JPH1020063A - Fast reactor fuel assembly and its reactor core - Google Patents

Fast reactor fuel assembly and its reactor core

Info

Publication number
JPH1020063A
JPH1020063A JP8174570A JP17457096A JPH1020063A JP H1020063 A JPH1020063 A JP H1020063A JP 8174570 A JP8174570 A JP 8174570A JP 17457096 A JP17457096 A JP 17457096A JP H1020063 A JPH1020063 A JP H1020063A
Authority
JP
Japan
Prior art keywords
neutron
fast reactor
fuel
fuel assembly
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8174570A
Other languages
Japanese (ja)
Inventor
Kaoru Kobayashi
薫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8174570A priority Critical patent/JPH1020063A/en
Publication of JPH1020063A publication Critical patent/JPH1020063A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the coolant density coefficient without causing an output peaking in the peripheral area of a neutron moderator by arranging a plurality of fuel rods having a fissionable material charged therein in the circumferential area of a plurality of fuel rods having a main material charged therein so as to surround it. SOLUTION: A fast reactor fuel assembly is formed of a tube 10 having yttrium hydride charged therein, a fuel rod 9 having depleted uranium charged therein, which surrounds the peripheral area of the tube 10, a wrapper pipe 11, and sodium 12. In a hard neutron spectrum as in a fast reactor, the average free stroke of neutron is severalcm, and about 1cm in moderated neutron. Since an output peaking occurs in a distance several times the average free stroke, the fuel rod 9 is arranged in the peripheral area of several cm of the tube 10, whereby the occurrence of the output peaking can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は過出力時等のナトリ
ウム密度減少時の反応度を小さくして炉心安全性を向上
し、かつ出力ピーキングを小さくした高速炉用燃料集合
体およびその炉心に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel assembly for a fast reactor in which the reactivity at the time of sodium density reduction at the time of overpower or the like is reduced to improve the core safety and the power peaking is reduced, and the core thereof.

【0002】[0002]

【従来の技術】高速炉用燃料集合体及び炉心に関して
は、三木良平著「高速増殖炉」(三木良平:高速増殖
炉,日刊工業新聞社,1972年,p−44から50)
に詳細に記載されている。すなわち、高速炉用燃料集合
体はプルトニウムを富化した核燃料物質を、被覆管に束
ねた燃料棒束と、これを取り囲むラッパ管,燃料棒束よ
り上方にある冷却材流出部、及び燃料棒束の下方にある
中性子遮蔽体と冷却材流入部からなっている。高速炉炉
心は、燃料集合体を円筒状に多数束ねて形成され、炉心
の径方向中心より遠くの高速炉用燃料集合体ほど、核分
裂性物質の原子数密度を高くすることにより、径方向の
出力分布を平坦化している。通常、炉心は、プルトニウ
ム富化度の低い高速炉用燃料集合体を配置した内側炉心
と、プルトニウム富化度の高い高速炉用燃料集合体を配
置した外側炉心で構成される。
2. Description of the Related Art Regarding fuel assemblies and cores for fast reactors, see "Fast Breeder Reactor" by Ryohei Miki (Ryohei Miki: Fast Breeder Reactor, Nikkan Kogyo Shimbun, 1972, p.44-50).
In more detail. That is, a fuel assembly for a fast reactor comprises a fuel rod bundle in which a plutonium-enriched nuclear fuel material is bundled in a cladding tube, a wrapper tube surrounding the bundle, a coolant outlet above the fuel rod bundle, and a fuel rod bundle. Neutron shield and coolant inflow below. The fast reactor core is formed by bundling a large number of fuel assemblies in a cylindrical shape, and the fuel assembly for a fast reactor farther from the radial center of the core increases the atomic number density of the fissile material to increase the radial direction. Output distribution is flattened. Usually, the core is constituted by an inner core in which a fuel assembly for a fast reactor with a low plutonium enrichment is arranged, and an outer core in which a fuel assembly for a fast plutonium with a high plutonium enrichment is arranged.

【0003】大型高速炉における冷却材密度係数(冷却
材の密度減少時に炉心に与える反応度係数と定義)は、
一般に正の値を持つ。この値を低減する研究開発は19
60年代より進められている。社団法人 日本機械学会
第4回動力・エネルギ技術シンポジウム 動力・エネ
ルギ技術の最前線 ‘94 p345−p350‘高速
炉を用いた長寿命放射性核種の消滅処理’に記載されて
いるように、冷却材密度反応度の低減方法は、中性子が
炉心から漏れやすい構成とするか、冷却材密度の減少に
伴う中性子スペクトルの硬化を緩和することが反応度の
低減に効果のあることが知られている。中性子スペクト
ルの硬化を緩和する方法の一つに、炉心内に中性子減速
材を配置することがある。従来例は、炉心内または炉心
周辺部に中性子減速材を配置する構成を持っている。炉
心内に中性子減速材を配置した場合には、図2に示すよ
うに、Naプレナム(ACSG:Above-Core Sodium Ga
pの略)と上部軸ブランケットの間に中性子減速材Ca
2 層を配置した構成になっている。
[0003] The coolant density coefficient (defined as the reactivity coefficient given to the core when the coolant density decreases) in a large fast reactor is
Generally has a positive value. R & D to reduce this value is 19
It has been in progress since the 1960s. As described in the 4th Power and Energy Technology Symposium of the Japan Society of Mechanical Engineers, the forefront of power and energy technology, '94 p345-350 ', a long-lived radionuclide annihilation process using a fast reactor It is known that a method of reducing the reactivity is effective in reducing the reactivity by adopting a configuration in which neutrons are likely to leak from the core or by alleviating the hardening of the neutron spectrum due to a decrease in the coolant density. One way to mitigate the hardening of the neutron spectrum is to place a neutron moderator in the core. The conventional example has a configuration in which a neutron moderator is arranged in or around the core. When a neutron moderator is placed in the reactor core, as shown in FIG. 2, Na plenum (ACSG: Above-Core Sodium Ga
p) and the neutron moderator Ca between the upper shaft blanket
It has a configuration in which an H 2 layer is arranged.

【0004】[0004]

【発明が解決しようとする課題】中性子減速材を高速炉
炉心内に配置することは、冷却材密度の減少に伴う中性
子スペクトルの硬化を緩和する。この効果をさらに高め
るには、中性子束の大きな領域、すなわち炉心中心部に
中性子減速材を配置するのが効果が高い。中性子減速材
を炉心中央部に配置すると、高速中性子が減速され、低
エネルギ領域で核分裂断面積が大きくなる物質(例え
ば、プルトニウム239)の核分裂反応が促進され、結
果として出力ピーキングが起こる。
Placing a neutron moderator in the fast reactor core mitigates the hardening of the neutron spectrum with decreasing coolant density. In order to further enhance this effect, it is effective to arrange a neutron moderator in a region where the neutron flux is large, that is, in the center of the core. Placing a neutron moderator in the center of the core slows down fast neutrons and promotes the fission reaction of substances (for example, plutonium 239) that increase the fission cross section in the low energy region, resulting in power peaking.

【0005】従来例では、炉心中心から離れた領域に中
性子減速材を配置することで出力ピーキングが発生しな
い構成となっていた。
[0005] In the conventional example, power peaking does not occur by disposing a neutron moderator in a region away from the center of the core.

【0006】本発明の目的は、大型高速炉炉心に装荷さ
れる高速炉用燃料集合体において、炉心内に装荷された
中性子減速材の周辺領域で出力ピーキングを起こすこと
なく冷却材密度係数を低減できる高速炉用燃料集合体を
提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce a coolant density coefficient in a fuel assembly for a fast reactor loaded in a large fast reactor core without causing power peaking in a peripheral region of a neutron moderator loaded in the core. To provide a fuel assembly for a fast reactor.

【0007】[0007]

【課題を解決するための手段】この目的は、中性子減速
材の周辺領域に劣化ウランまたは天然ウランを配置する
ことにより達成される。
This object is achieved by placing depleted uranium or natural uranium in the area surrounding the neutron moderator.

【0008】[0008]

【発明の実施の形態】本発明の一実施例について説明す
る。本発明の一実施例を示す高速炉用燃料集合体の断面
図を図1に示す。この図で、8は混合酸化物燃料を装荷
した燃料棒、9は劣化ウランを装荷した燃料棒、10は
イットリウムハイドライドを装荷した管、11はラッパ
管、12はナトリウム(以下、Naと略記)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described. FIG. 1 is a sectional view of a fuel assembly for a fast reactor showing an embodiment of the present invention. In this figure, 8 is a fuel rod loaded with mixed oxide fuel, 9 is a fuel rod loaded with depleted uranium, 10 is a pipe loaded with yttrium hydride, 11 is a trumpet pipe, and 12 is sodium (hereinafter abbreviated as Na). It is.

【0009】本発明の一実施例の特徴は、イットリウム
ハイドライドを装荷した管10の周辺領域を劣化ウラン
を装荷した燃料棒9が取り囲んだ構成になっている点で
ある。
A feature of one embodiment of the present invention is that a fuel rod 9 loaded with depleted uranium surrounds a peripheral area of a tube 10 loaded with yttrium hydride.

【0010】本発明の技術手段の物理的背景は、次のと
おりである。
The physical background of the technical means of the present invention is as follows.

【0011】まず、ウラン及びプルトニウムを燃料とす
る高速炉の冷却材密度反応度について説明する。高速炉
の冷却材であるNaの密度が減少すると以下に述べる原
因の競合によって反応度が正になることがある。すなわ
ち、Naの密度低下の効果は、Naによる中性子の吸収
が小さいため、ほとんどNaによる中性子散乱の減少に
基づいている。Naによる中性子散乱が減少すると、 (1)高速炉炉心からの中性子漏洩が増加し、反応度は
低下する(中性子漏洩効果) (2)中性子束のスペクトルが硬化し、高速核分裂は増
加し、中性子捕獲反応が減少して反応度は上昇する(中
性子スペクトル効果) 図3に高速炉炉心の径方向におけるNa密度の減少が反
応度に及ぼす効果を示す。図3で、13は中性子漏洩効
果、14は中性子スペクトル効果、15は中性子漏洩効
果と中性子スペクトル効果の和である。中性子漏洩効果
は常に負の反応度を与えるが、その大きさは炉心内での
Na密度減少の位置に依存し、炉心中心に近い領域で
は、炉心周辺領域に比べ反応度の絶対値は小さい。一
方、中性子スペクトル効果は、正の反応度を与え、炉心
中心ほど大きい値を持つ。これは、中性子束のスペクト
ルが硬化し、そのためウラン238及びプルトニウム2
40の高速核分裂が増加し、逆にプルトニウム239等
の中性子捕獲が減少し反応度が上昇するためである。一
般に、高速炉炉心では、Na密度の減少が反応度に及ぼ
す効果は、中性子漏洩効果と中性子スペクトル効果の和
であり、炉心の中心部では正,逆に炉心の周辺部では負
である。
First, the reactivity of the coolant density of the fast reactor using uranium and plutonium as fuel will be described. When the density of Na, which is the coolant of the fast reactor, decreases, the reactivity may become positive due to competition for the causes described below. That is, the effect of decreasing the density of Na is almost based on the decrease in neutron scattering due to Na, since the absorption of neutrons by Na is small. When neutron scattering by Na decreases, (1) neutron leakage from the fast reactor core increases, and reactivity decreases (neutron leakage effect). (2) Neutron flux spectrum hardens, fast fission increases, and neutrons increase. The capture reaction decreases and the reactivity increases (neutron spectrum effect). FIG. 3 shows the effect of decreasing the Na density in the radial direction of the fast reactor core on the reactivity. In FIG. 3, 13 is the neutron leakage effect, 14 is the neutron spectrum effect, and 15 is the sum of the neutron leakage effect and the neutron spectrum effect. The neutron leakage effect always gives a negative reactivity, but its magnitude depends on the position of the decrease in the Na density in the core, and the absolute value of the reactivity is smaller in the region near the core center than in the peripheral region. On the other hand, the neutron spectrum effect gives a positive reactivity and has a larger value toward the core center. This is because the spectrum of the neutron flux hardens, so that uranium 238 and plutonium 2
This is because the fast fission of 40 increases, and conversely, the capture of neutrons such as plutonium 239 decreases and the reactivity increases. In general, in the fast reactor core, the effect of the decrease in Na density on the reactivity is the sum of the neutron leakage effect and the neutron spectrum effect, which is positive at the center of the core and negative at the periphery of the core.

【0012】Na密度の減少に起因する反応度は、炉心
の大きさにより正あるいは負の値を持つ。一般に高速炉
の炉心が小さい場合には、中性子漏洩効果が支配的とな
り、この反応度は負である。高速炉の炉心が大きくなる
と中性子漏洩効果が小さくなり、その場合は中性子スペ
クトル効果が優先的となり、この反応度は正となる。高
速炉炉心の中央部に中性子減速材であるイットリウムハ
イドライドを装荷した管を配置すると、Naの密度が減
っても中性子散乱の減少の割合が小さくなり、中性子ス
ペクトル効果による反応度増加を小さくすることができ
る。
The reactivity resulting from the decrease in Na density has a positive or negative value depending on the size of the core. In general, when the core of a fast reactor is small, the neutron leakage effect becomes dominant, and this reactivity is negative. As the core of the fast reactor increases, the neutron leakage effect decreases, in which case the neutron spectrum effect takes precedence and the reactivity becomes positive. If a tube loaded with neutron moderator yttrium hydride is placed in the center of the fast reactor core, the rate of decrease in neutron scattering is reduced even if the density of Na is reduced, and the increase in reactivity due to the neutron spectrum effect is reduced. Can be.

【0013】一方、イットリウムハイドライドを装荷し
た管を配置した周辺領域は減速された中性子が多く存在
するため、その周辺領域にプルトニウム等の低エネルギ
で核分裂断面積の大きい物質があると、減速された中性
子による核分裂反応が多く起こり、その結果として出力
ピーキングが発生する。本発明の一実施例では、イット
リウムハイドライドを装荷した管の周辺領域は劣化ウラ
ンを装荷した燃料棒を配置することにより、出力ピーキ
ングを小さくし、かつ冷却材密度反応度を効果的に低減
できる。これは、次の理由による。劣化ウランは0.7
% 以下のウラン235と99.3% 以上のウラン23
8で構成されている。ウラン235は減速された中性子
による核分裂反応を起こしやすいが、装荷量が少ないた
め、出力ピーキングに与える効果は小さい。一方、ウラ
ン238は約0.5MeV 以上の高速中性子でないと核
分裂反応をほとんどおこさないため、減速された中性子
による核分裂反応は、ほとんど起きない。そのため、イ
ットリウムハイドライドを装荷した管の周辺領域に劣化
ウランを装荷した燃料棒を配置することで、出力ピーキ
ングの発生を押さえることができる。
On the other hand, the peripheral region where the tube loaded with yttrium hydride is arranged contains a lot of decelerated neutrons. Therefore, if there is a substance such as plutonium having a low energy and a large fission cross section in the peripheral region, it is decelerated. Many neutron fission reactions occur, resulting in output peaking. In one embodiment of the present invention, the power peaking is reduced and the coolant density reactivity can be effectively reduced by arranging fuel rods loaded with depleted uranium in the peripheral region of the tube loaded with yttrium hydride. This is for the following reason. Depleted uranium is 0.7
% Uranium 235 or less and 99.3% or more uranium 23
8. Uranium 235 is susceptible to fission reactions due to slowed-down neutrons, but has a small effect on output peaking because of its small loading. On the other hand, since uranium 238 hardly causes a fission reaction unless it is a fast neutron of about 0.5 MeV or more, the fission reaction by the slowed-down neutrons hardly occurs. Therefore, by arranging the fuel rod loaded with depleted uranium in the peripheral area of the pipe loaded with yttrium hydride, it is possible to suppress the occurrence of output peaking.

【0014】高速炉のように硬い中性子スペクトルで
は、中性子の平均自由行程が数cmであるが、減速された
中性子では1cm程度である。出力ピーキングは平均自由
行程の数倍の距離で生じる。そのため、イットリウムハ
イドライドを装荷した管の数cmの周辺領域に劣化ウラン
を装荷した燃料棒を配置することで、出力ピーキングの
発生を押さえることができる。なお、劣化ウランの代わ
りに天然ウランを用いても同様の効果がある。
In a neutron spectrum as hard as a fast reactor, the mean free path of neutrons is several centimeters, but is about 1 cm for decelerated neutrons. Output peaking occurs several times the mean free path. Therefore, by arranging the fuel rods loaded with depleted uranium in the area around a few cm of the pipe loaded with yttrium hydride, the occurrence of output peaking can be suppressed. The same effect can be obtained by using natural uranium instead of depleted uranium.

【0015】本発明の一実施例の高速炉用燃料集合体を
炉心に装荷した場合の冷却材密度反応度に与える効果を
述べる。本発明の一実施例の高速炉用燃料集合体を装荷
した高速炉炉心の断面図を図4に示す。この図で、1は
内側炉心用燃料集合体、2は外側炉心用燃料集合体、3
は径ブランケット燃料集合体、4は径遮蔽用集合体、5
は主炉停止系制御棒、6は後備炉停止系制御棒、7は本
発明の燃料集合体である。本発明の一実施例の高速炉炉
心では、本発明の燃料集合体7は、炉心中央部に12体
装荷した構成である。炉心中央部に本発明の燃料集合体
を装荷することにより、効果的に冷却材密度反応度を低
減できる。図5に本発明の一実施例の高速炉炉心の径方
向におけるNa密度の減少が反応度に及ぼす効果を示
す。この図で、16は従来例の中性子漏洩効果と中性子
スペクトル効果の和、17は本発明の中性子漏洩効果と
中性子スペクトル効果の和である。本発明の一実施例の
高速炉炉心では、中性子漏洩効果と中性子スペクトル効
果の和17は従来例の中性子漏洩効果と中性子スペクト
ル効果の和16と比較し、特に炉心中央部で低減でき、
結果として、冷却材密度反応度を低減している。
The effect of the fuel assembly for a fast reactor according to one embodiment of the present invention on the reactivity of the coolant density when the reactor core is loaded will be described. FIG. 4 is a cross-sectional view of a fast reactor core loaded with a fuel assembly for a fast reactor according to one embodiment of the present invention. In this figure, 1 is an inner core fuel assembly, 2 is an outer core fuel assembly, 3
Is the diameter blanket fuel assembly, 4 is the diameter shielding assembly, 5
Is a control rod for a main furnace stop system, 6 is a control rod for a rear furnace stop system, and 7 is a fuel assembly of the present invention. In the fast reactor core of one embodiment of the present invention, the fuel assembly 7 of the present invention has a configuration in which 12 fuel assemblies are loaded in the center of the core. By loading the fuel assembly of the present invention at the center of the core, the reactivity of the coolant density can be effectively reduced. FIG. 5 shows the effect of decreasing the Na density in the radial direction of the fast reactor core of one embodiment of the present invention on the reactivity. In this figure, 16 is the sum of the neutron leakage effect and the neutron spectrum effect of the conventional example, and 17 is the sum of the neutron leakage effect and the neutron spectrum effect of the present invention. In the fast reactor core according to one embodiment of the present invention, the sum 17 of the neutron leakage effect and the neutron spectrum effect is compared with the sum 16 of the neutron leakage effect and the neutron spectrum effect of the conventional example.
As a result, the coolant density reactivity is reduced.

【0016】本発明の他の実施例について説明する。本
発明の他の実施例を示す高速炉用燃料集合体の断面図を
図6に示す。この実施例では、高速炉用燃料集合体に7
本のイットリウムハイドライドを装荷した管すること
で、より効果的に冷却材密度反応度を低減できる。
Another embodiment of the present invention will be described. FIG. 6 is a cross-sectional view of a fuel assembly for a fast reactor showing another embodiment of the present invention. In this embodiment, the fuel assembly for fast reactor
The tube loaded with the yttrium hydride can reduce the coolant density reactivity more effectively.

【0017】本発明の他の実施例について説明する。実
施例では、高速炉用燃料集合体にイットリウムハイドラ
イドを装荷しているが、同様の効果は、ジルコニウムハ
イドライド,水素化カルシウムでも達成できる。
Another embodiment of the present invention will be described. In the embodiment, the fuel assembly for a fast reactor is loaded with yttrium hydride, but the same effect can be achieved with zirconium hydride and calcium hydride.

【0018】[0018]

【発明の効果】本発明によれば、出力ピーキングを発生
させることなく、効果的に過出力時のNa密度減少時の
反応度を小さくして炉心の制御性及び安全性を向上でき
る。
According to the present invention, the controllability and safety of the core can be improved by effectively reducing the reactivity when the Na density is reduced at the time of overpower without generating power peaking.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す高速炉用燃料集合体の
断面図。
FIG. 1 is a sectional view of a fuel assembly for a fast reactor showing an embodiment of the present invention.

【図2】従来例を示す説明図。FIG. 2 is an explanatory view showing a conventional example.

【図3】高速炉炉心の径方向におけるNa密度の減少が
反応度に及ぼす効果の特性図。
FIG. 3 is a characteristic diagram of an effect of a decrease in Na density in a radial direction of a fast reactor core on reactivity.

【図4】本発明の一実施例を示す高速炉炉心の断面図。FIG. 4 is a sectional view of a fast reactor core showing one embodiment of the present invention.

【図5】本発明の一実施例の高速炉炉心の径方向におけ
るNa密度の減少が反応度に及ぼす効果の特性図。
FIG. 5 is a characteristic diagram showing the effect of a decrease in Na density in the radial direction of a fast reactor core on reactivity in one embodiment of the present invention.

【図6】本発明の他の実施例を示す高速炉用燃料集合体
の断面図。
FIG. 6 is a sectional view of a fuel assembly for a fast reactor showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

8…燃料棒、11…ラッパ管、12…ナトリウム。 8 ... fuel rod, 11 ... trumpet tube, 12 ... sodium.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G21C 1/02 GDF G21C 3/30 GDFP ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location // G21C 1/02 GDF G21C 3/30 GDFP

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】核分裂性物質を装荷した複数の燃料棒と親
物質を装荷した複数の燃料棒と1本以上の中性子減速材
を装荷した棒よりなる高速炉用燃料集合体において、上
記中性子減速材を装荷した棒の周囲の領域に上記親物質
を装荷した複数の燃料棒が配置され、上記親物質を装荷
した複数の燃料棒の周囲の領域に上記核分裂性物質を装
荷した複数の燃料棒が取り囲むように配置された構造を
持っていることを特徴とする高速炉用燃料集合体。
1. A fast reactor fuel assembly comprising a plurality of fuel rods loaded with fissile material, a plurality of fuel rods loaded with a parent material, and a rod loaded with one or more neutron moderators. A plurality of fuel rods loaded with the parent material are arranged in a region around the rod loaded with the material, and a plurality of fuel rods loaded with the fissile material in the region around the plurality of fuel rods loaded with the parent material A fuel assembly for a fast reactor, characterized by having a structure arranged so as to surround the fuel assembly.
【請求項2】請求項1において、上記中性子減速材は金
属水素化物であるジルコニウムハイドライド,イットリ
ウムハイドライド,水素化カルシウムのうち、1種類以
上の物質で構成された高速炉用燃料集合体。
2. A fuel assembly for a fast reactor according to claim 1, wherein said neutron moderator is at least one of zirconium hydride, yttrium hydride and calcium hydride, which are metal hydrides.
【請求項3】請求項1において、上記核分裂性物質は混
合酸化物燃料である高速炉用燃料集合体。
3. A fuel assembly for a fast reactor according to claim 1, wherein said fissile material is a mixed oxide fuel.
【請求項4】請求項1において、上記親物質は劣化ウラ
ンまたは天然ウランで構成された高速炉用燃料集合体。
4. A fuel assembly for a fast reactor according to claim 1, wherein said parent substance is composed of depleted uranium or natural uranium.
【請求項5】請求項1の上記高速炉用燃料集合体を1体
以上装荷した高速炉炉心。
5. A fast reactor core loaded with at least one fuel assembly for a fast reactor according to claim 1.
JP8174570A 1996-07-04 1996-07-04 Fast reactor fuel assembly and its reactor core Pending JPH1020063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174570A JPH1020063A (en) 1996-07-04 1996-07-04 Fast reactor fuel assembly and its reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174570A JPH1020063A (en) 1996-07-04 1996-07-04 Fast reactor fuel assembly and its reactor core

Publications (1)

Publication Number Publication Date
JPH1020063A true JPH1020063A (en) 1998-01-23

Family

ID=15980877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174570A Pending JPH1020063A (en) 1996-07-04 1996-07-04 Fast reactor fuel assembly and its reactor core

Country Status (1)

Country Link
JP (1) JPH1020063A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151494A (en) * 2008-12-24 2010-07-08 Japan Atomic Energy Agency Fuel assembly for fast reactor
DE102010003809A1 (en) * 2010-04-09 2011-10-13 Helmholtz-Zentrum Dresden - Rossendorf E.V. Reactor core in sodium-cooled fast reactors
JP2017102126A (en) * 2006-11-28 2017-06-08 テラパワー, エルエルシー Automatic atomic reactor for long-term operation
CN109147966A (en) * 2018-09-06 2019-01-04 中国原子能科学研究院 A kind of heat-pipe cooling type nuclear reactor power-supply system based on uranium hydrogen yttrium fuel and dynamic heat to electricity conversion
US10304572B2 (en) 2008-02-12 2019-05-28 Terrapower, Llc Nuclear fission igniter
CN111276265A (en) * 2019-12-31 2020-06-12 中国核动力研究设计院 Rod-type fuel element using uranium-yttrium hydride fuel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102126A (en) * 2006-11-28 2017-06-08 テラパワー, エルエルシー Automatic atomic reactor for long-term operation
US10304572B2 (en) 2008-02-12 2019-05-28 Terrapower, Llc Nuclear fission igniter
JP2010151494A (en) * 2008-12-24 2010-07-08 Japan Atomic Energy Agency Fuel assembly for fast reactor
DE102010003809A1 (en) * 2010-04-09 2011-10-13 Helmholtz-Zentrum Dresden - Rossendorf E.V. Reactor core in sodium-cooled fast reactors
CN109147966A (en) * 2018-09-06 2019-01-04 中国原子能科学研究院 A kind of heat-pipe cooling type nuclear reactor power-supply system based on uranium hydrogen yttrium fuel and dynamic heat to electricity conversion
CN109147966B (en) * 2018-09-06 2023-10-24 中国原子能科学研究院 Heat pipe cooling type nuclear reactor power supply system based on uranium-yttrium hydrogen fuel and dynamic thermoelectric conversion
CN111276265A (en) * 2019-12-31 2020-06-12 中国核动力研究设计院 Rod-type fuel element using uranium-yttrium hydride fuel

Similar Documents

Publication Publication Date Title
JPH1020063A (en) Fast reactor fuel assembly and its reactor core
WO1998011558A1 (en) Nuclear fuel assembly
JP2011174838A (en) Core of fast breeder reactor
JP3384718B2 (en) Hydride fuel assembly for fast reactor and fast reactor core
JP3062770B2 (en) Fuel assembly structure
JP2953844B2 (en) Transuranium annihilation treatment core
JPH11352272A (en) Reactor core and fuel assembly and fuel element used for the core
JPH0854484A (en) Fuel assembly of nuclear reactor
JPH09274091A (en) Core of fast reactor
JPH05232276A (en) Core of nuclear reactor
JP2886555B2 (en) Fuel assembly for boiling water reactor
JP2006064678A (en) Fuel assembly arrangement method, fuel rod, and fuel assembly of nuclear reactor
JP2869312B2 (en) Core for ultra-long life fast reactor
JPH09166679A (en) Fuel assembly, control rod and reactor core for fast reactor
JPH02271294A (en) Reactor core of fast breeder reactor
JP2786656B2 (en) Fast reactor core and refueling method
JP5410653B2 (en) Fast reactor core and fast reactor fuel handling method
JP2502173B2 (en) Fast reactor core
JPS6383689A (en) Fuel aggregate
JPH07306282A (en) Assembly for annihilation disposal of long life nuclide and core of reactor
JP3943624B2 (en) Fuel assembly
JPH0886894A (en) Mox fuel assembly
JPH0763871A (en) Fuel assembly, and reactor core of fast breeder reactor constituted thereof
Dickens et al. Current status and proposed improvements to the ANSI/ANS-5.1 American National Standard for decay heat power in light water reactors
JP2020153758A (en) Core of small-sized fast reactor