JPH10204458A - Refrigerator oil - Google Patents

Refrigerator oil

Info

Publication number
JPH10204458A
JPH10204458A JP936697A JP936697A JPH10204458A JP H10204458 A JPH10204458 A JP H10204458A JP 936697 A JP936697 A JP 936697A JP 936697 A JP936697 A JP 936697A JP H10204458 A JPH10204458 A JP H10204458A
Authority
JP
Japan
Prior art keywords
oil
alkylbenzene
boiling point
refrigerating machine
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP936697A
Other languages
Japanese (ja)
Inventor
Akihiro Nozue
章浩 野末
Toshikazu Sakai
寿和 境
Shigeru Sasabe
笹部  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP936697A priority Critical patent/JPH10204458A/en
Publication of JPH10204458A publication Critical patent/JPH10204458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refrigerator oil, capable of maintaining the durability of a compressor without depositing an oligomer or a carboxylic acid metallic salt, etc., dissolved in a refrigerator oil ever when a nonester-based low-viscosity refrigerator oil is applied to a reciprocating hermetically closed type electric compressor in order to raise the efficiency and prevent hydrolysis. SOLUTION: A refrigerator oil, consisting essentially of a nonester-based synthetic oil having <=20mm<2> /sec kinematic viscosity at 40 deg.C and containing >=20wt.% component having 1400 deg.C boiling point compounded therewith can be used to thereby maintain the durability of a compressor without depositing an oligomer or a carboxylic acid metallic salt, etc., near a discharging chamber or a discharging valve due to no complete evaporation of the component having >=400 deg.C boiling point in the refrigerator oil in the discharging chamber and due to the discharge together with the refrigerant while dissolving the oligomer or carboxylic acid metallic salt therein. A carbonate-based synthetic oil or an ether-based synthetic oil is preferred as the nonester-based synthetic oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫、家庭用エ
アコン等の冷凍サイクルに用いられる冷凍機油に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating machine oil used for a refrigerating cycle of a refrigerator, a home air conditioner and the like.

【0002】[0002]

【従来の技術】現在、オゾン層保護の観点より冷凍サイ
クルの冷媒の代替化や冷凍サイクル用圧縮機の高効率化
が進められている。この過程において、従来の塩素を含
有する冷媒から塩素を含有しないハイドロフルオロカー
ボン(以下HFCという)系代替冷媒に変更するに当た
り、冷媒との相溶性を確保したエステルやエーテル、カ
ーボネートを主成分とする冷凍機油や非相溶性のアルキ
ルベンゼンを主成分とする冷凍機油が使用されている。
一方、高効率化のためにこれら冷凍機油の低粘度化の検
討も進められている。
2. Description of the Related Art At present, from the viewpoint of protection of the ozone layer, replacement of a refrigerant in a refrigeration cycle and improvement in efficiency of a compressor for a refrigeration cycle are being promoted. In this process, when a conventional chlorine-containing refrigerant is changed to a chlorine-free hydrofluorocarbon (hereinafter referred to as HFC) -based alternative refrigerant, a refrigeration mainly containing an ester, ether, or carbonate that is compatible with the refrigerant. A refrigerating machine oil mainly containing a machine oil or an incompatible alkylbenzene is used.
On the other hand, studies have been made to reduce the viscosity of these refrigerating machine oils in order to increase the efficiency.

【0003】しかし、エステル系油は、加水分解もしく
は熱分解によりカルボン酸を発生させるため、カルボン
酸による金属の腐蝕摩耗あるいは銅メッキ現象が起こる
とい弱点があるため、圧縮機の水分管理や温度管理に注
意する必要がある。
However, ester-based oils generate carboxylic acids by hydrolysis or thermal decomposition, and have a disadvantage in that metal corrosion or copper plating occurs due to carboxylic acids. You need to be careful.

【0004】一方、カーボネート系油、エーテル系油は
エステル系油の加水分解もしくは熱分解によりカルボン
酸を発生させる弱点が改善されている(例えば、特開平
7−224290公報および特開平6−345679公
報)。
[0004] On the other hand, carbonate-based oils and ether-based oils have improved weaknesses of generating carboxylic acids by hydrolysis or thermal decomposition of ester-based oils (for example, JP-A-7-224290 and JP-A-6-345679). ).

【0005】以下図面を参照しながら従来の低粘度非エ
ステル系冷凍機油を用いた圧縮機の一例について説明す
る。
An example of a conventional compressor using a low-viscosity non-ester type refrigerating machine oil will be described below with reference to the drawings.

【0006】従来の例えば図7に示す圧縮機では、密閉
容器1内に弾性支持された電動要素2と圧縮要素3を備
え、前記電動要素2の回転力を伝動する。前記圧縮要素
3のクランク軸4、コンロッド5、ピストン6を有して
いる。7はシリンダーヘッドで、前記シリンダーヘッド
7にはキャピラリーチューブ15がプラグ17を介して
圧入固定されており、前記キャピラリーチューブ15の
一方の端部は沸点が300℃、40℃の動粘度が8mm
/sのエーテル系冷凍機油16の油面下に、他端は前
記シリンダーヘッド7の吸入室8に開口している。
[0007] For example, a conventional compressor shown in FIG. 7 includes an electric element 2 and a compression element 3 elastically supported in a closed container 1, and transmits the torque of the electric element 2. The compression element 3 includes a crankshaft 4, a connecting rod 5, and a piston 6. Reference numeral 7 denotes a cylinder head. A capillary tube 15 is press-fitted and fixed to the cylinder head 7 via a plug 17, and one end of the capillary tube 15 has a kinematic viscosity at a boiling point of 300 ° C. and 40 ° C. of 8 mm.
The other end is open to the suction chamber 8 of the cylinder head 7 below the oil level of the 2 / s ether-based refrigerating machine oil 16.

【0007】以上のように構成された圧縮機について以
下その動作について説明する。前記電動要素2の回転力
を前記クランク軸4、コンロッド5を介し前記ピストン
6を往復運動せしめてHFCガスを吸入、圧縮させる。
HFCガスは前記シリンダーヘッド7の吸入室8からバ
ルブプレート10の吸入孔11を通ってシリンダー13
のシリンダー室14に導かれ圧縮される。
The operation of the compressor configured as described above will be described below. The rotational force of the electric element 2 reciprocates the piston 6 via the crankshaft 4 and the connecting rod 5 to suck and compress the HFC gas.
The HFC gas flows from the suction chamber 8 of the cylinder head 7 through the suction hole 11 of the valve plate 10 to the cylinder 13.
Is guided to the cylinder chamber 14 and compressed.

【0008】圧縮されたHFCガスは高温で、前記バル
ブプレート10の吐出孔12を通って前記シリンダーヘ
ッド7の吐出室9に送り込まれる。
At a high temperature, the compressed HFC gas is sent to the discharge chamber 9 of the cylinder head 7 through the discharge holes 12 of the valve plate 10.

【0009】以上のようなHFCガスの流れによって前
記吸入室8での圧力が前記密閉容器1内の雰囲気圧力よ
り低下し、前記シリンダーヘッド7に固着されたキャピ
ラリーチューブ15により適量の前記冷凍機油16を前
記吸入室8に送り込み、最終的に前記シリンダー室14
に前記冷凍機油16を送り込むこととなり、前記冷凍機
油16が蒸発することによって吐出ガス温度を低減し、
かつシール性を向上させている。
Due to the flow of the HFC gas as described above, the pressure in the suction chamber 8 becomes lower than the atmospheric pressure in the closed vessel 1, and an appropriate amount of the refrigerating machine oil 16 is supplied by the capillary tube 15 fixed to the cylinder head 7. Into the suction chamber 8 and finally the cylinder chamber 14
The refrigerating machine oil 16 is sent to the refrigerating machine oil 16, and the refrigerating machine oil 16 evaporates, thereby reducing the discharge gas temperature.
And the sealing property is improved.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、油の沸点が低いためシリンダ室内に供給
された冷凍機油が吐出室で蒸発してしまうため、冷凍機
油に溶解していたモータ絶縁材のポリエステルオリゴマ
ーや加工油中のカルボン酸金属塩が析出し、吐出室の閉
塞や吐出バルブの動作不良が発生し、著しい性能低下が
生じる可能性があった。
However, in the above-mentioned conventional construction, the refrigerating machine oil supplied into the cylinder chamber evaporates in the discharge chamber due to the low boiling point of the oil. The polyester oligomer of the material and the metal carboxylate in the processing oil are precipitated, and the discharge chamber may be blocked or the discharge valve may operate improperly.

【0011】そこで、高効率化および加水分解防止のた
めに往復式の密閉型電動圧縮機に非エステル系の低粘度
冷凍機油を適用した場合でも、冷凍機油中に溶解してい
るオリゴマやカルボン酸金属塩等が析出せず性能が維持
できる高沸点の冷凍機油が望まれている。
Therefore, even when a non-ester type low-viscosity refrigerating machine oil is applied to a reciprocating hermetic electric compressor for higher efficiency and prevention of hydrolysis, oligomers and carboxylic acids dissolved in the refrigerating machine oil are used. There is a demand for a high boiling point refrigerating machine oil capable of maintaining performance without depositing metal salts and the like.

【0012】本発明は、冷凍機油の蒸発特性を改善し、
冷凍機油に溶解したオリゴマやカルボン酸金属塩等を析
出させないことで、圧縮機の耐久性向上を図ることを目
的とする。
The present invention improves the evaporation characteristics of refrigerating machine oil,
An object of the present invention is to improve the durability of a compressor by preventing precipitation of oligomers, metal carboxylate, and the like dissolved in refrigerator oil.

【0013】[0013]

【課題を解決するための手段】そこで本発明の冷凍機油
は、40℃の動粘度が20mm/s以下の非エステル
系合成油を主成分とし、沸点が400℃以上の成分を2
0重量%以上配合したものである。
Accordingly, the refrigerating machine oil of the present invention comprises a non-ester synthetic oil having a kinematic viscosity at 40 ° C. of 20 mm 2 / s or less as a main component and a component having a boiling point of 400 ° C. or more.
0% by weight or more is blended.

【0014】この発明によれば、往復式の密閉型電動圧
縮機において冷凍機油中の沸点が400℃以上の成分が
吐出室で完全に蒸発せず、オリゴマやカルボン酸金属塩
等を溶解したまま冷媒とともに吐出されるため、吐出室
や吐出バルブ付近でオリゴマやカルボン酸金属塩等が析
出することなく圧縮機の耐久性が維持できる。
According to the present invention, in the reciprocating hermetic electric compressor, components having a boiling point of 400 ° C. or higher in the refrigerating machine oil do not completely evaporate in the discharge chamber, and the oligomer and the metal carboxylate remain dissolved in the discharge chamber. Since the refrigerant is discharged together with the refrigerant, the durability of the compressor can be maintained without depositing oligomers, metal carboxylate, and the like near the discharge chamber and the discharge valve.

【0015】[0015]

【発明の実施の形態】本発明の請求項1に記載の発明
は、HFC冷媒を圧縮する往復式の密閉型電動圧縮機に
用いられる冷凍機油であって、40℃の動粘度が20m
/s以下のカーボネート系合成油あるいはエーテル
系合成油を主成分とし、沸点が400℃以上の成分を2
0重量%以上配合したことを特徴とする冷凍機油であっ
て、圧縮機の高効率化が図れ、かつ加水分解を起こさな
いとともに、吐出室や吐出バルブ付近でオリゴマやカル
ボン酸金属塩等が析出することなく圧縮機の耐久性が維
持できるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The first aspect of the present invention is a refrigerating machine oil used for a reciprocating hermetic electric compressor for compressing an HFC refrigerant, which has a kinematic viscosity at 40 ° C. of 20 m.
m 2 / s or less of a carbonate-based synthetic oil or an ether-based synthetic oil as a main component, and a component having a boiling point of 400 ° C. or more.
A refrigerating machine oil characterized by being blended in an amount of 0% by weight or more, which can improve the efficiency of the compressor, does not cause hydrolysis, and precipitates oligomers and metal carboxylate in the vicinity of a discharge chamber or a discharge valve. This has the effect that the durability of the compressor can be maintained without performing.

【0016】本発明の請求項2に記載の発明は、HFC
系冷媒を圧縮する往復式の密閉型電動圧縮機に用いられ
る冷凍機油であって、40℃の動粘度が20mm/s
以下のアルキルベンゼン油を主成分とし、沸点が400
℃以上の成分を20重量%以上配合したことを特徴とす
る冷凍機油であって、安価で、圧縮機の高効率化が図
れ、かつ加水分解を起こさないとともに、吐出室や吐出
バルブ付近でオリゴマやカルボン酸金属塩等が析出する
ことなく圧縮機の耐久性が維持できるという作用を有す
る。また、アルキルベンゼン油がHFC冷媒と非相溶で
あることから冷凍システム内で冷媒相と冷凍機油相が分
離しており、カルボン酸金属塩等が油中に溶解したまま
冷凍システム内を循環するため、配管中にカルボン酸金
属塩等が析出することなく冷凍システムの耐久性を維持
できるという作用を有する。
The invention according to claim 2 of the present invention provides an HFC
A refrigerating machine oil used for a reciprocating hermetic electric compressor for compressing a system refrigerant, wherein the kinematic viscosity at 40 ° C. is 20 mm 2 / s.
The following alkylbenzene oils are the main components and the boiling point is 400
A refrigerating machine oil characterized by containing 20% by weight or more of a component having a temperature of at least 100 ° C., which is inexpensive, has high efficiency of a compressor, does not cause hydrolysis, and has oligomers near a discharge chamber or a discharge valve. And the effect that the durability of the compressor can be maintained without precipitation of metal salts of carboxylic acid and the like. Also, since the alkylbenzene oil is incompatible with the HFC refrigerant, the refrigerant phase and the refrigerating machine oil phase are separated in the refrigeration system, and the metal carboxylate and the like are circulated in the refrigeration system while being dissolved in the oil. In addition, there is an effect that the durability of the refrigeration system can be maintained without depositing metal carboxylate or the like in the piping.

【0017】本発明の請求項3に記載の発明は、ハイド
ロカーボン系冷媒を圧縮する往復式の密閉型電動圧縮機
に用いられる冷凍機油であって、40℃の動粘度が20
mm /s以下のアルキルベンゼン油を主成分とし、沸
点が400℃以上の成分を20重量%以上配合したこと
を特徴とする冷凍機油であって、安価で、圧縮機の高効
率化が図れ、かつ加水分解を起こさないとともに、吐出
室や吐出バルブ付近でオリゴマやカルボン酸金属塩等が
析出することなく圧縮機の耐久性が維持できるという作
用を有する。また、HC冷媒は地球温暖化係数がHFC
冷媒に比べ著しく小さいため、地球温暖化を抑制する作
用を有する。
According to a third aspect of the present invention, there is provided the
Reciprocating hermetic electric compressor that compresses carbon-based refrigerant
A kinetic viscosity at 40 ° C. of 20
mm 2/ S or less alkylbenzene oil as the main component,
20% by weight or more of components with a temperature of 400 ° C or higher
A refrigerating machine oil characterized by low cost, high efficiency of compressor
Efficiency, hydrolysis does not occur, and discharge
Oligomer or metal carboxylate in the chamber or near the discharge valve
A product that can maintain the durability of the compressor without precipitation
Having The HC refrigerant has a global warming potential of HFC
Because it is significantly smaller than refrigerant, it works to reduce global warming.
Having

【0018】[0018]

【実施例】以下、本発明による冷凍機油の実施例につい
て、図面を参照しながら説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a refrigerating machine oil according to an embodiment of the present invention.

【0019】(実施例1)図1は本発明の実施例1によ
るHFC冷媒を圧縮する往復式の密閉型電動圧縮機に用
いられる冷凍機油の蒸発量と蒸留温度の関係を示した線
図である。図2は同実施例の冷凍機油の吐出ガスの温度
とオリゴマの析出量の関係を示した線図である。本発明
の実施例1のHFC冷媒を圧縮する往復式の密閉型電動
圧縮機は、冷凍機油16を除いて、図7で示した従来の
密閉型電動圧縮機と同一であるため説明を省略する。
(Embodiment 1) FIG. 1 is a diagram showing a relationship between an evaporation amount of a refrigerating machine oil and a distillation temperature used in a reciprocating hermetic electric compressor for compressing an HFC refrigerant according to a first embodiment of the present invention. is there. FIG. 2 is a graph showing the relationship between the temperature of the gas discharged from the refrigerating machine oil of the embodiment and the amount of oligomer precipitated. The reciprocating hermetic electric compressor for compressing the HFC refrigerant according to the first embodiment of the present invention is the same as the conventional hermetic electric compressor shown in FIG. .

【0020】図1、2において本発明の実施例1である
エーテル系油Aは、例えば、(化1)の構造を有する沸
点が300℃、40℃の動粘度が8mm/sの従来仕
様のエーテル系油Bに、沸点が400℃、40℃の動粘
度が50mm/sのエーテル系油Cを20重量%配合
したもので、動粘度が40℃で10mm/sである。
1 and 2, the ether type oil A according to the first embodiment of the present invention has, for example, a conventional structure having a structure of (Chemical Formula 1) having a boiling point of 300 ° C., a kinematic viscosity at 40 ° C. of 8 mm 2 / s. 20% by weight of an ether oil B having a boiling point of 400 ° C. and a kinematic viscosity of 50 mm 2 / s at 40 ° C. and a kinematic viscosity of 10 mm 2 / s at 40 ° C.

【0021】[0021]

【化1】 Embedded image

【0022】上記(化1に)において、R1およびR2
は、それぞれ独立な炭化水素基である。また、nは整数
である。
In the above (Chemical formula 1), R1 and R2
Is an independent hydrocarbon group. Further, n is an integer.

【0023】図1で、本発明の実施例1であるエーテル
系油Aの成分であるエーテル系油BおよびCは単一成分
のため、蒸留温度は一定になる。エーテル系油Aはエー
テル系油Bにエーテル系油Cを20重量%混合する事に
より、蒸発量が80重量%以上でエーテル系油Cの沸点
を示すため、高沸点で低粘度のエーテル系冷凍機油を得
ることができる。
In FIG. 1, since the ether oils B and C, which are components of the ether oil A according to the first embodiment of the present invention, are single components, the distillation temperature is constant. The ether oil A has a boiling point of 80% by weight or more and shows the boiling point of the ether oil C by mixing 20% by weight of the ether oil C with the ether oil B, so that the ether refrigeration has a high boiling point and a low viscosity. Machine oil can be obtained.

【0024】しかし、蒸発温度は蒸発量が80重量%の
ところでエーテル系油Bの沸点300℃からエーテル系
油Cの沸点400℃まで急激に変化するわけではなく、
蒸発量が80〜90重量%ではエーテル系油Cの沸点4
00℃まで到達しない。そのため、エーテル系油Aが完
全に蒸発する温度を400℃にするには、エーテル系油
の配合量は20重量%以上になる。
However, the evaporation temperature does not suddenly change from the boiling point of ether oil B of 300 ° C. to the boiling point of ether oil C of 400 ° C. when the amount of evaporation is 80% by weight.
When the evaporation amount is 80 to 90% by weight, the boiling point of the ether oil C is 4
Does not reach 00 ° C. Therefore, in order to set the temperature at which the ether-based oil A completely evaporates to 400 ° C., the blending amount of the ether-based oil is 20% by weight or more.

【0025】図2で、エステル系油Aは沸点が370
℃、40℃の動粘度が8mm/s、エステル系油Bは
沸点が480℃、40℃の動粘度が45mm/sであ
る。エステル系油は加水分解を起こすため温度管理に気
を付けなければならないが、動粘度が低くてもエーテル
系油やカーボネート系油よりも分子構造上、分子間力が
強いため沸点が高くなる。そのため、オリゴマの析出量
も少なく、エステル系油では吐出室の閉塞や吐出バルブ
の動作不良といった問題はない。
In FIG. 2, the ester oil A has a boiling point of 370.
The kinematic viscosity at 40 ° C. and 8 ° C. is 8 mm 2 / s. The boiling point of the ester oil B is 480 ° C. and the kinematic viscosity at 40 ° C. is 45 mm 2 / s. Since ester-based oils undergo hydrolysis, care must be taken in temperature control. However, even if the kinematic viscosity is low, the boiling point becomes higher due to a stronger intermolecular force than the ether-based oils and carbonate-based oils in terms of molecular structure. Therefore, the amount of oligomer deposited is small, and there is no problem such as blockage of the discharge chamber or malfunction of the discharge valve in the case of ester-based oil.

【0026】図2から、従来仕様のエーテル系油Bはオ
リゴマの析出が非常に多い。それに対し、本発明の実施
例1であるエーテル系油Aはエーテル系油にくらべ、オ
リゴマの析出量が著しく減少しており、エステル系油に
匹敵する耐久性を維持できることがわかる。
From FIG. 2, it can be seen that the ether oil B of the conventional specification has a large amount of oligomer precipitated. On the other hand, the ether-based oil A of Example 1 of the present invention has a remarkably reduced oligomer precipitation amount as compared with the ether-based oil, and it can be seen that the durability equivalent to the ester-based oil can be maintained.

【0027】エーテル系油Aのオリゴマ析出量が著しく
減少したのは、エーテル系油A中の沸点が400℃の成
分が吐出室で完全に蒸発せず、オリゴマやカルボン酸金
属塩等を溶解したまま冷媒とともに吐出されるためであ
る。
The reason why the amount of oligomers precipitated from the ether oil A was remarkably reduced is that the components having a boiling point of 400 ° C. in the ether oil A did not completely evaporate in the discharge chamber and dissolved the oligomers and metal carboxylate. This is because it is discharged together with the refrigerant as it is.

【0028】なお、エーテル系油の代わりに例えば(化
2)の構造を有するカーボネート系油でも良い。
In place of the ether-based oil, a carbonate-based oil having, for example, the structure of Chemical Formula 2 may be used.

【0029】[0029]

【化2】 Embedded image

【0030】上記(化2)において、R3およびR4
は、それぞれ独立な炭化水素鎖である。
In the above (Chemical formula 2), R3 and R4
Is an independent hydrocarbon chain.

【0031】(実施例2)図3は本発明の実施例2によ
るHFC冷媒を圧縮する往復式の密閉型電動圧縮機に用
いられる冷凍機油の蒸発量と蒸留温度の関係を示した線
図である。図4は同実施例の冷凍機油の吐出ガスの温度
とオリゴマの析出量の関係を示した線図である。本発明
の実施例2のHFC冷媒を圧縮する往復式の密閉型電動
圧縮機は、冷凍機油16を除いて、図7で示した従来の
密閉型電動圧縮機と同一であるため説明を省略する。
(Embodiment 2) FIG. 3 is a diagram showing the relationship between the evaporation amount of refrigerating machine oil and distillation temperature used in a reciprocating hermetic electric compressor for compressing HFC refrigerant according to Embodiment 2 of the present invention. is there. FIG. 4 is a graph showing the relationship between the temperature of the gas discharged from the refrigerating machine oil of the embodiment and the amount of oligomer precipitated. The reciprocating hermetic electric compressor for compressing the HFC refrigerant according to the second embodiment of the present invention is the same as the conventional hermetic electric compressor shown in FIG. .

【0032】低粘度のアルキルベンゼン系油は、従来仕
様の低粘度エーテル系油と同様沸点が低く、シリンダ室
内に供給された冷凍機油が吐出室で蒸発してしまうた
め、冷凍機油に溶解していたモータ絶縁材のポリエステ
ルオリゴマーや加工油中のカルボン酸金属塩が析出し、
吐出室の閉塞や吐出バルブの動作不良が発生し、著しい
性能低下が生じる可能性があった。
The low-viscosity alkylbenzene-based oil has a low boiling point like the conventional low-viscosity ether-based oil, and the refrigerating machine oil supplied into the cylinder chamber evaporates in the discharge chamber. Polyester oligomer of motor insulation material and metal carboxylate in processing oil are precipitated,
The discharge chamber may be blocked or the discharge valve may operate improperly, resulting in a significant decrease in performance.

【0033】図3、4において、本発明の実施例2であ
るアルキルベンゼン系油Aは、80重量%蒸発させたと
きの蒸発温度が330℃、40℃の動粘度が8mm
sのアルキルベンゼン系油Bに、80%蒸発させたとき
の蒸発温度が410℃、40℃の動粘度が50mm
sのアルキルベンゼン系油Cを40重量%配合したもの
で、動粘度が40℃で15mm/sである。アルキル
ベンゼン系油とHFC冷媒は非相溶のため、アルキルベ
ンゼン系油Cの沸点が高すぎると、それに伴い動粘度も
高くなる。
3 and 4, the alkylbenzene-based oil A of Example 2 of the present invention has an evaporation temperature of 330 ° C. when evaporated at 80% by weight and a kinematic viscosity at 40 ° C. of 8 mm 2 /.
The evaporation temperature when evaporating 80% to the alkylbenzene-based oil B of s is 410 ° C., and the kinematic viscosity at 40 ° C. is 50 mm 2 /
s of alkylbenzene-based oil C having a kinematic viscosity of 15 mm 2 / s at 40 ° C. Since the alkylbenzene-based oil and the HFC refrigerant are incompatible, if the boiling point of the alkylbenzene-based oil C is too high, the kinematic viscosity increases accordingly.

【0034】冷凍サイクルで非常に低温になるエバポレ
ータ部でアルキルベンゼン系油Cの動粘度がさらに高く
なることでエバポレータ内にアルキルベンゼン系油Cだ
けが滞留し、圧縮機に戻ってこないことが考えられる。
そのため、アルキルベンゼン系油Cは沸点が400℃以
上の成分が20重量%以上存在する範囲で、動粘度をで
きるだけ下げ、配合量を増やす方が好ましい。
It is conceivable that only the alkylbenzene-based oil C stays in the evaporator and does not return to the compressor due to the kinematic viscosity of the alkylbenzene-based oil C further increasing in the evaporator section, which becomes extremely low in the refrigerating cycle.
Therefore, it is preferable to reduce the kinematic viscosity as much as possible and increase the blending amount of the alkylbenzene-based oil C as long as the component having a boiling point of 400 ° C. or higher is present in an amount of 20% by weight or higher.

【0035】図3で、アルキルベンゼン系油の蒸留曲線
が右上がりになるのは、いくつもの成分の混合物である
ためである。本発明の実施例2であるアルキルベンゼン
系油Aは配合比率である60重量%まではアルキルベン
ゼン系油Bの蒸留曲線に沿い、60重量%以降はアルキ
ルベンゼン系油Cの蒸留曲線に近づく。
In FIG. 3, the distillation curve of the alkylbenzene-based oil rises to the right because it is a mixture of several components. The alkylbenzene-based oil A of Example 2 of the present invention follows the distillation curve of the alkylbenzene-based oil B up to the blending ratio of 60% by weight, and approaches the distillation curve of the alkylbenzene-based oil C after 60% by weight.

【0036】しかし、蒸留温度はアルキルベンゼン系油
Bの60重量%時の沸点320℃からアルキルベンゼン
系油Cの60重量%時の沸点400℃まで急激に変化す
るわけではなく、蒸発量が60〜100%でアルキルベ
ンゼン系油Cの沸点に近づいていく。
However, the distillation temperature does not suddenly change from a boiling point of 320 ° C. when the alkylbenzene oil B is 60% by weight to a boiling point of 400 ° C. when the alkylbenzene oil C is 60% by weight. % Approaches the boiling point of the alkylbenzene oil C.

【0037】これはアルキルベンゼン系油Bがいくつも
の成分の混合物であるためで、アルキルベンゼン系油A
が完全に蒸発する温度を400℃以上にするには、アル
キルベンゼン系油Cの配合量は40重量%以上必要にな
る。
This is because the alkylbenzene oil B is a mixture of several components.
In order to raise the temperature at which the oil completely evaporates to 400 ° C. or higher, the blending amount of the alkylbenzene oil C must be 40% by weight or more.

【0038】図4から、低粘度のアルキルベンゼン系油
Bはオリゴマの析出が非常に多い。それに対し、本発明
品であるアルキルベンゼン系油Aはアルキルベンゼン系
油Bにくらべ、オリゴマの析出量が著しく減少してお
り、エステル系油に匹敵する耐久性を維持できることが
わかる。アルキルベンゼン系油Aのオリゴマ析出量が著
しく減少したのは、アルキルベンゼン系油A中の沸点が
400℃以上の成分が吐出室で完全に蒸発せず、オリゴ
マやカルボン酸金属塩等を溶解したまま冷媒とともに吐
出されるためである。
From FIG. 4, it can be seen that the low viscosity alkylbenzene-based oil B has much oligomer precipitation. On the other hand, the alkylbenzene-based oil A of the present invention has a significantly reduced oligomer precipitation amount as compared with the alkylbenzene-based oil B, and it can be seen that the durability equivalent to the ester-based oil can be maintained. The amount of oligomer precipitation of the alkylbenzene oil A was remarkably reduced because the components having a boiling point of 400 ° C. or higher in the alkylbenzene oil A did not completely evaporate in the discharge chamber, and the refrigerant was dissolved while the oligomer and metal carboxylate were dissolved. This is because the ink is discharged together with the ink.

【0039】さらに、アルキルベンゼン系油AはHFC
冷媒と非相溶であることから冷凍システム内で冷媒相と
冷凍機油相が分離しており、カルボン酸金属塩等が油中
に溶解したまま冷凍システム内を循環するため、配管中
にカルボン酸金属塩等が析出することなく冷凍システム
の耐久性を維持できる。
Further, the alkylbenzene oil A is HFC
The refrigerant phase and the refrigerating machine oil phase are separated in the refrigeration system because they are incompatible with the refrigerant, and the metal carboxylate circulates through the refrigeration system while being dissolved in the oil. The durability of the refrigeration system can be maintained without depositing metal salts and the like.

【0040】(実施例3)図5は本発明の実施例3によ
るハイドロカーボン系(以下HCという)冷媒を圧縮す
る往復式の密閉型電動圧縮機に用いられる冷凍機油の蒸
発量と蒸留温度の関係を示した線図である。図6は同実
施例の冷凍機油の吐出ガスの温度とオリゴマの析出量の
関係を示した線図である。本発明の実施例3のHC冷媒
を圧縮する往復式の密閉型電動圧縮機は、冷凍機油16
を除いて、図7で示した従来の密閉型電動圧縮機と同一
であるため説明を省略する。
(Embodiment 3) FIG. 5 shows the relationship between the evaporation amount of the refrigerating machine oil and the distillation temperature used in a reciprocating hermetic electric compressor for compressing a hydrocarbon (hereinafter referred to as HC) refrigerant according to a third embodiment of the present invention. FIG. 3 is a diagram showing the relationship. FIG. 6 is a diagram showing the relationship between the temperature of the gas discharged from the refrigerating machine oil of the embodiment and the amount of oligomer precipitated. The reciprocating hermetic electric compressor for compressing HC refrigerant according to the third embodiment of the present invention is
Except for the above, it is the same as the conventional hermetic electric compressor shown in FIG.

【0041】図5、6において、本発明の実施例3であ
るアルキルベンゼン系油Dは、80重量%蒸発させたと
きの蒸発温度が330℃、40℃の動粘度が8mm
sのアルキルベンゼン系油Eに、80%蒸発させたとき
の蒸発温度が430℃、40℃の動粘度が65mm
sのアルキルベンゼン系油Fを20重量%配合したもの
で、動粘度が40℃で12mm/sである。
In FIGS. 5 and 6, the alkylbenzene-based oil D of Example 3 of the present invention has a kinematic viscosity at 330 ° C. and 40 ° C. of 8 mm 2 / evaporated at 80% by weight.
s, and the kinematic viscosity at a temperature of 430 ° C. and 40 ° C. of 65 mm 2 /
s of alkylbenzene-based oil F of 20% by weight, and has a kinematic viscosity of 12 mm 2 / s at 40 ° C.

【0042】本発明の実施例3は本発明の実施例2と異
なりアルキルベンゼン油がHC冷媒と相溶するため、冷
凍システムで低温になるエバポレータ部でも高粘度のア
ルキルベンゼン系油Fが滞留することなく圧縮機に戻っ
てくる。そのため、アルキルベンゼン系油Fを沸点が4
00℃以上の成分が20重量%以上存在する範囲で、動
粘度をできるだけ下げ、配合量を増やす必要はない。
In the third embodiment of the present invention, unlike the second embodiment of the present invention, since the alkylbenzene oil is compatible with the HC refrigerant, the high-viscosity alkylbenzene-based oil F does not stay in the evaporator section where the temperature becomes low in the refrigeration system. Come back to the compressor. Therefore, the boiling point of the alkylbenzene-based oil F is 4
It is not necessary to lower the kinematic viscosity as much as possible and increase the blending amount as long as the component having a temperature of 00 ° C. or more is present in an amount of 20% by weight or more.

【0043】図5で、アルキルベンゼン系油の蒸留曲線
が右上がりになるのは、いくつもの成分の混合物である
ためである。本発明の実施例3であるアルキルベンゼン
系油Dは配合比率である80重量%まではアルキルベン
ゼン系油Eの蒸留曲線に沿い、80重量%以降はアルキ
ルベンゼン系油Fの蒸留曲線に近づく。
In FIG. 5, the distillation curve of the alkylbenzene-based oil rises to the right because it is a mixture of several components. The alkylbenzene-based oil D of Example 3 of the present invention follows the distillation curve of the alkylbenzene-based oil E up to the blending ratio of 80% by weight, and approaches the distillation curve of the alkylbenzene-based oil F after 80% by weight.

【0044】しかし、蒸留温度はアルキルベンゼン系油
Eの80重量%時の沸点330℃からアルキルベンゼン
系油Fの80重量%時の沸点430℃まで急激に変化す
るわけではなく、蒸発量が80〜100%でアルキルベ
ンゼン系油Fの沸点に近づいていく。
However, the distillation temperature does not suddenly change from a boiling point of 330 ° C. when the alkylbenzene oil E is 80% by weight to a boiling point of 430 ° C. when the alkylbenzene oil F is 80% by weight. % Approaches the boiling point of the alkylbenzene oil F.

【0045】これはアルキルベンゼン系油Bがいくつも
の成分の混合物であるためで、アルキルベンゼン系油A
が完全に蒸発する温度を400℃以上にするには、アル
キルベンゼン系油Fの配合量は20重量%以上必要にな
る。
This is because the alkylbenzene oil B is a mixture of a number of components.
In order to make the temperature at which the water completely evaporates to 400 ° C. or higher, the amount of the alkylbenzene-based oil F needs to be 20% by weight or more.

【0046】図6から、低粘度のアルキルベンゼン系油
Eはオリゴマの析出が非常に多い。それに対し、本発明
品であるアルキルベンゼン系油Dはアルキルベンゼン系
油Eにくらべ、オリゴマの析出量が著しく減少してお
り、エステル系油に匹敵する耐久性を維持できることが
わかる。
FIG. 6 shows that the alkylbenzene oil E having a low viscosity has a large amount of oligomer precipitated. On the other hand, the alkylbenzene-based oil D of the present invention has a significantly reduced amount of oligomers compared to the alkylbenzene-based oil E, and it can be seen that durability equivalent to that of the ester-based oil can be maintained.

【0047】アルキルベンゼン系油Dのオリゴマ析出量
が著しく減少したのは、アルキルベンゼン系油D中の沸
点が400℃以上の成分が吐出室で完全に蒸発せず、オ
リゴマやカルボン酸金属塩等を溶解したまま冷媒ととも
に吐出されるためである。
The reason why the amount of oligomers of the alkylbenzene-based oil D precipitated was remarkably reduced is that the components having a boiling point of 400 ° C. or higher in the alkylbenzene-based oil D did not completely evaporate in the discharge chamber and dissolved oligomers and metal carboxylate. This is because the refrigerant is discharged together with the refrigerant.

【0048】さらに、HC冷媒は地球温暖化係数がHF
C冷媒に比べ著しく小さいため、地球温暖化を抑制する
効果がある。なお、アルキルベンゼン系油の変わりに鉱
物油を用いても良い。
Further, the HC refrigerant has a global warming potential of HF.
Since it is significantly smaller than the C refrigerant, it has an effect of suppressing global warming. Note that mineral oil may be used instead of the alkylbenzene-based oil.

【0049】[0049]

【発明の効果】以上のようにこの発明によれば、高効率
化および化水分解防止のために往復式の密閉型電動圧縮
機に非エステル系の低粘度冷凍機油を適用した場合で
も、冷凍機油中の沸点が400℃以上の成分が吐出室で
完全に蒸発せず、オリゴマやカルボン酸金属塩等を溶解
したまま冷媒とともに吐出されるため、吐出室や吐出バ
ルブ付近でオリゴマやカルボン酸金属塩等が析出するこ
となく圧縮機の耐久性が維持できるという効果が得られ
る。
As described above, according to the present invention, even when a non-ester type low viscosity refrigerating machine oil is applied to a reciprocating hermetic electric compressor for high efficiency and prevention of formation of hydrolyzed water, the refrigerating system can be used. Components having a boiling point of 400 ° C or higher in the machine oil do not completely evaporate in the discharge chamber, but are discharged together with the refrigerant while dissolving the oligomers and metal carboxylate. The effect is obtained that the durability of the compressor can be maintained without the precipitation of salts and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】エーテル系油の蒸留曲線を示す線図FIG. 1 is a diagram showing a distillation curve of an ether oil.

【図2】エーテル系油の吐出温度とオリゴマー析出量の
関係を示す線図
FIG. 2 is a graph showing the relationship between the discharge temperature of ether-based oil and the amount of oligomer precipitation.

【図3】アルキルベンゼン系油の蒸留曲線を示す線図FIG. 3 is a diagram showing a distillation curve of an alkylbenzene-based oil.

【図4】アルキルベンゼン系油の吐出温度とオリゴマー
析出量の関係を示す線図
FIG. 4 is a graph showing the relationship between the discharge temperature of an alkylbenzene-based oil and the amount of precipitated oligomers.

【図5】アルキルベンゼン系油の蒸留曲線を示す線図FIG. 5 is a diagram showing a distillation curve of an alkylbenzene-based oil.

【図6】アルキルベンゼン系油の吐出温度とオリゴマー
析出量の関係を示す線図
FIG. 6 is a graph showing the relationship between the discharge temperature of an alkylbenzene-based oil and the amount of oligomers precipitated.

【図7】従来の低粘度冷凍機油を用いた密閉型電動圧縮
機の断面図
FIG. 7 is a sectional view of a hermetic electric compressor using a conventional low-viscosity refrigeration oil.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 電動要素 3 圧縮要素 4 クランク軸 5 コンロッド 6 ピストン 8 吸入室 9 吐出室 13 シリンダー 14 シリンダー室 15 キャピラリーチューブ 16 冷凍機油 DESCRIPTION OF SYMBOLS 1 Closed container 2 Electric element 3 Compression element 4 Crankshaft 5 Connecting rod 6 Piston 8 Suction chamber 9 Discharge chamber 13 Cylinder 14 Cylinder chamber 15 Capillary tube 16 Refrigeration oil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10N 30:04 40:30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C10N 30:04 40:30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ハイドロフルオロカーボン系冷媒を圧縮
する往復式の密閉型電動圧縮機に用いられる冷凍機油で
あって、40℃の動粘度が20mm/s以下のカーボ
ネート系合成油あるいはエーテル系合成油を主成分と
し、沸点が400℃以上の成分を20重量%以上配合し
たことを特徴とする冷凍機油。
1. A refrigerating machine oil used for a reciprocating hermetic electric compressor for compressing a hydrofluorocarbon-based refrigerant, wherein a carbonate-based synthetic oil or an ether-based synthetic oil having a kinematic viscosity at 40 ° C. of 20 mm 2 / s or less. Refrigeration oil comprising 20% by weight or more of a component having a boiling point of 400 ° C. or higher.
【請求項2】 ハイドロフルオロカーボン系冷媒を圧縮
する往復式の密閉型電動圧縮機に用いられる冷凍機油で
あって、40℃の動粘度が20mm/s以下のアルキ
ルベンゼン油を主成分とし、沸点が400℃以上の成分
を20重量%以上配合したことを特徴とする冷凍機油。
2. A refrigerating machine oil for use in a reciprocating hermetic electric compressor for compressing a hydrofluorocarbon-based refrigerant, which is mainly composed of an alkylbenzene oil having a kinematic viscosity at 40 ° C. of 20 mm 2 / s or less and having a boiling point of A refrigerating machine oil comprising a component of 400 ° C. or higher and 20% by weight or more.
【請求項3】 ハイドロカーボン系冷媒を圧縮する往復
式の密閉型電動圧縮機に用いられる冷凍機油であって、
40℃の動粘度が20mm/s以下のアルキルベンゼ
ン油あるいは鉱物油を主成分とし、沸点が400℃以上
の成分を20重量%以上配合したことを特徴とする冷凍
機油。
3. A refrigerating machine oil used for a reciprocating hermetic electric compressor for compressing a hydrocarbon-based refrigerant,
A refrigerating machine oil comprising, as a main component, an alkylbenzene oil or a mineral oil having a kinematic viscosity at 40 ° C. of 20 mm 2 / s or less and a component having a boiling point of 400 ° C. or more at 20% by weight or more.
JP936697A 1997-01-22 1997-01-22 Refrigerator oil Pending JPH10204458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP936697A JPH10204458A (en) 1997-01-22 1997-01-22 Refrigerator oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP936697A JPH10204458A (en) 1997-01-22 1997-01-22 Refrigerator oil

Publications (1)

Publication Number Publication Date
JPH10204458A true JPH10204458A (en) 1998-08-04

Family

ID=11718487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP936697A Pending JPH10204458A (en) 1997-01-22 1997-01-22 Refrigerator oil

Country Status (1)

Country Link
JP (1) JPH10204458A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062245A1 (en) * 2004-12-08 2006-06-15 Matsushita Electric Industrial Co., Ltd. Refrigerant compressor
WO2007058082A1 (en) * 2005-11-15 2007-05-24 Idemitsu Kosan Co., Ltd. Refrigerator oil composition
WO2008117657A1 (en) 2007-03-27 2008-10-02 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerating machine
US9321948B2 (en) 2007-02-27 2016-04-26 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
JP2019035094A (en) * 2018-11-06 2019-03-07 Jxtgエネルギー株式会社 Refrigerator oil and actuation fluid composition for refrigerator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062245A1 (en) * 2004-12-08 2006-06-15 Matsushita Electric Industrial Co., Ltd. Refrigerant compressor
US9422930B2 (en) 2004-12-08 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor
WO2007058082A1 (en) * 2005-11-15 2007-05-24 Idemitsu Kosan Co., Ltd. Refrigerator oil composition
CN101305084A (en) * 2005-11-15 2008-11-12 出光兴产株式会社 Refrigerating machine oil composition
KR101323070B1 (en) * 2005-11-15 2013-10-29 이데미쓰 고산 가부시키가이샤 Refrigerator oil composition
US8765005B2 (en) 2005-11-15 2014-07-01 Idemitsu Kosan Co., Ltd. Refrigerator oil composition
US9321948B2 (en) 2007-02-27 2016-04-26 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
US10214671B2 (en) 2007-02-27 2019-02-26 Jx Nippon Oil & Energy Corporation Refrigerator oil and working fluid composition for refrigerator
WO2008117657A1 (en) 2007-03-27 2008-10-02 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerating machine
JP2019035094A (en) * 2018-11-06 2019-03-07 Jxtgエネルギー株式会社 Refrigerator oil and actuation fluid composition for refrigerator

Similar Documents

Publication Publication Date Title
JP2901369B2 (en) Refrigerator oil composition, refrigerant compressor and refrigeration device incorporating the same
JP5339788B2 (en) Compressor and refrigeration cycle equipment
CN101749891A (en) Refrigerant compressor and freezing cycle device
CN102859200A (en) Rotary compressor
JPH10204458A (en) Refrigerator oil
CN100540892C (en) Cooling system with reciprocal compressor
JP2021088991A (en) Hermetically sealed refrigerant compressor and refrigeration device using the same
EP1174665B1 (en) Freezer
US20170204314A1 (en) Air conditioner
CN105473953B (en) Compressor and refrigerating circulatory device
JP2010255449A (en) Rotary compressor
JPH109139A (en) Closed compressor and refrigerating cycle using the same
EP2024468A1 (en) Hermetic compressor and refrigeration system
CN1714240A (en) Refrigerating system having reciprocating compressor
JPH10281064A (en) Hermetic electrically driven compressor
JP2008101523A (en) Hermetic compressor
JP3208335B2 (en) Hermetic compressor and refrigeration apparatus using the same
EP3617504A1 (en) Hermetically sealed refrigerant compressor and refrigeration device using same
JPH0525468A (en) Refrigerant composition
JP2507160B2 (en) Refrigeration equipment
JP2000291553A (en) Hermetic electric compressor
JP2901529B2 (en) Refrigeration oil composition
JP2925536B2 (en) Compressor suction silencer
JP2859154B2 (en) Refrigeration equipment
JP3208334B2 (en) Hermetic compressor and refrigeration apparatus using the same