuum-packed while keeping the substrate from shifting. The degree of vacuum at this time may be such that liquid crystal between cells is not sucked out.

【0015】この真空パックは、簡易セル(液晶の漏
れ防止)の形成、およびセルギャップを一定に保つた
めに実施するものである(図1(d))。次に、光源8
および光検出器9を図1(e)または図1(f)のよう
に設置し簡易セルの光反射率または光透過率を測定す
る。本実施例では、図2(a)のように、撥液膜の撥液
能の大小により、液晶分子10の配向(角度θ)能力が
異なることを利用したものである。従って、当該部位の
液晶分子の向きが変わる。さらに、この影響を受けその
周辺近傍の液晶分子の配列も変化するので、光透過率ま
たは光反射率も変化する(図2(b))。このため、液
晶分子の配列と光透過率または光反射率の関係、液晶分
子の配列とある液体の接触角の相関を把握しておけば、
光透過率または光反射率から、当該部位の対液体接触角
を推定することが可能となる(図2(c))。また、評
価後に簡易セルを分解し、評価対象の撥液膜表面を弱い
有機溶剤等で洗浄すれば、当該撥液膜の撥液性は損なわ
れなく影響されない。
This vacuum pack is used to form a simple cell (prevent liquid crystal leakage) and to keep the cell gap constant (FIG. 1D). Next, the light source 8
The light detector 9 is installed as shown in FIG. 1E or FIG. 1F, and the light reflectance or light transmittance of the simple cell is measured. In this embodiment, as shown in FIG. 2A, the fact that the alignment (angle θ) ability of the liquid crystal molecules 10 differs depending on the size of the liquid repellency of the liquid repellent film is used. Therefore, the direction of the liquid crystal molecules at the site changes. Further, since the arrangement of the liquid crystal molecules near the periphery changes due to this influence, the light transmittance or the light reflectance also changes (FIG. 2B). For this reason, if the relationship between the arrangement of liquid crystal molecules and the light transmittance or light reflectance, and the correlation between the arrangement of liquid crystal molecules and the contact angle of a certain liquid, is understood,
From the light transmittance or the light reflectance, the contact angle with respect to the liquid at the site can be estimated (FIG. 2C). Further, if the simple cell is disassembled after the evaluation and the surface of the liquid repellent film to be evaluated is washed with a weak organic solvent or the like, the liquid repellency of the liquid repellent film is not affected and is not affected.

【0016】実施例2 本実施例は、平滑な平板上に成膜した撥液膜の面全体の
撥液能を、電気的手段を用いて評価する方法である。あ
る一面に一様に撥液膜1を成膜した導電体で構成された
平板11を図3(a)に示す。この撥液膜の撥液能の評
価を行うための処理を、図3(b)〜(d)に示す。
Embodiment 2 This embodiment is a method for evaluating the liquid repellency of the entire surface of a liquid repellent film formed on a smooth flat plate by using an electric means. FIG. 3A shows a flat plate 11 made of a conductor having a liquid repellent film 1 formed uniformly on a certain surface. FIGS. 3B to 3D show a process for evaluating the liquid repellency of the liquid repellent film.

【0017】まず、前記図3(a)のように、撥液膜上
にLCD等用のスペーサ3をある程度で一様に散布す
る。さらに、LCD等用の液晶4を一定量以上滴下する
(図3(b))。次に、導電体で構成された平板上11
に液晶配向膜6(撥液能が既知の撥液膜でも可)を形成
した基板を配向膜形成部位側が測定対象試料の液晶滴下
面と接するように重ね合わせる。(図3(c))。最後
に、基板がずれないようにしながら、真空パック7用の
袋に入れ、電極となる部分だけ外部に残して、真空パッ
クする(図3(d))。この時の真空度は、セル間の液
晶が吸い出されない程度とすればよい。
First, as shown in FIG. 3A, spacers 3 for an LCD or the like are sprayed on the liquid repellent film to a certain extent. Further, a predetermined amount or more of the liquid crystal 4 for an LCD or the like is dropped (FIG. 3B). Next, on a flat plate 11 made of a conductor,
A liquid crystal alignment film 6 (a liquid repellent film having a known liquid repellency) may be formed on the substrate so that the alignment film forming site side is in contact with the liquid crystal dropping surface of the sample to be measured. (FIG. 3 (c)). Lastly, the substrate is put in a bag for the vacuum pack 7 while keeping the substrate from shifting, and vacuum-packed while leaving only a portion to be an electrode outside (FIG. 3D). The degree of vacuum at this time may be such that liquid crystal between cells is not sucked out.

【0018】また、真空パックは、簡易セル(液晶の
漏れ防止)の形成、およびセルギャップを一定に保つ
ために実施するものである。本実施例では、図4(a)
および(c)のように、撥液膜の撥液能の大小により、
液晶分子の配向能力が異なる。従って、当該部位の液晶
分子の配列が変化するので、図4(b)および(d)の
ように、電極間(簡易セル)の複素誘電率も変化する。
さらに図6のような、基板11、液晶4および撥液膜1
からなる簡易セルの電気的等価回路、および液晶分子の
配列と複素誘電率の相関および液晶分子の配列(図5
(a))とある液体の接触角の相関(図5(b))を把
握しておけば、複素誘電率の値から、当該部位の液体接
触角を推定することが可能となる。この場合も、評価後
に簡易セルを分解し、評価対象の撥液膜表面を弱い有機
溶剤等で洗浄すれば、当該撥液膜の撥液性は損なわれな
く影響されない。
The vacuum packing is performed to form a simple cell (to prevent leakage of liquid crystal) and to keep the cell gap constant. In the present embodiment, FIG.
As shown in (c) and (c), depending on the magnitude of the liquid repellency of the liquid repellent film,
The alignment ability of liquid crystal molecules is different. Accordingly, since the arrangement of the liquid crystal molecules at the site changes, the complex permittivity between the electrodes (simple cell) also changes as shown in FIGS. 4B and 4D.
Further, as shown in FIG. 6, the substrate 11, the liquid crystal 4, and the lyophobic film 1
The electrical equivalent circuit of a simple cell consisting of the following, the correlation between the arrangement of liquid crystal molecules and the complex permittivity, and the arrangement of liquid crystal molecules (FIG. 5)
If the correlation between (a)) and the contact angle of a certain liquid (FIG. 5 (b)) is grasped, it is possible to estimate the liquid contact angle of the relevant site from the value of the complex permittivity. Also in this case, if the simple cell is disassembled after the evaluation and the surface of the liquid repellent film to be evaluated is washed with a weak organic solvent or the like, the liquid repellency of the liquid repellent film is not affected and is not affected.

【0019】実施例3 本実施例は、径が充分小さく平滑な円筒内面に成膜した
撥液膜の面全体の撥液能を、光学的手段を用いて評価す
る方法である。内面に一様に撥液膜1を成膜した円筒1
2を図7(d)に示す。この撥液膜の撥液能の評価を行
うための処理を図7(a)〜(c)に示す。図7(a)
のように、円筒12を垂直に液晶4に浸漬する。次に、
円筒12内に液晶4を毛管現象で吸入させる(図7
(b))。次に、円筒12を液晶4からゆっくり引き上
げる(図7(c))。そして、円筒の前後にそれぞれ光
源8・光検出器9を設置する。(図7(e)) 実施例1と同様の原理により、円筒内部の撥液膜の撥液
能の大小により、円筒前後の光透過率が変化し、これか
ら当該部位の対液体接触角の値を推定することが可能と
なる(図8)。本実施例でも、円筒内部に吸入された液
晶を圧搾空気等で吹き飛ばし、再洗浄することにより、
測定試料の再利用が可能である。
Embodiment 3 This embodiment is a method for evaluating the liquid repellency of the entire surface of a liquid repellent film formed on a smooth inner surface of a cylinder having a sufficiently small diameter by using an optical means. Cylinder 1 with liquid repellent film 1 formed uniformly on inner surface
2 is shown in FIG. FIGS. 7A to 7C show a process for evaluating the liquid repellency of the liquid repellent film. FIG. 7 (a)
The cylinder 12 is vertically immersed in the liquid crystal 4 as shown in FIG. next,
The liquid crystal 4 is sucked into the cylinder 12 by capillary action (FIG. 7).
(B)). Next, the cylinder 12 is slowly pulled up from the liquid crystal 4 (FIG. 7C). Then, a light source 8 and a photodetector 9 are installed before and after the cylinder, respectively. (FIG. 7 (e)) According to the same principle as in Example 1, the light transmissivity before and after the cylinder changes depending on the level of the liquid repellency of the liquid repellent film inside the cylinder. Can be estimated (FIG. 8). Also in the present embodiment, the liquid crystal sucked into the cylinder is blown off with compressed air or the like, and is washed again.
The measurement sample can be reused.

【0020】実施例4 本実施例は、径が充分小さく平滑な円筒内面に成膜した
撥液膜の面全体の撥液能を、電気的手段を用いて評価す
る方法である。内面に一様に撥液膜1を成膜した導電体
で構成された円筒13を図9(d)に示す。この撥液膜
の撥液能の評価を行うための処理を図7(a)〜(c)
に示す。図7(a)のように、円筒13を垂直に液晶4
に浸漬する。次に、円筒13内に液晶4を毛管現象で吸
入させる(図9(b))。次に、円筒13を液晶4から
ゆっくり引き上げる(図9(c))。そして、円筒13
の前後の一方から、円筒13内部の径より充分小さい導
電体で構成された丸棒14を、円筒内部に撥液膜1が形
成されている部分に対応するように差し込む。(図7
(e)) 実施例2と同様の原理により、本実施例では、図10
(a)および(c)のように、撥液膜の撥液能の大小に
より、液晶分子の配向能力が異なる。従って、当該部位
の液晶分子の配列が変化するので、図10(b)および
(d)のように、電極間(簡易セル)の複素誘電率も変
化する。さらに図12のような、基板11、液晶4および
撥液膜1からなる簡易セルの電気的等価回路、および液
晶分子の配列と複素誘電率の相関および液晶分子の配列
とある液体の接触角の相関(図11(b))を把握してお
けば、複素誘電率の値から、当該部位の液体接触角を推
定することが可能となる。すなわち、円筒内部の撥液膜
の撥液能の大小により、円筒と円筒内部に差し込んだ丸
棒との間の複素誘電率が、変化し、これから当該部位の
対液体接触角の値を推定することができる。この方法で
も実施例3と同様に、測定試料の再利用が可能である。
Embodiment 4 The present embodiment is a method for evaluating the liquid repellency of the entire surface of a liquid repellent film formed on a smooth inner surface of a cylinder having a sufficiently small diameter by using an electric means. FIG. 9D shows a cylinder 13 made of a conductor having the liquid-repellent film 1 formed uniformly on the inner surface. FIGS. 7A to 7C show a process for evaluating the liquid repellency of the liquid repellent film.
Shown in As shown in FIG. 7A, the cylinder 13 is vertically
Soak in Next, the liquid crystal 4 is sucked into the cylinder 13 by capillary action (FIG. 9B). Next, the cylinder 13 is slowly pulled up from the liquid crystal 4 (FIG. 9C). And the cylinder 13
A round bar 14 made of a conductor sufficiently smaller than the diameter of the inside of the cylinder 13 is inserted from one of the front and rear sides so as to correspond to the portion where the liquid-repellent film 1 is formed inside the cylinder. (FIG. 7
(E)) According to the same principle as in the second embodiment, in this embodiment, FIG.
As shown in (a) and (c), the alignment ability of liquid crystal molecules differs depending on the level of the liquid repellency of the liquid repellent film. Therefore, since the arrangement of the liquid crystal molecules at the site changes, the complex permittivity between the electrodes (simple cell) also changes as shown in FIGS. 10B and 10D. Further, as shown in FIG. 12, an electrical equivalent circuit of a simple cell including the substrate 11, the liquid crystal 4, and the liquid repellent film 1, the correlation between the arrangement of liquid crystal molecules and the complex permittivity, and the arrangement of liquid crystal molecules and the contact angle of a certain liquid. If the correlation (FIG. 11B) is grasped, it is possible to estimate the liquid contact angle of the relevant site from the value of the complex permittivity. That is, the complex dielectric constant between the cylinder and the round bar inserted inside the cylinder changes depending on the magnitude of the liquid repellency of the liquid-repellent film inside the cylinder, and the value of the liquid contact angle of the relevant portion is estimated from this. be able to. Also in this method, the measurement sample can be reused similarly to the third embodiment.

【0021】[0021]

【発明の効果】本発明では、撥液膜に液晶セルを構成す
る透明基板を設け、光を照射して液晶配向と光屈折率ま
たは複素誘電率の変化から、事前にその関係マップを作
製しておき、光屈折率のまたは複素誘電率の測定結果と
このマップとを比較することによって精度よく撥液膜の
均一性または撥液能を非破壊的に評価することが可能と
なる。
According to the present invention, a transparent substrate constituting a liquid crystal cell is provided on a liquid-repellent film, and a relationship map is prepared in advance by irradiating light to determine a liquid crystal orientation and a change in photorefractive index or complex dielectric constant. It is possible to accurately and non-destructively evaluate the uniformity or the liquid repellency of the liquid repellent film by comparing the measurement result of the optical refractive index or the complex dielectric constant with this map.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る処理の図で、(a)ス
ペーサを設ける、(b)液晶滴下、(c)基板、(d)
真空パック、(e)光照射(上部)、(e)光照射(下
部)を示す図である。
FIG. 1 is a diagram of a process according to a first embodiment of the present invention, in which (a) a spacer is provided, (b) a liquid crystal is dropped, (c) a substrate, and (d).
It is a figure which shows a vacuum pack, (e) light irradiation (upper part), and (e) light irradiation (lower part).

【図2】本発明の実施例1に係る結果の図で、(a)液
晶分子、(b)液晶分子配向角度と光透過率との関係、
(c)液晶分子配向角度と対水接触角との関係を示す図
である。
FIGS. 2A and 2B are diagrams showing results according to Example 1 of the present invention, in which (a) liquid crystal molecules, (b) the relationship between the liquid crystal molecule orientation angle and light transmittance,
(C) is a diagram showing the relationship between the liquid crystal molecule alignment angle and the contact angle with water.

【図3】本発明の実施例2に係る処理の図で、(a)ス
ペーサを設ける、(b)液晶滴下、(c)基板、(d)
真空パックを示す図である。
FIG. 3 is a diagram of a process according to a second embodiment of the present invention, in which (a) a spacer is provided, (b) a liquid crystal is dropped, (c) a substrate, and (d).
It is a figure showing a vacuum pack.

【図4】本発明の実施例2に係る結果の図で、(a)液
晶分子、(b)液晶分子配向による複素誘電率との関
係、(c)液晶分子、(d)液晶分子配向による複素誘
電率との関係を示す図である。
FIGS. 4A and 4B are graphs showing results according to Example 2 of the present invention, in which (a) the relationship between liquid crystal molecules, (b) the relationship with the complex permittivity due to the liquid crystal molecule alignment, (c) the liquid crystal molecules, and (d) the relationship between the liquid crystal molecule alignment. It is a figure which shows the relationship with a complex dielectric constant.

【図5】本発明の実施例2に係る結果の図で、(a)液
晶分子、(b)液晶分子配向角度と対液体接触角との関
係を示す図である。
FIGS. 5A and 5B are graphs showing results according to Example 2 of the present invention, wherein FIG. 5A is a graph showing the relationship between liquid crystal molecules and FIG.

【図6】本発明の実施例2に係る電気的等価回路を示す
図である。
FIG. 6 is a diagram illustrating an electrical equivalent circuit according to a second embodiment of the present invention.

【図7】本発明の実施例3に係る処理の図で、(a)撥
液膜を設ける、(b)液晶に浸漬、(c)引き上げ、
(d)撥液膜の成膜状況、(e)光照射を示す図であ
る。
FIG. 7 is a diagram of a process according to a third embodiment of the present invention, in which (a) a liquid-repellent film is provided, (b) immersion in liquid crystal, (c) pull-up,
FIG. 5D is a diagram illustrating a state of forming a liquid repellent film, and FIG.

【図8】本発明の実施例3に係る結果の図で、(a)液
晶分子、(b)液晶分子配向角度と光透過率との関係、
(c)液晶分子配向角度と対液体接触角との関係を示す
図である。
FIG. 8 is a diagram showing results according to Example 3 of the present invention, in which (a) liquid crystal molecules, (b) the relationship between the liquid crystal molecule orientation angle and light transmittance,
(C) is a diagram illustrating a relationship between a liquid crystal molecule alignment angle and a contact angle with respect to a liquid.

【図9】本発明の実施例4に係る処理の図で、(a)撥
液膜を設ける、(b)液晶に浸漬、(c)引き上げ、
(d)撥液膜の成膜状況、(e)導電体の丸棒を示す図
である。
FIG. 9 is a diagram of a process according to a fourth embodiment of the present invention, in which (a) a liquid-repellent film is provided, (b) immersion in liquid crystal, and (c) pull-up.
FIG. 3D is a diagram illustrating a state of forming a liquid-repellent film, and FIG.

【図10】本発明の実施例4に係る結果の図で、(a)
液晶分子、(b)液晶分子配向による複素誘電率との関
係、(c)液晶分子、(d)液晶分子配向による複素誘
電率との関係を示す図である。
FIG. 10 is a diagram showing results according to Example 4 of the present invention, wherein (a)
It is a figure which shows the relationship between a liquid crystal molecule and (b) complex dielectric constant by liquid crystal molecule orientation, and (c) liquid crystal molecule and (d) complex dielectric constant by liquid crystal molecule orientation.

【図11】本発明の実施例4に係る結果の図で、(a)
液晶分子、(b)液晶分子配向とよる液体接触角との関
係を示す図である。
FIG. 11 is a diagram showing results according to Example 4 of the present invention, in which (a)
It is a figure which shows the relationship between a liquid crystal molecule and the liquid contact angle by (b) liquid crystal molecule orientation.

【図12】本発明の実施例4に係る電気的等価回路を示
す図である。
FIG. 12 is a diagram illustrating an electrical equivalent circuit according to a fourth embodiment of the present invention.

【図13】従来の液晶の物理・電気的特性を示す図であ
る。
FIG. 13 is a diagram showing physical and electrical characteristics of a conventional liquid crystal.

【符号の説明】[Explanation of symbols]

1…撥液膜 2…光透過率または光反射率の高い平板 3…スペーサ 4…液晶 5…光透過率の高い平板 6…液晶配向膜 7…真空パック 8…光源 9…光検出器 10…液晶分子 11…導電体の平板 12…円筒 13…導電体の円筒 14…導電体の丸棒 15…導電体(円筒+丸棒) 16…分子長軸に平行方向 17…分子長軸に直角方向 n…光屈折率(透過率、反射率) ε…誘電率 DESCRIPTION OF SYMBOLS 1 ... Liquid-repellent film 2 ... Flat plate with high light transmittance or light reflectance 3 ... Spacer 4 ... Liquid crystal 5 ... Flat plate with high light transmittance 6 ... Liquid crystal alignment film 7 ... Vacuum pack 8 ... Light source 9 ... Photodetector 10 ... Liquid crystal molecule 11: Conductor flat plate 12: Cylinder 13: Conductor cylinder 14: Conductor round bar 15: Conductor (cylinder + round bar) 16: Parallel direction to molecular long axis 17: Direction perpendicular to molecule long axis n: light refractive index (transmittance, reflectance) ε: dielectric constant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 撥液膜処理部品に形成されている撥液膜
の品質評価方法であって、前記撥液膜処理部品の上に液
晶セルを形成して、スペーサと液晶を介して液晶配向膜
付透明基板を配設し、全体を真空パックした後に光を照
射して透過光または反射光を調べ、予め求めておいた液
晶の配向性と撥液膜との関係より撥水性による接触角を
評価することを特徴とする撥液膜の品質評価方法。
1. A method for evaluating the quality of a liquid-repellent film formed on a liquid-repellent film-treated component, comprising: forming a liquid crystal cell on the liquid-repellent film-treated component; A transparent substrate with a film is provided, and the whole is vacuum-packed and then irradiated with light to examine transmitted light or reflected light, and a contact angle due to water repellency is obtained from a relationship between liquid crystal orientation and a liquid repellent film determined in advance. A liquid repellent film quality evaluation method characterized by evaluating the following.
【請求項2】 撥液膜処理部品に形成されている撥液膜
の品質評価方法であって、前記撥液膜処理部品の上に液
晶セルを形成して、スペーサと液晶を介して液晶配向膜
付導電板を配設し、全体を真空パックした後に撥液膜処
理部品と導電板間の複素誘電率を調べ、予め求めておい
た液晶の配向性と複素誘電率との関係より撥水性を評価
することを特徴とする撥液膜の品質評価方法。
2. A method for evaluating the quality of a liquid-repellent film formed on a liquid-repellent film-treated component, comprising: forming a liquid crystal cell on the liquid-repellent film-treated component; After installing a conductive plate with a film and vacuum-packing the whole, examine the complex permittivity between the liquid-repellent film-treated component and the conductive plate, and determine the water repellency based on the relationship between the orientation of the liquid crystal and the complex permittivity determined in advance. A liquid repellent film quality evaluation method characterized by evaluating the following.
【請求項3】 ノズル状部品の細孔内壁に形成されてい
る撥液膜の品質評価方法であって、ノズル状部品の先端
を液晶に浸漬して毛管現象により細孔内に液晶を吸引
し、細孔の一方から照射した光の透過光を細孔の他方で
検出し、予め求めておいた液晶の配向性と撥液膜との関
係より撥水性による接触角を評価することを特徴とする
撥液膜の品質評価方法。
3. A method for evaluating the quality of a liquid-repellent film formed on an inner wall of a pore of a nozzle-like part, wherein the tip of the nozzle-like part is immersed in liquid crystal, and the liquid crystal is sucked into the pore by capillary action. The feature is that the transmitted light of the light irradiated from one of the pores is detected by the other of the pores, and the contact angle due to water repellency is evaluated from the relationship between the orientation of the liquid crystal and the liquid repellent film, which is obtained in advance. Quality evaluation method of liquid repellent film.
【請求項4】 ノズル状部品の細孔内壁に形成されてい
る撥液膜の品質評価方法であって、ノズル状部品の先端
を液晶に浸漬して毛管現象により細孔内に液晶を吸引
し、この液晶内に導電性部材を挿入しノズル状部品と導
電部材間の複素誘電率を測定することにより、予め求め
ておいた液晶の配向性と複素誘電率との関係より撥水性
を評価することを特徴とする撥液膜の品質評価方法。
4. A method for evaluating the quality of a liquid-repellent film formed on the inner wall of a pore of a nozzle-like part, wherein the tip of the nozzle-like part is immersed in liquid crystal, and the liquid crystal is sucked into the pore by capillary action. By inserting a conductive member into the liquid crystal and measuring the complex permittivity between the nozzle-shaped component and the conductive member, the water repellency is evaluated from the relationship between the orientation of the liquid crystal and the complex permittivity, which is obtained in advance. A method for evaluating the quality of a liquid-repellent film, comprising:
JP1044797A 1997-01-23 1997-01-23 Quality evaluating method for liquid repellent film Pending JPH10206309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1044797A JPH10206309A (en) 1997-01-23 1997-01-23 Quality evaluating method for liquid repellent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044797A JPH10206309A (en) 1997-01-23 1997-01-23 Quality evaluating method for liquid repellent film

Publications (1)

Publication Number Publication Date
JPH10206309A true JPH10206309A (en) 1998-08-07

Family

ID=11750411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044797A Pending JPH10206309A (en) 1997-01-23 1997-01-23 Quality evaluating method for liquid repellent film

Country Status (1)

Country Link
JP (1) JPH10206309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305868B2 (en) * 2004-03-18 2007-12-11 Seiko Epson Corporation Method and system for evaluating lyophobicity of inner wall of fine tube including lyophobic film
CN104697900A (en) * 2013-12-05 2015-06-10 上海梭伦信息科技有限公司 Method for measuring interface tension and contact angle under vacuum controlled-temperature conditions, and apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305868B2 (en) * 2004-03-18 2007-12-11 Seiko Epson Corporation Method and system for evaluating lyophobicity of inner wall of fine tube including lyophobic film
CN104697900A (en) * 2013-12-05 2015-06-10 上海梭伦信息科技有限公司 Method for measuring interface tension and contact angle under vacuum controlled-temperature conditions, and apparatus thereof

Similar Documents

Publication Publication Date Title
US7745791B2 (en) Detecting apparatus, and detecting method
Zhang et al. Supported lipid bilayer assembly on PEDOT: PSS films and transistors
JP3569072B2 (en) Crack inspection method for ceramic substrate
US4355278A (en) Method for testing and analyzing surface acoustic wave interdigital transducers
Mohammadi et al. Differential microwave resonator sensor for real-time monitoring of volatile organic compounds
US7286235B2 (en) Long-range surface plasmon resonance device utilizing nano-scale porous dielectric and method of fabricating the same
JPH07167779A (en) Quantitative analysis method of sample liquid
GB2156970A (en) Optical detection of specific molecules
WO2006020507A1 (en) Sensor films and systems and methods of detection using sensor films
EP2100138B1 (en) Method for internal standardization of assays
TWI742418B (en) Systems and methods for inspecting a microfluidic rotor device
CN106153581A (en) For detecting the spr sensor without reference of benzopyrene
JPH10206309A (en) Quality evaluating method for liquid repellent film
Strobel et al. Contact angle measurements on oxidized polymer surfaces containing water-soluble species
JP2009068864A (en) Transmission line for dielectric measurement, and dielectric measuring device equipped with the transmission line
JP7373552B2 (en) microfluidic rotor device
Fuentes-Domínguez et al. Characterising the size and shape of metallic nano-structures by their acoustic vibrations
Etchenique et al. Viscoelasticity in the diffuse electric double layer
US6154283A (en) Method for evaluating quality of liquid repellent film
Liu et al. Layer‐by‐Layer Assembly of Polyelectrolyte and Nanoparticles, Monitored by Capillary Electrophoresis
Ho et al. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds: final LDRD report
CN114034662B (en) High-compatibility portable biological detection device based on gold nanopore array and preparation method and application thereof
JP3228138B2 (en) Method for evaluating liquid repellent film properties of liquid repellent treated product having pore inner wall
JP3366262B2 (en) Coating method and coating device
JP2002228662A (en) Apparatus and method for optical biomolecule detection