JPH1020301A - Production of liquid crystal display device - Google Patents

Production of liquid crystal display device

Info

Publication number
JPH1020301A
JPH1020301A JP8169145A JP16914596A JPH1020301A JP H1020301 A JPH1020301 A JP H1020301A JP 8169145 A JP8169145 A JP 8169145A JP 16914596 A JP16914596 A JP 16914596A JP H1020301 A JPH1020301 A JP H1020301A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
unit cell
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8169145A
Other languages
Japanese (ja)
Inventor
Katsuji Hattori
勝治 服部
Tetsu Ogawa
鉄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8169145A priority Critical patent/JPH1020301A/en
Publication of JPH1020301A publication Critical patent/JPH1020301A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To embody a process for producing a liquid crystal display device which is nearly independently controllable in hue and lightness without using color filters, is excellent in assigning intensity levels and has excellent optical efficiency. SOLUTION: This production process produces the liquid crystal display device of a matrix type consisting of plural unit cells which have at least polarizing plates 201a, 201b, phase difference plates or phase difference films 202a, 202b, and liquid crystal layers 207, are formed by holding the liquid crystal layer layers 207 on the opposite inner sides of a first substrate 203a and second substrate 203b having electrodes 204, 205a to 205c, obtain colored light by a double refraction effect and constitute many pixels. At this time, a stage for applying a soln. of at least >=1 kinds of liquid crystalline materials by each unit cell on the inside surfaces of the substrates, a stage for orienting these liquid crystalline materials, a stage for forming thin films by curing the soln. and a stage for finely working the thin films by each of the respective unit cells are executed, by which the phase difference values and delay phase axis directions of the phase difference films installed at the respective unit cells are varied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複屈折効果によっ
て着色光を得るマトリクス型液晶表示装置の製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a matrix type liquid crystal display device for obtaining colored light by a birefringence effect.

【0002】[0002]

【従来の技術】液晶表示装置は、薄型で軽量、かつ低消
費電力を特徴とするディスプレイであり、ワ−プロ、パ
ソコン、TVなどの表示装置として広く用いられてお
り、中でもそのカラ−液晶表示装置の進歩にはめざまし
いものがある。
2. Description of the Related Art A liquid crystal display device is a display characterized by being thin, lightweight, and low in power consumption. It is widely used as a display device for word processors, personal computers, TVs, and the like. There has been remarkable progress in equipment.

【0003】カラ−画像を得る液晶表示装置には、カラ
−フィルタを利用する型や複屈折効果によってカラ−表
示を得る型などがある。現在前者のカラ−フィルタ−を
利用する型が一般に多く用いられているが、カラ−フィ
ルタ−の光吸収のため光利用効率が低い。そのため反射
型のカラ−液晶表示装置にそのまま利用されることはな
い。これに対して、後者の複屈折効果により着色光を得
る方式として、ECB(Electrically Controlled Bire
fringence:電界効果型複屈折モ−ド)方式があり、カラ
−フィルタ−を用いることなく同一セルで複数の色表示
が可能であるため、光利用効率が高く、明るいカラ−表
示が可能である。そのためECB方式の液晶表示装置は
透過型液晶表示装置としてだけでなく、反射型液晶表示
装置としても有望である。
The liquid crystal display device for obtaining a color image includes a type using a color filter and a type for obtaining a color display by a birefringence effect. At present, the former type using a color filter is generally widely used, but the light utilization efficiency is low due to light absorption of the color filter. Therefore, it is not used as it is in a reflection type color liquid crystal display device. On the other hand, as a method of obtaining colored light by the latter birefringence effect, ECB (Electrically Controlled Bire
fringence (field effect type birefringence mode) method, and a plurality of colors can be displayed in the same cell without using a color filter, so that light use efficiency is high and bright color display is possible. . Therefore, the ECB type liquid crystal display device is promising not only as a transmission type liquid crystal display device but also as a reflection type liquid crystal display device.

【0004】従来、ECB方式のカラ−液晶表示装置と
して、たとえば特開平6−175125号に記載された
ものがある。図2にその液晶表示装置の製造法による構
成概念図を示す。
[0004] Conventionally, as a color liquid crystal display device of the ECB system, there is one described in, for example, JP-A-6-175125. FIG. 2 shows a conceptual diagram of the structure of the liquid crystal display device according to the manufacturing method.

【0005】液晶層207を狭持する一対の透明基板2
03a。203bの対向外面には、偏光板201a、2
01bと、位相差板202a、202bが設置される。
一方の透明基板203bの対向内面上にはセグメント電
極205a、205b、205cが設けられ、透明基板
203aの対向内面上にはコモン電極204が設置され
る。両方の基板の電極形成面上にはそれぞれ配向膜20
6a、206bが形成され、液晶分子の配向方向、チル
ト角を制御している。
[0005] A pair of transparent substrates 2 sandwiching the liquid crystal layer 207
03a. The polarizing plate 201a, 2
01b and retardation plates 202a and 202b are provided.
Segment electrodes 205a, 205b, and 205c are provided on the opposing inner surface of one transparent substrate 203b, and a common electrode 204 is provided on the opposing inner surface of the transparent substrate 203a. An alignment film 20 is formed on each of the electrode forming surfaces of both substrates.
6a and 206b are formed to control the alignment direction and tilt angle of liquid crystal molecules.

【0006】このような構成において、液晶セルの両基
板の電極間に印加する電圧の大きさに応じて液晶分子の
配向状態が変化し、液晶層のレタ−デ−ションが変化す
る。従って、液晶層を通過する光の変更状態を変えるこ
とができ出射側偏光板を通過する光の色を変化させるこ
とができる。このECB方式では電圧無印加で白または
黒に着色した液晶セルは電圧の変化によって、白(黒)
→赤→青→緑のようにその表示色が変化する。
In such a configuration, the alignment state of the liquid crystal molecules changes according to the magnitude of the voltage applied between the electrodes of the two substrates of the liquid crystal cell, and the retardation of the liquid crystal layer changes. Therefore, the change state of the light passing through the liquid crystal layer can be changed, and the color of the light passing through the exit-side polarizing plate can be changed. In the ECB method, a liquid crystal cell colored white or black without applying a voltage is changed to a white (black) color by a change in voltage.
The display color changes from red to blue to green.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来のECB
方式の液晶表示装置は、上述したように電圧によって表
示色を変化させるため、色相変化と明度変化が独立でな
く、階調表示が非常に困難である。また、電圧によって
所定の色まで達するのに途中種々の色を経るため見た目
に画像に違和感を生じ、光利用効率が高く低消費電力
で、かつフルカラ−表示のディスプレイの実現が困難と
いう課題があった。
However, the conventional ECB
As described above, since the display color is changed by the voltage in the liquid crystal display device of the system, the change in hue and the change in lightness are not independent, and it is very difficult to display a gradation. In addition, there is a problem that an image looks strange because it passes through various colors on the way to reach a predetermined color depending on a voltage, and it is difficult to realize a display with high light use efficiency, low power consumption, and full color display. Was.

【0008】これに対し、多数の画素からなるマトリク
ス型ECB方式の液晶表示装置において、1画素をほぼ
同一色相のまま白または黒から基準色の間で輝度が電圧
により単調に変化する複数の単位セルに分割する構成に
した液晶表示装置の発明が、特願平8−20852号の
出願に開示されている。これによりカラ−フィルタ−を
用いないECB方式の特徴を保ち、色相と明度が独立で
制御が可能な優れた階調表示性能を持つ液晶表示装置が
得られる。しかし、これまでそれを実現する具体的製造
法は無かった。
On the other hand, in a matrix type ECB type liquid crystal display device including a large number of pixels, a plurality of units whose luminance monotonously changes from white or black to a reference color with a voltage while maintaining substantially the same hue. An invention of a liquid crystal display device configured to be divided into cells is disclosed in Japanese Patent Application No. 8-20852. As a result, a liquid crystal display device having excellent gradation display performance in which hue and brightness can be controlled independently while maintaining the characteristics of the ECB method without using a color filter can be obtained. However, there has been no concrete manufacturing method to achieve this.

【0009】本発明は上記の新しい液晶表示装置である
カラ−フィルタ−を用いないECB方式の特徴を保ち、
色相と明度が独立で制御が可能な優れた階調表示性能を
持つ液晶表示装置の製造法を実現することを目的とす
る。
The present invention maintains the features of the above-mentioned ECB system which does not use a color filter which is a new liquid crystal display device,
An object of the present invention is to realize a method of manufacturing a liquid crystal display device having excellent gradation display performance in which hue and brightness can be controlled independently.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、多数の画素からなるマトリクス型ECB
方式の液晶表示装置で、1画素をほぼ同一色相のまま白
または黒から基準色の間で輝度が電圧により単調に変化
する複数の単位セルに分割する構成の液晶表示装置に必
要な、その単位セル毎に性能の違う位相差膜を形成でき
る製造法である。
In order to achieve the above object, the present invention provides a matrix type ECB comprising a large number of pixels.
A unit required for a liquid crystal display device in which one pixel is divided into a plurality of unit cells in which luminance changes monotonically with voltage between white or black and a reference color while maintaining substantially the same hue while maintaining the same hue. This is a manufacturing method that can form a retardation film having different performance for each cell.

【0011】具体的には、本発明は少なくとも偏光板
と、位相差板あるいは位相差膜と、液晶層とを有し、電
極を有する第1の基板と第2の基板の対向内側に該液晶
層が狭持され、複屈折効果によって着色光を得、多数の
画素を構成する複数の単位セルからなるマトリクス型の
液晶表示装置において、次のような解決手段を講じたも
のである。
Specifically, the present invention provides at least a polarizing plate, a retardation film or a retardation film, and a liquid crystal layer, and the liquid crystal layer is provided inside a first substrate having electrodes and a second substrate opposed to each other. The following solution is taken in a matrix type liquid crystal display device having a plurality of unit cells constituting a large number of pixels, in which a layer is sandwiched and colored light is obtained by a birefringence effect.

【0012】すなわち、本発明の第1の解決手段は、一
方の該基板内面に該単位セル別に少なくとも1種類以上
の液晶性材料の溶液を塗布する工程と、該液晶性材料を
配向させる工程と、該溶液を硬化し薄膜を形成する工程
と、形成された該薄膜を各単位セル別に微細加工する工
程を有して、、該各単位セルに設置された位相差膜の位
相差値、遅相軸方向を異なるように形成することを特徴
とする。
That is, a first solution of the present invention comprises a step of applying a solution of at least one kind of liquid crystalline material to the inner surface of one of the substrates for each unit cell, and a step of aligning the liquid crystalline material. Curing the solution to form a thin film, and finely processing the formed thin film for each unit cell, so that the retardation value of the retardation film installed in each unit cell can be reduced. It is characterized in that the phase axes are formed so as to be different from each other.

【0013】本発明の第2の解決手段は、上記の如くの
前提において、一方の該基板内面に該単位セル別に少な
くとも1種類以上の光重合性高分子モノマーを含む溶液
を塗布する工程と、該光重合性高分子モノマーに該単位
セル別に偏光方向が異なった偏光紫外線を照射して配向
かつ重合硬化して薄膜を形成する工程と、形成された該
薄膜を各単位セル別に微細加工する工程を有して、該各
単位セルに設置された位相差膜の位相差値、遅相軸方向
を異なるように形成することを特徴とする。
[0013] The second solution of the present invention is to provide a solution containing at least one or more types of photopolymerizable polymer monomers for each of the unit cells on the inner surface of one of the substrates based on the above-mentioned premise. A step of irradiating the photopolymerizable polymer monomer with polarized ultraviolet rays having different polarization directions for each unit cell to orient and polymerize and cure to form a thin film; and a step of finely processing the formed thin film for each unit cell. And the retardation film and the slow axis direction of the retardation film provided in each unit cell are formed so as to be different from each other.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面にもとづいて説明する。 (実施の形態1)図1は本発明の第1の実施の形態に関
わる液晶表示装置の製造法を説明するための液晶装置の
構成概念図を示す。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a conceptual diagram of a configuration of a liquid crystal device for describing a method of manufacturing a liquid crystal display device according to a first embodiment of the present invention.

【0015】図1において、液晶層207を狭持する一
対の透明基板203a、203bの対向外面に、偏光板
201a、201bと、位相差板202a、202bを
設置した。一方の透明基板203bの対向内面上にはセ
グメント電極205a、205b、205cを設けた。
更に、該電極の上に配向膜206bを形成し、レーヨン
布などで所定の方向にラビング処理した。これに対し、
透明基板203aの対向内面上に、基準色赤に相当する
単位セル系109a、基準色緑に相当する単位セル系1
09b、基準色青に相当する単位セル系109cの3つ
の単位セルから構成する画素系110を複数設ける。
In FIG. 1, polarizing plates 201a and 201b and retardation plates 202a and 202b are provided on opposing outer surfaces of a pair of transparent substrates 203a and 203b sandwiching a liquid crystal layer 207. The segment electrodes 205a, 205b, and 205c are provided on the opposing inner surface of one of the transparent substrates 203b.
Further, an alignment film 206b was formed on the electrode, and rubbed in a predetermined direction with a rayon cloth or the like. In contrast,
A unit cell system 109a corresponding to the reference color red and a unit cell system 1 corresponding to the reference color green are provided on the opposed inner surface of the transparent substrate 203a.
A plurality of pixel systems 110 each including three unit cells 09b and a unit cell system 109c corresponding to the reference color blue are provided.

【0016】次に基準色赤に相当する単位セル系109
aに基準色赤に対応する所定の位相差膜108aを形成
する工程を図3を使って述べる。図3aにおいて、透明
基板203a内面上に配向膜310を形成しレーヨン布
などで所定の方向にラビング処理した。その上に第1の
液晶性材料の溶液、例えば紫外線重合性の液晶性モノマ
ー、例えば液晶性ジアクリレートモノマーを含む混合系
モノマー(320)をスピンナーあるいは印刷などの方
法で所定の量を塗布した。
Next, a unit cell system 109 corresponding to the reference color red
The step of forming a predetermined retardation film 108a corresponding to the reference color red on a will be described with reference to FIG. Referring to FIG. 3A, an alignment film 310 was formed on the inner surface of the transparent substrate 203a, and rubbed in a predetermined direction with a rayon cloth or the like. A predetermined amount of a solution of a first liquid crystal material, for example, a mixed monomer (320) containing a liquid crystal monomer having a UV-polymerization property, for example, a liquid crystal diacrylate monomer, was applied by a method such as spinner or printing.

【0017】上記の工程により、前記処理した配向方向
にそって該紫外線重合性の液晶性モノマーは配向した。
次に上記配向した該紫外線重合性の液晶性モノマー(3
20)に紫外線光302を照射し重合硬化して所定の厚
みの薄膜320を形成する。配向した液晶性モノマーの
薄膜320は屈折率異方性△nと所定の厚みから得られ
る位相差値と遅相軸を持った第1の位相差膜を形成する
事になる。
By the above-mentioned steps, the ultraviolet-polymerizable liquid crystalline monomer was oriented along the treated orientation direction.
Next, the aligned UV-polymerizable liquid crystalline monomer (3)
20) is irradiated with ultraviolet light 302 and polymerized and cured to form a thin film 320 having a predetermined thickness. The oriented liquid crystal monomer thin film 320 forms a first retardation film having a refractive index anisotropy Δn, a retardation value obtained from a predetermined thickness, and a slow axis.

【0018】次に図3bにおいて、上記形成した第1の
位相差膜を基準色赤に相当する単位セル系109aに区
分けするため、上記位相差膜にフォトレジスト311、
フォトマスクを使って通常のフォトリソ工程で露光現像
をし、微細加工するためドライエッチングで複数の該単
位セル109a系上の該位相差膜108aを残して残り
の薄膜321全てを取り去った。このようにして、基準
色赤に相当する複数の単位セル系109aに所定の位相
差値、遅相軸を持った位相差膜108aが形成できた。
Next, in FIG. 3B, in order to divide the formed first retardation film into a unit cell system 109a corresponding to the reference color red, a photoresist 311 is added to the retardation film.
Exposure and development were carried out in a normal photolithography process using a photomask, and all the remaining thin films 321 were removed by dry etching for fine processing except for the retardation films 108a on the plurality of unit cells 109a. In this way, a retardation film 108a having a predetermined retardation value and a slow axis was formed in a plurality of unit cell systems 109a corresponding to the reference color red.

【0019】次に基準色緑、青に相当する複数の各単位
セル系109b、109cにそれぞれ基準色緑、青に対
応する所定の位相差膜108b、108cを第2、3の
紫外線重合の液晶性モノマーを使用して上記と同じ工程
で形成する。
Next, predetermined phase difference films 108b and 108c corresponding to the reference colors green and blue are respectively provided on a plurality of unit cell systems 109b and 109c corresponding to the reference colors green and blue by the second and third ultraviolet polymerized liquid crystals. It forms by the same process as the above using a hydrophilic monomer.

【0020】図1に示されるように、上記の様に透明基
板203a上の3つの基準色に相当する複数の単位セル
系のその位相差値、遅相軸方向が異なった位相差膜10
8a、b、cの上に、通常の工程でコモン電極204、
配向膜206aを形成、ラビング処理を施し、ギャップ
5ミクロンで透明基板203a、bでホモジニアス配向
させた液晶層207を狭持してパネルを製作した。
As shown in FIG. 1, a plurality of unit cell systems corresponding to three reference colors on the transparent substrate 203a have different retardation values and retardation films 10 of different retardation axis directions as described above.
8a, b, and c, the common electrode 204,
A panel was manufactured by forming an alignment film 206a, performing a rubbing treatment, and sandwiching a liquid crystal layer 207 having a transparent substrate 203a, b and having a homogeneous alignment with a gap of 5 microns.

【0021】白色光の透過の元で、図1のように製作し
たパネルの電極204と205a、205b、205c
に所定の電圧を印加駆動した結果、単位セル系109
a、109b、109cは基準色赤、緑、青の色相を発
現した。また、単位セル別にその駆動電圧を変化させた
が明るさが変化し、色相の変化は殆どなかった。複数の
画素の集まりであるパネル全体を駆動させたが明度と色
相をほぼ独立に制御可能な品質の良いカラーの液晶表示
装置を製作できた。
Under the transmission of white light, the electrodes 204 and 205a, 205b, 205c of the panel manufactured as shown in FIG.
Is driven by applying a predetermined voltage to the unit cell system 109.
a, 109b, and 109c developed the reference colors red, green, and blue. Further, although the driving voltage was changed for each unit cell, the brightness changed, and the hue hardly changed. Although the entire panel, which is a group of a plurality of pixels, was driven, a high-quality color liquid crystal display device capable of controlling the brightness and hue almost independently could be manufactured.

【0022】上記において、液晶性ジアクリレートモノ
マーを含む液晶性モノマーを使用したが、位相差膜を形
成出来るものなら別系統の液晶性モノマーでもよい。ま
た、上記において第1、2、3の液晶性高分子を使用し
たが、その材料としては少なくとも1種類以上の材料で
よい。
In the above, a liquid crystalline monomer containing a liquid crystalline diacrylate monomer is used, but another type of liquid crystalline monomer may be used as long as it can form a retardation film. Although the first, second and third liquid crystalline polymers are used in the above description, at least one kind of material may be used.

【0023】また、上記において、液晶性モノマーの溶
液をラビング処理した配向膜で配向させたが、偏光紫外
線光で照射した配向膜でも該溶液は配向した。また。液
晶性高分子を塗布後、所定の方向に磁場を印加しても該
溶液は配向できた。また、電界印加でも配向させること
ができる。
In the above, the solution of the liquid crystalline monomer was oriented by the rubbed alignment film. However, the solution was also oriented by the alignment film irradiated with polarized ultraviolet light. Also. After applying the liquid crystalline polymer, the solution could be oriented even when a magnetic field was applied in a predetermined direction. Orientation can also be performed by applying an electric field.

【0024】また、上記において、液晶性材料として紫
外線重合性の液晶性モノマーを使用、紫外線照射で硬化
し薄膜を形成したが、液晶性材料として通常の液晶性高
分子の加温した溶液を用いても良い。該液晶性高分子を
塗布、配向させ、その後熱冷却して硬化し薄膜を形成
し、微細加工する工程を用いても各基準色に相当する単
位セルに位相差膜を形成できた。
Further, in the above, an ultraviolet-polymerizable liquid crystal monomer was used as a liquid crystal material and cured by irradiation with ultraviolet light to form a thin film. However, as a liquid crystal material, an ordinary heated solution of a liquid crystal polymer was used. May be. The retardation film could be formed in the unit cell corresponding to each reference color even by using a process of applying and orienting the liquid crystalline polymer, and then thermally cooling and curing to form a thin film and performing a fine processing.

【0025】また、上記において、微細加工するために
硬化した位相差膜にフォトレジスト、フォトマスクを使
って通常のフォトリソ工程で露光現像をしドライエッチ
ングをしたが、ウェットエッチングしてもよい。 (実施の形態2)図4は、本発明の第2の実施の形態に
関わる液晶表示装置の製造法を説明するための液晶装置
の構成概念図を示す。
In the above description, the phase difference film cured for fine processing is exposed and developed in a usual photolithography process using a photoresist and a photomask to perform dry etching, but wet etching may be performed. (Embodiment 2) FIG. 4 is a conceptual diagram of a configuration of a liquid crystal device for describing a method of manufacturing a liquid crystal display device according to a second embodiment of the present invention.

【0026】図4において、液晶層207を狭持する一
対の透明基板203a、203bの対向外面に、偏光板
201a、201bと、位相差板202a、202bを
設置した。一方の透明基板203bの対向内面上にはセ
グメント電極205a、205b、205cを設ける。
更に、配向膜206bを形成し、ラビング配向処理す
る。これに対し、透明基板203aの対向内面上に、基
準色赤に相当する単位セル系409a、基準色緑に相当
する単位セル系409b、基準色青に相当する単位セル
系409cの3つの単位セルから構成する画素系410
を複数設ける。
In FIG. 4, polarizing plates 201a and 201b and retardation plates 202a and 202b are provided on the opposing outer surfaces of a pair of transparent substrates 203a and 203b sandwiching a liquid crystal layer 207. Segment electrodes 205a, 205b, and 205c are provided on the opposing inner surface of one transparent substrate 203b.
Further, an alignment film 206b is formed and a rubbing alignment process is performed. On the other hand, three unit cells of a unit cell system 409a corresponding to the reference color red, a unit cell system 409b corresponding to the reference color green, and a unit cell system 409c corresponding to the reference color blue are provided on the opposed inner surface of the transparent substrate 203a. Pixel system 410 composed of
Are provided.

【0027】図5を使って透明基板203aに基準色赤
に相当する単位セル系409aに基準色赤に対応する所
定の位相差膜408aを形成、製造する工程を述べる。
A process of forming and manufacturing a predetermined retardation film 408a corresponding to the reference color red in the unit cell system 409a corresponding to the reference color red on the transparent substrate 203a will be described with reference to FIG.

【0028】図5において、透明基板203a内面上に
第1の光重合性高分子モノマー、例えばPVMC(ビニ
ル4−メトキシシンナメート)の溶液をスピンナーある
いは印刷などの方法で所定の量を塗布する。塗布された
該光重合性高分子モノマーの塗膜液に基準色赤に相当す
る単位セル系409aに対して、フォトマスク511を
通して基準色赤に相当する偏向方向の偏光紫外線光50
2を照射する。その結果、該光重合性高分子モノマーは
偏向光により配向すると同時に紫外線で照射した部分は
重合硬化し薄膜を形成した。偏光紫外線が照射されなか
った非照射部512は硬化せず、溶剤で洗い流して微細
加工し、単位セル系409aの部分に所定の位相差値、
遅相軸を持つ位相差膜408aを形成できた。
In FIG. 5, a predetermined amount of a solution of a first photopolymerizable polymer monomer, for example, PVMC (vinyl 4-methoxycinnamate) is applied onto the inner surface of the transparent substrate 203a by a method such as spinner or printing. The polarized ultraviolet light 50 in the deflection direction corresponding to the reference color red is passed through the photomask 511 to the unit cell system 409a corresponding to the reference color red in the applied coating liquid of the photopolymerizable polymer monomer.
Irradiate 2. As a result, the photopolymerizable polymer monomer was oriented by the deflecting light and, at the same time, the portion irradiated with ultraviolet light was polymerized and cured to form a thin film. The non-irradiated portion 512 that has not been irradiated with the polarized ultraviolet rays does not cure, is washed away with a solvent and finely processed, and a predetermined phase difference value is added to the portion of the unit cell system 409a.
A retardation film 408a having a slow axis was formed.

【0029】次に図4のように、上記透明基板203a
内面上の基準色緑、青に相当する複数の各単位セル系4
09b、409cにそれぞれ基準色緑、青に対応する位
相差値、遅相軸を持った位相差膜408b、408cを
上記とほぼ同じ工程で形成する。
Next, as shown in FIG.
Multiple unit cell systems 4 corresponding to the reference colors green and blue on the inner surface
Phase difference films 408b and 408c having a phase difference value and a slow axis corresponding to the reference colors green and blue, respectively, are formed at 09b and 409c in substantially the same steps as above.

【0030】次に、図4に示すように、通常の工程でコ
モン電極204、配向膜206aを形成、ラビング処理
を施し、ギャップ5ミクロンで透明基板203a、bで
ホモジニアス配向させた液晶207を狭持してパネルを
製作した。
Next, as shown in FIG. 4, a common electrode 204 and an alignment film 206a are formed in a normal process, rubbing is performed, and a liquid crystal 207 that has been homogeneously aligned on the transparent substrates 203a and 203b with a gap of 5 μm is narrowed. To make a panel.

【0031】白色光の透過の元で、図1のようにして製
作したパネルの電極204と205a、205b、20
5cに所定の電圧を印加駆動した結果、単位セル系40
9a、409b、409cは基準色赤、緑、青の色相を
発現した。また、単位セル別にその駆動電圧を変化させ
たが明るさが変化し、色相の変化は殆どなかった。複数
の画素の集まりであるパネル全体を駆動させたが明度と
色相をほぼ独立に制御可能な階調表示に優れた液晶表示
装置を製作できた。
The electrodes 204 and 205a, 205b, 20 of the panel manufactured as shown in FIG.
As a result of applying a predetermined voltage to 5c and driving it, the unit cell system 40
9a, 409b, and 409c exhibited the reference colors red, green, and blue. Further, although the driving voltage was changed for each unit cell, the brightness changed, and the hue hardly changed. Although the entire panel, which is a group of a plurality of pixels, was driven, a liquid crystal display device excellent in gradation display in which brightness and hue could be controlled almost independently could be manufactured.

【0032】以上に述べた実施の形態1、2において、
液晶性材料の溶液、液晶性モノマーあるいは光重合性高
分子モノマーの溶液を硬化して薄膜を形成する工程で前
記単位セル別に加熱保持温度、時間を変えて、位相差値
を最適にできる。
In the first and second embodiments described above,
In the step of curing a solution of a liquid crystal material, a solution of a liquid crystal monomer or a photopolymerizable polymer monomer to form a thin film, the phase difference value can be optimized by changing the heating holding temperature and time for each unit cell.

【0033】また、上記において、液晶性モノマーある
いは光重合性高分子モノマーの溶液を硬化して形成する
位相差膜の厚みを変えて、図6の如く各単位セル409
a、409b、409cに対応して所定の位相差値を得
るようにその膜厚が異なった位相差膜408a、408
b、408cを形成できた。
Further, in the above, the thickness of the retardation film formed by curing the solution of the liquid crystalline monomer or the photopolymerizable polymer monomer is changed, and as shown in FIG.
a, 409b, and 409c, the phase difference films 408a, 408 having different film thicknesses so as to obtain a predetermined phase difference value.
b, 408c could be formed.

【0034】また、上記において、液晶性モノマーある
いは光重合性高分子モノマーから形成された薄膜は各単
位セル毎に微細加工の方法として、必要に応じてドライ
エッチングあるいはウェットエッチング工程を通して形
成できる。
In the above, a thin film formed from a liquid crystal monomer or a photopolymerizable polymer monomer can be formed by a dry etching or wet etching step as required as a fine processing method for each unit cell.

【0035】また、上記において、実施の形態1、2で
各単位セル別に形成される位相差膜の種類として各々単
独の液晶性モノマー、光重合性高分子モノマーから形成
するとしたが、各単位セルに形成する位相差膜の種類と
して上記2種の位相差膜の組み合わせからも形成でき
た。
In the above description, the phase difference film formed for each unit cell in the first and second embodiments is formed from a single liquid crystalline monomer or a single photopolymerizable polymer monomer. As a type of the retardation film to be formed, a combination of the above two types of retardation films could be formed.

【0036】また、上記において、図7の如く両基板電
極の内一方の反射電極705a、705b、705cを
Alなどの光反射電極で構成し、上記に述べた方法で各
単位セル109a、b、cに対応して位相差膜108
a、b、cを形成して、配向ラビング処理し、液晶を狭
持して反射型の液晶表示装置図7のように製作した。各
電極に電圧印加し駆動したら、単位セル別にその駆動電
圧を変化させたが明るさが変化し、色相の変化は殆どな
かった。複数の画素の集まりであるパネル全体を駆動さ
せたが明度と色相をほぼ独立に制御可能な階調の取れる
光効率の良い反射型カラーの液晶表示装置を製作でき
た。
In the above description, as shown in FIG. 7, one of the reflection electrodes 705a, 705b and 705c of the two substrate electrodes is constituted by a light reflection electrode of Al or the like, and each of the unit cells 109a, b, phase difference film 108 corresponding to c
a, b, and c were formed, alignment rubbing was performed, and a liquid crystal was sandwiched to produce a reflective liquid crystal display device as shown in FIG. When a voltage was applied to each electrode to drive it, the drive voltage was changed for each unit cell, but the brightness changed, and there was almost no change in hue. Although the entire panel, which is a group of a plurality of pixels, was driven, it was possible to manufacture a reflective color liquid crystal display device having high light efficiency and capable of controlling the brightness and hue almost independently of each other and having good gradation.

【0037】なお、本発明に関わる液晶表示装置の上記
所定の構成条件は以下のものである。すなわち、前記画
素は(1)一定の基準軸に対する前記偏光板の透過軸の
成す角度、(2)前記位相差膜の位相差、(3)その位
相差膜の遅相軸の成す角度、(4)液晶層の位相差、
(5)第1、2の基板表面での各液晶分子の配向方向、
チルト角の組み合せが異なる複数の単位セルからなり、
この画素から構成される液晶表示装置が白、黒、基準
色、同一色相の中間調表示が可能なように上記(1)〜
(5)の組み合せが選択され決定される条件である。
The above-mentioned predetermined constitutional conditions of the liquid crystal display device according to the present invention are as follows. That is, the pixel has (1) an angle formed by a transmission axis of the polarizing plate with respect to a fixed reference axis, (2) a phase difference of the phase difference film, (3) an angle formed by a slow axis of the phase difference film, 4) the retardation of the liquid crystal layer,
(5) the orientation direction of each liquid crystal molecule on the first and second substrate surfaces,
It consists of multiple unit cells with different combinations of tilt angles,
(1) to (4) so that the liquid crystal display device constituted by these pixels can display white, black, reference color, and halftone display of the same hue.
This is the condition under which the combination of (5) is selected and determined.

【0038】なお、本発明で液晶層の配向の状態をホモ
ジニアス配向としたが、光制御の組み合わせによってホ
メオトロピック配向、ハイブリッド配向などが選択でき
る。
In the present invention, the alignment state of the liquid crystal layer is defined as a homogeneous alignment, but a homeotropic alignment, a hybrid alignment and the like can be selected by a combination of light control.

【0039】なお、本発明の製造法は単純マトリクス方
式やTFT、MIMなどのアクティブマトリクス方式の
液晶表示装置、それらの方式の反射型の液晶表示装置の
いずれにも同様に実施可能である。
The manufacturing method of the present invention can be similarly applied to any of a simple matrix type, an active matrix type liquid crystal display device such as TFT and MIM, and a reflection type liquid crystal display device of those types.

【0040】[0040]

【発明の効果】以上のように本発明によれば、カラ−フ
ィルタ−を用いないで色相と明度をほぼ独立に制御可能
な、階調表示に優れ光効率の良い液晶表示装置を製造で
きるという有利な効果が得られる。
As described above, according to the present invention, it is possible to manufacture a liquid crystal display device which can control hue and lightness almost independently without using a color filter, is excellent in gradation display, and has high light efficiency. An advantageous effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に関わる液晶表示装
置の製造法による構成概念図
FIG. 1 is a conceptual diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention, which is manufactured by a manufacturing method.

【図2】従来の液晶表示装置の製造法による構成概念図FIG. 2 is a conceptual diagram showing a configuration of a conventional liquid crystal display device by a manufacturing method.

【図3】本発明の第1の実施の形態に関わる液晶表示装
置の製造法による位相差膜形成工程概念図
FIG. 3 is a conceptual diagram of a retardation film forming process by a method of manufacturing a liquid crystal display device according to the first embodiment of the present invention.

【図4】本発明の第2の実施の形態に関わる液晶表示装
置の製造法による構成概念図
FIG. 4 is a conceptual diagram illustrating a configuration of a liquid crystal display device according to a second embodiment of the present invention by a manufacturing method.

【図5】本発明の第2の実施の形態に関わる液晶表示装
置の製造法による位相差膜形成工程概念図
FIG. 5 is a conceptual diagram of a retardation film forming process by a method of manufacturing a liquid crystal display device according to a second embodiment of the present invention.

【図6】本発明の他の実施の形態に関わる液晶表示装置
の製造法による構成概念図
FIG. 6 is a conceptual diagram illustrating a configuration of a liquid crystal display device according to another embodiment of the present invention, which is manufactured by a manufacturing method.

【図7】本発明の他の実施の形態に関わる液晶表示装置
の製造法による反射型の構成概念図
FIG. 7 is a conceptual diagram showing a configuration of a reflection type by a method of manufacturing a liquid crystal display device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

201a、201b・・偏光板 202a、202b・・位相差板 203a、203b・・透明基板 204・・・・・・・・コモン電極 205a、205b、205c・・セグメント電極 207・・・・・・・・液晶層 206a、206b・・配向膜 108a、108b、108c・・位相差膜 109a、109b、109c・・単位セル 110・・・・・画素 302・・・・・・・・紫外線光 310・・・・・・・・配向膜 311・・・・・・・・フォトレジスト 320・・・・・・・・薄膜 321・・・・・・・・薄膜 408a、408b、408c・・位相差膜 409a、409b、409c・・単位セル 410・・・・・画素 502・・・・・・・・偏光紫外線光 511・・・・・・・・フォトマスク512・・・・・
・・・非照射部 705a、705b、705c・・反射電極
201a, 201b, polarizing plates 202a, 202b, retardation plates 203a, 203b, transparent substrates 204, ... common electrodes 205a, 205b, 205c, segment electrodes 207, ... Liquid crystal layers 206a, 206b alignment films 108a, 108b, 108c retardation films 109a, 109b, 109c unit cells 110 ... pixels 302 ... ultraviolet light 310 ... ...... Alignment film 311 Photoresist 320 Thin film 321 Thin film 408a, 408b, 408c Phase difference film 409a , 409b, 409c, unit cell 410, pixel 502, polarized ultraviolet light 511, photomask 512, etc.
... Non-irradiated parts 705a, 705b, 705c-reflective electrode

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】少なくとも偏光板と、位相差板あるいは位
相差膜と、電極を有する第1の基板と第2の基板と、そ
れらの第1、2の基板の対向内側に狭持された液晶層と
を備え、複屈折効果によって着色光を得、多数の画素を
構成する複数の単位セルからなるマトリクス型の液晶表
示装置の製造法であって、一方の該基板内面に該単位セ
ル別に少なくとも1種類以上の液晶性材料の溶液を塗布
する工程と、該液晶性材料を配向させる工程と、該溶液
を硬化し薄膜を形成する工程と、形成された該薄膜を各
単位セル別に微細加工する工程を備え、該各単位セルに
設置された位相差膜の位相差値、遅相軸方向を異なるよ
うに形成することを特徴とする液晶表示装置の製造法。
1. A first substrate and a second substrate having at least a polarizing plate, a retardation film or a retardation film, electrodes, and a liquid crystal sandwiched between opposing inner sides of the first and second substrates. A method for producing a matrix-type liquid crystal display device comprising a plurality of unit cells constituting a large number of pixels, the colored light being obtained by a birefringence effect. A step of applying a solution of one or more liquid crystal materials, a step of orienting the liquid crystal material, a step of curing the solution to form a thin film, and finely processing the formed thin film for each unit cell A method for manufacturing a liquid crystal display device, comprising a step of forming a retardation film and a retardation axis direction of a retardation film provided in each unit cell so as to have different retardation axis directions.
【請求項2】前記液晶性材料を配向させる工程が、配向
膜を形成、あるいは磁場あるいは電場印加により前記単
位セル別に少なくともその表面の配向方向が異なるよう
に配向処理する工程を有することを特徴とする請求項1
記載の液晶表示装置の製造法。
2. The method according to claim 1, wherein the step of aligning the liquid crystalline material comprises a step of forming an alignment film or performing an alignment treatment by applying a magnetic field or an electric field such that at least the surface of each unit cell has a different alignment direction. Claim 1
The manufacturing method of the liquid crystal display device according to the above.
【請求項3】前記液晶性材料の溶液が紫外線重合性の液
晶性モノマーであり、前記溶液を硬化して薄膜を形成す
る工程が該溶液に紫外線を照射する工程を有することを
特徴とする請求項1又は2記載の液晶表示装置の製造
法。
3. The method according to claim 1, wherein the solution of the liquid crystalline material is an ultraviolet-polymerizable liquid crystalline monomer, and the step of curing the solution to form a thin film includes the step of irradiating the solution with ultraviolet rays. Item 3. A method for manufacturing a liquid crystal display device according to item 1 or 2.
【請求項4】前記液晶性材料の溶液が液晶性高分子であ
り、該液晶性高分子を硬化して薄膜を形成する工程が該
溶液を熱冷却して硬化し薄膜を形成する工程であること
を特徴とする請求項1又は2記載の液晶表示装置の製造
法。
4. The step of forming a thin film by curing the liquid crystalline polymer, wherein the solution of the liquid crystalline material is a liquid crystalline polymer, and the step of thermally cooling the solution to form a thin film. The method for manufacturing a liquid crystal display device according to claim 1, wherein:
【請求項5】少なくとも偏光板と、位相差板あるいは位
相差膜と、電極を有する第1の基板と第2の基板と、そ
れらの第1、2の基板の対向内側に狭持された液晶層と
を備え、複屈折効果によって着色光を得、多数の画素を
構成する複数の単位セルからなるマトリクス型の液晶表
示装置の製造法であって、一方の該基板内面に該単位セ
ル別に少なくとも1種類以上の光重合性高分子モノマー
を含む溶液を塗布する工程と、該光重合性高分子モノマ
ーに該単位セル別に偏向方向が異なった偏光紫外線を照
射して配向かつ重合硬化して薄膜を形成する工程と、形
成された該薄膜を各単位セル別に微細加工する工程を備
え、該各単位セルに設置された位相差膜の位相差値、遅
相軸方向を異なるように形成することを特徴とする液晶
表示装置の製造法。
5. A first substrate and a second substrate having at least a polarizing plate, a retardation plate or a retardation film, electrodes, and a liquid crystal sandwiched between the first and second substrates facing each other. A method for producing a matrix-type liquid crystal display device comprising a plurality of unit cells constituting a large number of pixels, the colored light being obtained by a birefringence effect. Applying a solution containing at least one kind of photopolymerizable polymer monomer, and irradiating the photopolymerizable polymer monomer with polarized ultraviolet rays having different deflection directions for each unit cell to align and polymerize and cure the thin film. Forming, and a step of finely processing the formed thin film for each unit cell, wherein the phase difference value of the retardation film installed in each unit cell, the slow axis direction is formed differently. Characteristic liquid crystal display device manufacturing method
【請求項6】前記溶液を硬化して薄膜を形成する工程に
前記単位セル別に該溶液の加熱温度及び/又は時間を変
える工程を有することを特徴とする請求項1、2、3、
4又は5記載の液晶表示装置の製造法。
6. The method according to claim 1, wherein the step of curing the solution to form a thin film includes the step of changing the heating temperature and / or time of the solution for each unit cell.
6. The method for manufacturing a liquid crystal display device according to 4 or 5.
【請求項7】前記単位セル別に形成される位相差膜の厚
みを変えてその位相差値が異なり、かつ遅相軸の方向が
異なるように位相差膜を形成する工程を有することを特
徴とする請求項1、2、3、4、5又は6記載の液晶表
示装置の製造法。
7. The method according to claim 1, further comprising the step of changing the thickness of the retardation film formed for each unit cell to form the retardation film so that the retardation value is different and the direction of the slow axis is different. The method for manufacturing a liquid crystal display device according to claim 1, 2, 3, 4, 5, or 6.
【請求項8】形成された該薄膜を各単位セル毎に微細加
工する工程が、微細マスクによるドライエッチングある
いはウェットエッチング工程を有する工程であることを
特徴とする請求項1、2、3、4、5、6又は7記載の
液晶表示装置の製造法。
8. The method according to claim 1, wherein the step of finely processing the formed thin film for each unit cell includes a step of dry etching or wet etching using a fine mask. 8. The method for producing a liquid crystal display device according to 5, 6, or 7.
【請求項9】前記単位セル別に形成される位相差膜の種
類が、前記液晶性モノマーおよび前記光重合性高分子モ
ノマーを含む溶液の組み合わせから形成される工程を有
することを特徴とする請求項1、2、3、4、5、6、
7又は8記載の液晶表示装置の製造法。
9. The method according to claim 1, wherein the type of the retardation film formed for each unit cell is formed from a combination of a solution containing the liquid crystalline monomer and the photopolymerizable polymer monomer. 1, 2, 3, 4, 5, 6,
9. The method for manufacturing a liquid crystal display device according to 7 or 8.
【請求項10】前記電極を有する第1の基板と第2の基
板の一方の該電極が光反射電極で構成されることを特徴
とする請求項1、2、3、4、5、6、7、8又は9記
載の液晶表示装置の製造法。
10. The method according to claim 1, wherein one of said first and second substrates having said electrodes is constituted by a light reflecting electrode. 10. The method for manufacturing a liquid crystal display device according to 7, 8, or 9.
JP8169145A 1996-06-28 1996-06-28 Production of liquid crystal display device Pending JPH1020301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8169145A JPH1020301A (en) 1996-06-28 1996-06-28 Production of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8169145A JPH1020301A (en) 1996-06-28 1996-06-28 Production of liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH1020301A true JPH1020301A (en) 1998-01-23

Family

ID=15881128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8169145A Pending JPH1020301A (en) 1996-06-28 1996-06-28 Production of liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH1020301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145327A (en) * 2002-10-04 2004-05-20 Dainippon Printing Co Ltd Optical element and liquid crystal display device using the same
KR100627525B1 (en) * 1998-04-07 2006-09-22 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device
US7495731B2 (en) 2002-12-13 2009-02-24 Dai Nippon Printing Co., Ltd. Retardation element, display element comprising the same, and process of producing retardation element
JP2009069841A (en) * 2008-10-27 2009-04-02 Dainippon Printing Co Ltd Phase difference element, display element with the same, and method for manufacturing phase difference element
US8031309B2 (en) 2005-12-14 2011-10-04 Fujifilm Corporation Liquid crystal display device having retardation film on inside of substrate compensating for light of a particular wavelength
KR101181827B1 (en) 2010-07-16 2012-09-11 한양대학교 산학협력단 Liquid crsytal display

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627525B1 (en) * 1998-04-07 2006-09-22 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device
JP2004145327A (en) * 2002-10-04 2004-05-20 Dainippon Printing Co Ltd Optical element and liquid crystal display device using the same
US7495731B2 (en) 2002-12-13 2009-02-24 Dai Nippon Printing Co., Ltd. Retardation element, display element comprising the same, and process of producing retardation element
US8031309B2 (en) 2005-12-14 2011-10-04 Fujifilm Corporation Liquid crystal display device having retardation film on inside of substrate compensating for light of a particular wavelength
JP2009069841A (en) * 2008-10-27 2009-04-02 Dainippon Printing Co Ltd Phase difference element, display element with the same, and method for manufacturing phase difference element
KR101181827B1 (en) 2010-07-16 2012-09-11 한양대학교 산학협력단 Liquid crsytal display

Similar Documents

Publication Publication Date Title
US6067138A (en) Retardation film and method for producing the same, and liquid crystal display device
JP3114723B2 (en) Liquid crystal display device and method of manufacturing the same
JP3358935B2 (en) Liquid crystal display device and method of manufacturing the same
KR100356967B1 (en) Optical element and its manufacturing method
US5528401A (en) Liquid crystal display device having an orientation layer containing liquid crystal with a controlled orientation and method for manufacturing the same
JP3178773B2 (en) Liquid crystal display device and method of manufacturing the same
KR20020079602A (en) Liquid crystal composition, color filter, and liquid crystal display device
US7826019B2 (en) Liquid crystal display device using nematic liquid crystal and alignment layer favorable for low power consumption
JP2008090317A (en) Liquid crystal device
US5926241A (en) Photo-patterned compensator with thin film having optically birefringent and isotropic regions and method of manufacturing for a liquid crystal display
JPH0220A (en) Color display device
JPH07318940A (en) Liquid crystal display device
JPH11305256A (en) Active matrix type liquid crystal display device
JPH1020301A (en) Production of liquid crystal display device
KR100735776B1 (en) Liquid crystal device and method for manufacturing liquid crystal device
JP4031658B2 (en) Liquid crystal display
JP2806673B2 (en) Liquid crystal display device and method of manufacturing the same
JP3267861B2 (en) Reflection type liquid crystal display element and manufacturing method thereof
JP3524245B2 (en) Liquid crystal display device
JP2002309103A (en) Liquid crystalline composition, color filter, and liquid crystal display device
JPH01257823A (en) Color filter substrate for liquid crystal display device
JPH08152618A (en) Color liquid crystal display device
JPH11271740A (en) Liquid crystal display device and liquid crystal device, and manufacture thereof
JP3090077B2 (en) Liquid crystal optical element and manufacturing method thereof
JPH0311317A (en) Liquid crystal display device