JPH10200354A - Production of surface acoustic wave element - Google Patents

Production of surface acoustic wave element

Info

Publication number
JPH10200354A
JPH10200354A JP178497A JP178497A JPH10200354A JP H10200354 A JPH10200354 A JP H10200354A JP 178497 A JP178497 A JP 178497A JP 178497 A JP178497 A JP 178497A JP H10200354 A JPH10200354 A JP H10200354A
Authority
JP
Japan
Prior art keywords
electrode
film
sputtering
saw
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP178497A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanamaru
浩 金丸
Hiroshi Kimura
浩 木村
Hiroshi Kamijo
洋 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP178497A priority Critical patent/JPH10200354A/en
Publication of JPH10200354A publication Critical patent/JPH10200354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a surface acoustic wave(SAW) device such as a SAW filter enhanced in adhesion electrodes and having a uniform and accurate interdigital electrode at low cost by depositing an oxidized zinc film and depositing a metal film for electrode on that film through the same filming device later. SOLUTION: On a silicon wafer 4 forming an oxide film on its surface, a ZnO film 3 is formed by sputtering. Next, an Al film 6 to become an electrode material is sputtered. Since the ZnO film 2 and the electrode material can be formed by the same sputtering device, continuous sputtering is enabled. Then, an electrode pattern is formed by performing etching with an etching solution pH adjusted so as to selectively etch only the electrode material. As a result, a depositing device required conventionally is reduced, the number of processes and man-hours can be reduced and cost reduction is enabled. Further, adhesion is enhanced and even in a thick electrode film, the electrode can be formed with high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、弾性表面波(Su
rface Acoustic Wave 以後SAWと略す)素子の製造方
法、特にその圧電体上の櫛形電極の作製方法に関する。
The present invention relates to a surface acoustic wave (Su)
rface Acoustic Wave (hereinafter abbreviated as SAW)) The present invention relates to a method for manufacturing an element, and particularly to a method for manufacturing a comb-shaped electrode on a piezoelectric body.

【0002】[0002]

【従来の技術】高周波フィルタは、移動体通信機器の低
コスト化・小型化・軽量化を図る上で欠くことのできな
い部品の一つである。その中でも薄膜圧電体に電極を形
成してSAWを励振するモノリシック型SAWフィルタ
は、誘電体フィルタや水晶フィルタに代表されるバルク
波を用いたエラスティック型SAWフィルタに比べ、低
コスト化・小型化に有利であることから注目を浴びてい
る。モノリシック型SAWフィルタと類似構造のSAW
コンボルバも、データ通信用機器の低コスト化・小型化
・軽量化に適した部品として注目を浴びている。
2. Description of the Related Art A high-frequency filter is one of the indispensable components for reducing the cost, size, and weight of mobile communication equipment. Among them, monolithic SAW filters that form electrodes on thin-film piezoelectrics to excite SAW are lower in cost and smaller in size than elastic SAW filters using bulk waves, such as dielectric filters and quartz filters. It is gaining attention because of its advantages. SAW similar in structure to a monolithic SAW filter
Convolvers are also attracting attention as components suitable for reducing the cost, size, and weight of data communication equipment.

【0003】図4は、モノリシック型SAWフィルタの
代表的な例の斜視図である。シリコンウェハの基板4上
に高周波スパッタ法により酸化亜鉛(以下ZnOと記
す)の圧電膜が成膜され、そのZnO膜3上に入力側櫛
形電極1と出力側櫛形電極2とが形成されている。SA
Wフィルタの構造は櫛形電極/圧電体/基板、圧電体/
櫛形電極/基板など様々な構造が考えられているが、本
発明では主に櫛形電極/圧電体/(電極)/基板の構造
のものについての発明であるため、これに限って説明す
る。
FIG. 4 is a perspective view of a typical example of a monolithic SAW filter. A piezoelectric film of zinc oxide (hereinafter referred to as ZnO) is formed on a substrate 4 of a silicon wafer by a high frequency sputtering method, and an input side comb electrode 1 and an output side comb electrode 2 are formed on the ZnO film 3. . SA
The structure of the W filter is comb-shaped electrode / piezoelectric body / substrate, piezoelectric body /
Although various structures such as a comb-shaped electrode / substrate have been considered, the present invention mainly relates to a structure of a comb-shaped electrode / piezoelectric body / (electrode) / substrate, and therefore, description will be limited to this.

【0004】このSAWフィルタの動作原理を次に説明
する。入力側の櫛形電極1に電気信号が印加されると圧
電効果により、電気信号が機械的歪みに変換されSAW
5となりZnO膜3の表面及び圧電膜中を伝播する。出
力側櫛形電極2に到達したSAW5は、機械的歪みから
電気信号へ変換され、出力信号として取り出される。図
6は、従来のモノリシック型SAWフィルタの製造工程
のフロー図である。基板4上にZnO膜3を形成す
る。ZnO膜3の形成方法は主に高周波スパッタ法が用
いられる。フォト・ リソグラフィにより入力側および
出力側の櫛形電極1、2の電極パターンと逆のフォトレ
ジストのパターンを形成する。蒸着法により電極材料
を基板全面に形成する。フォトレジストのパターンを
その上の電極材料とともに剥離するリフトオフにより入
力側および出力側の櫛形電極1、2を作製する。この
後、基板を例えばダイシングによりチップ化し、ケース
にマウントし、リードをボンディングするデバイス化工
程に引き継がれる。
[0004] The principle of operation of this SAW filter will be described below. When an electric signal is applied to the comb electrode 1 on the input side, the electric signal is converted into mechanical distortion by the piezoelectric effect, and the SAW
5 and propagates on the surface of the ZnO film 3 and in the piezoelectric film. The SAW 5 arriving at the output side comb electrode 2 is converted from mechanical distortion into an electric signal, and is extracted as an output signal. FIG. 6 is a flowchart of a manufacturing process of a conventional monolithic SAW filter. A ZnO film 3 is formed on a substrate 4. As a method for forming the ZnO film 3, a high frequency sputtering method is mainly used. A photoresist pattern opposite to the electrode patterns of the input and output comb electrodes 1 and 2 is formed by photolithography. An electrode material is formed on the entire surface of the substrate by a vapor deposition method. The comb-shaped electrodes 1 and 2 on the input and output sides are produced by lift-off in which the photoresist pattern is peeled off together with the electrode material thereon. Thereafter, the substrate is formed into a chip by, for example, dicing, mounted on a case, and passed to a device forming step of bonding leads.

【0005】このように、リフトオフを用いて櫛形電極
を作製する方法は、電極の微細加工が容易にでき、ま
た、蒸着法により電極を形成するため圧電膜へのダメー
ジが小さくできる等の利点がある。
[0005] As described above, the method of fabricating a comb-shaped electrode by using lift-off has advantages that the electrode can be finely processed easily, and that the electrode is formed by vapor deposition, so that damage to the piezoelectric film can be reduced. is there.

【0006】[0006]

【発明が解決しようとする課題】しかし、リフトオフを
用いて櫛形電極を作製するには、電極材料を基板に対し
垂直に付着させなければならないため、蒸着装置での電
極形成が不可欠である。すなわち、圧電体であるZnO
膜はスパッタ装置で成膜するのに対し、電極材料を基板
に対し垂直に蒸着するための高価な設備が必要であり、
製品コストが高くなる。
However, in order to fabricate a comb-shaped electrode using lift-off, an electrode material must be vertically adhered to a substrate, so that electrode formation by a vapor deposition apparatus is indispensable. That is, the piezoelectric substance ZnO
While the film is formed by a sputtering device, expensive equipment for vertically depositing the electrode material on the substrate is required,
Product costs increase.

【0007】また、電極の密着強度を高めるには、基板
温度が高い程よいが、基板温度を100℃以上に上げる
とフォトレジストが熱変形してしまい、精密なパターン
が得られなくなる。更に、電極が1μm以上の厚さにな
るとリフトオフ時の剥離液が、電極の下のフォトレジス
トまで浸透し難くなり、均一にリフトオフできない等の
問題があった。
In order to increase the adhesion strength of the electrode, the higher the substrate temperature, the better. However, if the substrate temperature is raised to 100 ° C. or higher, the photoresist is thermally deformed, and a precise pattern cannot be obtained. Further, when the electrode has a thickness of 1 μm or more, the stripping solution at the time of lift-off becomes difficult to penetrate into the photoresist under the electrode, and there is a problem that the lift-off cannot be performed uniformly.

【0008】以上の問題に鑑み本発明の目的は、電極の
密着強度を高めた、均一で精度の高い櫛形電極を有する
SAWフィルタ等のSAWデバイスを低コストで製造す
る方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method for manufacturing a SAW device such as a SAW filter having a uniform and highly accurate comb-shaped electrode with a high electrode adhesion strength at low cost. .

【0009】[0009]

【課題を解決するための手段】上記の課題解決のため本
発明は、基板上にZnO膜を堆積し、その上にAl又は
Al合金の電極を形成した弾性表面波素子の製造方法に
おいて、酸化亜鉛膜を堆積した後その上に電極用金属膜
を同一の成膜装置で堆積するものとする。そのようにす
れば、ZnO膜と電極材料は同じスパッタ装置で成膜で
きるため、電極材料を蒸着するための蒸着装置は不要で
ある。
According to the present invention, there is provided a method for manufacturing a surface acoustic wave device comprising a ZnO film deposited on a substrate and an Al or Al alloy electrode formed thereon. After depositing a zinc film, a metal film for an electrode is deposited thereon by the same film forming apparatus. In such a case, the ZnO film and the electrode material can be formed by the same sputtering device, and thus, a vapor deposition device for vapor-depositing the electrode material is unnecessary.

【0010】また、電極用金属膜のみを選択的にエッチ
ングするエッチング溶液を用いることとする。例えば、
電極エッチングの別の方法として、四塩化炭素(CC
4 )を用いた反応性イオン・エッチング法があるが、
選択性が良くなく、ZnO膜のエッチングも少し起き
る。湿式エッチングであれば、温度も低く、ZnO膜表
面にダメージを与えない。
[0010] An etching solution for selectively etching only the electrode metal film is used. For example,
As another method of electrode etching, carbon tetrachloride (CC
There is a reactive ion etching method using l 4 ),
The selectivity is not good and the ZnO film is slightly etched. In the case of wet etching, the temperature is low and the surface of the ZnO film is not damaged.

【0011】特に、エッチング溶液のpHをpH9〜p
H13の範囲に制御するものとする。AlはpH4以下
およびpH9以上で腐食し易く、一方ZnOはpH7か
らpH13の間で安定である。このことを利用し、緩衝
溶液によりpH9〜pH13の範囲に調整されたエッチ
ング液を用いることにより、ZnO膜はエッチングせず
にAlまたはAl合金のみをエッチングすることができ
る。
In particular, the pH of the etching solution is adjusted to pH 9 to p.
Control is performed in the range of H13. Al is susceptible to corrosion below pH 4 and above pH 9, whereas ZnO is stable between pH 7 and pH 13. By utilizing this fact, by using an etchant adjusted to a pH range of 9 to 13 with a buffer solution, only the Al or Al alloy can be etched without etching the ZnO film.

【0012】エッチング溶液として、ほう酸塩化カリウ
ム水溶液と水酸化ナトリウム水溶液を用いるものとす
る。ほう酸塩化カリウム水溶液を緩衝剤とした水酸化ナ
トリウム水溶液でpH9以上に調整することは容易であ
る。
As an etching solution, an aqueous solution of potassium borate and an aqueous solution of sodium hydroxide are used. It is easy to adjust the pH to 9 or more with an aqueous solution of sodium hydroxide using an aqueous solution of potassium borate as a buffer.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施例1]図1は、本発明の製造方法にかかる同期周
波数=215[MHz] のSAWフィルタの製造工程の工程
フロー図。図2は、その製造工程の主な製造工程ごとの
断面図である。以下この図に沿って説明する。
Embodiment 1 FIG. 1 is a process flow chart of a manufacturing process of a SAW filter having a synchronous frequency = 215 [MHz] according to a manufacturing method of the present invention. FIG. 2 is a cross-sectional view of each of the main manufacturing steps in the manufacturing steps. Hereinafter, description will be made with reference to FIG.

【0014】表面に厚さ1μmの酸化膜を形成したシリ
コン基板4上にスパッタ法により、ZnO膜3を形成す
る[図2(a)]。図3はZnO膜を形成するスパッタ
装置の概略断面図である。ZnO膜の成膜には、スパッ
タ用ターゲットにZnO焼結体ターゲットを用いスパッ
タする方法と、金属亜鉛(Zn)ターゲットを用い酸素
(O2 )と反応させながらZnO膜を形成する反応性ス
パッタ法がある。ここでは後者の反応性スパッタ法を用
いた。
A ZnO film 3 is formed by sputtering on a silicon substrate 4 having a 1 μm-thick oxide film formed on the surface [FIG. 2 (a)]. FIG. 3 is a schematic sectional view of a sputtering device for forming a ZnO film. The ZnO film is formed by a sputtering method using a ZnO sintered target as a sputtering target or a reactive sputtering method using a metal zinc (Zn) target to form a ZnO film while reacting with oxygen (O 2 ). There is. Here, the latter reactive sputtering method was used.

【0015】スパッタ装置のチャンバ11は、図示され
ない真空ポンプに接続され、バルブ17を介して減圧状
態にされている。4はスパッタする基板、12はスパッ
タ用のZnターゲットである。スパッタガス14として
はArとO2 を用いた。15はターゲットにバイアスす
る高周波(RF)電源である。ZnOのような絶縁物を
形成するには高周波電源が望ましい。
The chamber 11 of the sputtering apparatus is connected to a vacuum pump (not shown), and is evacuated via a valve 17. Reference numeral 4 denotes a substrate to be sputtered, and 12 denotes a Zn target for sputtering. Ar and O 2 were used as the sputtering gas 14. Reference numeral 15 denotes a radio frequency (RF) power supply for biasing the target. In order to form an insulator such as ZnO, a high frequency power supply is desirable.

【0016】表1にZnO膜の成膜条件を示す。ZnO
膜の膜厚は6μmとした。
Table 1 shows the conditions for forming the ZnO film. ZnO
The film thickness was 6 μm.

【0017】[0017]

【表1】 基板4上に形成されるZnO膜3は圧電性を持たせるた
めc軸配向した膜が必要であるが、上記条件で成膜した
ZnO膜は、その分散σが6°以下で良好な圧電性を示
した。
[Table 1] The ZnO film 3 formed on the substrate 4 needs to have a c-axis oriented film in order to have piezoelectricity. However, the ZnO film formed under the above conditions has a good piezoelectric property with a dispersion σ of 6 ° or less. showed that.

【0018】次に、同じ、図3のスパッタ装置を用い
て、電極材料となるAl膜6をスパッタする[同図
(b)]。電極材料としてはAlを用いたが、Al合金
でもよい。図3の13はスパッタ用のAlターゲットで
ある。Alスパッタ時のスパッタガス14としてはAr
を用いた。また、ターゲットバイアスとして直流(D
C)電源16を用いたが、高周波電源でもよい。
Next, an Al film 6 serving as an electrode material is sputtered using the same sputtering apparatus shown in FIG. 3 (FIG. 3B). Although Al was used as the electrode material, an Al alloy may be used. Reference numeral 13 in FIG. 3 is an Al target for sputtering. Ar sputtering is used as the sputtering gas 14 for Al sputtering.
Was used. In addition, direct current (D
C) Although the power supply 16 is used, a high frequency power supply may be used.

【0019】表1に電極材料の成膜条件をも示した。A
l膜6の膜厚は1μmとした。ここで基板温度を100
℃から200℃程度に加熱して成膜すると、Al膜6と
ZnO膜3との密着強度が向上する。ZnO膜3と電極
材料とは同じスパッタ装置で成膜できるため、連続スパ
ッタが可能である。従来はリフトオフによる電極パター
ン形成をするため、蒸着装置が必要であったが、本発明
の製造方法では、同じスパッタ装置での作製が可能とな
り、蒸着装置が不要であるだけでなく、工程に要する時
間が大幅に短縮された。
Table 1 also shows the conditions for forming the electrode material. A
The thickness of the 1 film 6 was 1 μm. Here, the substrate temperature is set to 100
When the film is formed by heating from about 200 ° C. to about 200 ° C., the adhesion strength between the Al film 6 and the ZnO film 3 is improved. Since the ZnO film 3 and the electrode material can be formed by the same sputtering apparatus, continuous sputtering is possible. In the past, a vapor deposition apparatus was required to form an electrode pattern by lift-off, but in the manufacturing method of the present invention, it is possible to produce with the same sputtering apparatus, and not only the vapor deposition apparatus is unnecessary but also required for the process. Time has been greatly reduced.

【0020】次に、フォトリソグラフィにより櫛形電極
の電極パターンを形成する。続いて、Al膜6上に、フ
ォトレジスト7[東京応化(株)製、TSMR−890
0]を塗布し、プリベークをおこなう[同図(c)]。
次に、フォトマスクを用いて露光する。現像液で現像
し、フォトレジスト7のパターンを形成する[同図
(d)]。
Next, an electrode pattern of a comb-shaped electrode is formed by photolithography. Subsequently, a photoresist 7 [TSMR-890, manufactured by Tokyo Ohka Co., Ltd.] is formed on the Al film 6.
0] is applied and pre-baking is performed [FIG.
Next, exposure is performed using a photomask. By developing with a developing solution, a pattern of the photoresist 7 is formed [FIG.

【0021】そして、電極材料をエッチングする[同図
(e)]。表2にその際に使用したエッチング溶液の例
を示す。
Then, the electrode material is etched [FIG. Table 2 shows examples of the etching solution used at that time.

【0022】[0022]

【表2】 このエッチング液は、pH10に調整した例である。水
酸化ナトリウム液を減らし、その分、水を増やしてもよ
い。水酸化ナトリウム液が21.30ml以上であれ
ば、pH9以上に保たれる。pH9より高くpH13よ
り低い範囲に調整されたエッチング液を用いることによ
り、ZnO膜3はエッチングせずに、Al膜6のみをエ
ッチングすることができる。
[Table 2] This etchant is an example in which the pH is adjusted to 10. The sodium hydroxide solution may be reduced and the amount of water may be increased accordingly. If the sodium hydroxide solution is 21.30 ml or more, the pH is kept at 9 or more. By using an etchant adjusted to a range higher than pH 9 and lower than pH 13, only the Al film 6 can be etched without etching the ZnO film 3.

【0023】このエッチング溶液を使用してAlのエッ
チングをおこなった後、アセトンでフォトレジストを剥
離し、乾燥してフォトリソグラフィを終了する[同図
(f)]。この後、基板を例えばダイシングによりチッ
プ化し、ケースにマウントし、リードをボンディングす
るデバイス化工程をおこなう。電極エッチングの別の方
法として、四塩化炭素(CCl4 )を用いた反応性イオ
ン・エッチング法があるが、先にも述べたように選択性
が良くなく、ZnO膜のエッチングも少し起きるため、
SAWフィルタの作製には不向きである。上記の湿式エ
ッチングでは、ZnO膜へのダメージも無く、Alのみ
を容易にエッチングすることができる。
After etching of Al using this etching solution, the photoresist is peeled off with acetone and dried to complete the photolithography (FIG. 1F). After that, a device process is performed in which the substrate is chipped by, for example, dicing, mounted on a case, and leads are bonded. As another method of electrode etching, there is a reactive ion etching method using carbon tetrachloride (CCl 4 ). However, as described above, the selectivity is not good, and the etching of the ZnO film occurs a little.
It is not suitable for producing a SAW filter. In the above wet etching, only Al can be easily etched without damaging the ZnO film.

【0024】図1に示したように、ZnO膜とAl膜と
を同一のスパッタ装置で連続的に成膜し、フォトリソグ
ラフィ、エッチングと従来の4工程から3工程に簡略化
することができた。しかも、線幅6μm、間隔6μmの
互いに入り組んだ形の櫛形電極パターンが、均一で高精
度に形成できた。図5に本工程を用いたSAWフィルタ
のフィルタ特性を示す。横軸は周波数、縦軸は信号減衰
率である。本方法を用いて作製したSAWフィルタは、
リフトオフ方で作製した従来のSAWフィルタと同等以
上のフィルタ特性を示した。 [実施例2]次に、スペクトラム拡散通信においてキー
デバイスとされるSAWコンボルバを作製した。図6に
SAWコンボルバの斜視図を示す。基板24上に圧電体
であるZnO膜23が形成され、その表面に入力側櫛形
電極21、参照信号櫛形電極28および出力電極24が
形成されている。
As shown in FIG. 1, a ZnO film and an Al film were continuously formed by the same sputtering apparatus, and photolithography and etching could be simplified from four steps to three steps. . In addition, an intricate comb-shaped electrode pattern having a line width of 6 μm and an interval of 6 μm could be formed uniformly and with high precision. FIG. 5 shows the filter characteristics of a SAW filter using this process. The horizontal axis is the frequency, and the vertical axis is the signal attenuation rate. The SAW filter manufactured using this method is:
The filter characteristics were equal to or higher than those of the conventional SAW filter manufactured by the lift-off method. [Example 2] Next, a SAW convolver used as a key device in spread spectrum communication was manufactured. FIG. 6 shows a perspective view of the SAW convolver. A ZnO film 23, which is a piezoelectric material, is formed on a substrate 24, and an input side comb electrode 21, a reference signal comb electrode 28, and an output electrode 24 are formed on the surface thereof.

【0025】入力側櫛形電極21に入力信号を入れ、も
う片方の参照信号櫛形電極28に参照信号を入力する。
それぞれの信号により励振したSAW25が中央の出力
電極22に伝播し、そこで空間的に時間積分され出力信
号として得られる。この素子を送受信側で使用すること
によりプログラム性に富むデータ通信が可能となる。S
AWコンボルバは、SAWフィルタの素子構造と類似し
ているので、ZnO膜厚の最適化及び電極のパターンを
変えれば、SAWフィルタと同様の製造方法で製造でき
る。
An input signal is input to the input side comb electrode 21 and a reference signal is input to the other reference signal comb electrode 28.
The SAW 25 excited by each signal propagates to the central output electrode 22, where it is spatially time-integrated and obtained as an output signal. By using this element on the transmission / reception side, data communication with high programmability becomes possible. S
Since the AW convolver is similar to the element structure of the SAW filter, it can be manufactured by the same manufacturing method as that of the SAW filter if the ZnO film thickness is optimized and the electrode pattern is changed.

【0026】実施例1と同様の工程でSAWコンボルバ
を試作した。その結果、入力信号0dBmに対し出力信
号−40dBmが得られた。これは、従来の製造方法で
得られたSAWコンボルバのほぼ最高水準の値であり、
蒸着装置の削減や、工程数の低減を考えると、本発明の
製造方法のメリットは非常に大きい。
A SAW convolver was prototyped in the same process as in the first embodiment. As a result, an output signal of −40 dBm was obtained with respect to the input signal of 0 dBm. This is almost the highest value of the SAW convolver obtained by the conventional manufacturing method,
Considering the reduction in the number of vapor deposition devices and the number of steps, the manufacturing method of the present invention has a great advantage.

【0027】[0027]

【発明の効果】以上説明したように本発明は、モノリシ
ック型SAWフィルタの製造方法において、圧電体のZ
nO膜と電極材料のAl又はAl合金を同じスパッタ装
置で形成し、電極材料のみを選択的にエッチングできる
ようにpH調整したエッチング溶液でエッチングを行う
ことにより、電極パターンを形成した。その結果、従来
必要であった蒸着装置を削減し、工程数および工数の低
減に大きな寄与をなし、コストの低減を可能にした。し
かも、密着強度を高め、また厚さの厚い電極膜でも、高
精度の電極形成を可能にした。
As described above, the present invention relates to a method of manufacturing a monolithic type SAW filter, in which a Z
An electrode pattern was formed by forming an nO film and Al or an Al alloy as an electrode material with the same sputtering apparatus, and performing etching with an etching solution whose pH was adjusted so that only the electrode material could be selectively etched. As a result, the number of deposition apparatuses conventionally required was reduced, and the number of steps and man-hours was greatly reduced, thereby enabling cost reduction. In addition, the adhesion strength is increased, and a highly accurate electrode can be formed even with a thick electrode film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のモノリシック型SAWフィルタの製造
方法にかかる製造工程の工程フロー図
FIG. 1 is a process flow chart of a manufacturing process according to a manufacturing method of a monolithic SAW filter of the present invention.

【図2】本発明のSAWフィルタの製造方法を説明する
ための工程順の断面図
FIG. 2 is a sectional view in the order of steps for explaining a method of manufacturing a SAW filter according to the present invention.

【図3】スパッタ装置の概要図FIG. 3 is a schematic diagram of a sputtering apparatus.

【図4】本発明の製造方法にかかるSAWフィルタのフ
ィルタ特性図
FIG. 4 is a filter characteristic diagram of a SAW filter according to the manufacturing method of the present invention.

【図5】モノリシック型SAWフィルタの例の斜視図FIG. 5 is a perspective view of an example of a monolithic SAW filter.

【図6】SAWコンボルバの例の斜視図FIG. 6 is a perspective view of an example of a SAW convolver.

【図7】従来のモノリシック型SAWフィルタの製造工
程フロー図
FIG. 7 is a manufacturing process flow chart of a conventional monolithic SAW filter.

【符号の説明】[Explanation of symbols]

1 入力側櫛形電極 2 出力側櫛形電極 3 ZnO膜 4 基板 5 SAW 6 Al膜 7 フォトレジスト 11 チャンバ 12 Znターゲット 13 Alターゲット 又はAl合金ターゲット 14 Arガス及びO2 ガス 15 高周波電源 16 直流電源 17 真空バルブ 21 入力側櫛形電極 22 出力電極 23 ZnO膜 24 基板 25 SAW 28 参照信号櫛形電極REFERENCE SIGNS LIST 1 input side comb electrode 2 output side comb electrode 3 ZnO film 4 substrate 5 SAW 6 Al film 7 photoresist 11 chamber 12 Zn target 13 Al target or Al alloy target 14 Ar gas and O 2 gas 15 High frequency power supply 16 DC power supply 17 Vacuum Valve 21 Input side comb electrode 22 Output electrode 23 ZnO film 24 Substrate 25 SAW 28 Reference signal comb electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に酸化亜鉛膜を堆積しその上にAl
又はAl合金の電極を形成した弾性表面波素子の製造方
法において、酸化亜鉛膜を堆積した後その上に電極用金
属膜を同一の成膜装置で堆積することを特徴とする弾性
表面波素子の製造方法。
A zinc oxide film is deposited on a substrate, and an aluminum oxide film is formed on the zinc oxide film.
Alternatively, in a method of manufacturing a surface acoustic wave device having an electrode of an Al alloy, a zinc oxide film is deposited, and then a metal film for an electrode is deposited on the zinc oxide film by the same film forming apparatus. Production method.
【請求項2】基板上に酸化亜鉛膜を堆積し、その上にA
l又はAl合金の櫛形電極を形成した弾性表面波素子の
製造方法において、電極用金属膜のみを選択的にエッチ
ングするエッチング溶液を用いることを特徴とする弾性
表面波素子の製造方法。
2. A zinc oxide film is deposited on a substrate, and A
A method for manufacturing a surface acoustic wave device having a comb-shaped electrode made of l or Al alloy, wherein an etching solution for selectively etching only the electrode metal film is used.
【請求項3】エッチング溶液のpHをpH9〜pH13
の範囲に制御することを特徴とする請求項2記載の弾性
表面波素子の製造方法。
3. The pH of the etching solution is from pH 9 to pH 13.
3. The method for manufacturing a surface acoustic wave device according to claim 2, wherein the surface acoustic wave device is controlled to fall within the range.
【請求項4】エッチング溶液として、ほう酸塩化カリウ
ム液と水酸化ナトリウム液を用いることを特徴とする請
求項3記載の弾性表面波素子の製造方法。
4. The method according to claim 3, wherein a potassium borate solution and a sodium hydroxide solution are used as the etching solution.
JP178497A 1997-01-09 1997-01-09 Production of surface acoustic wave element Pending JPH10200354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP178497A JPH10200354A (en) 1997-01-09 1997-01-09 Production of surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP178497A JPH10200354A (en) 1997-01-09 1997-01-09 Production of surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH10200354A true JPH10200354A (en) 1998-07-31

Family

ID=11511213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP178497A Pending JPH10200354A (en) 1997-01-09 1997-01-09 Production of surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH10200354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124485B2 (en) 2003-04-11 2006-10-24 Tdk Corporation Method of manufacturing a piezoelectric thin film resonator
US7239067B2 (en) 2003-03-31 2007-07-03 Tdk Corporation Method of manufacturing a piezoelectric thin film resonator, manufacturing apparatus for a piezoelectric thin film resonator, piezoelectric thin film resonator, and electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239067B2 (en) 2003-03-31 2007-07-03 Tdk Corporation Method of manufacturing a piezoelectric thin film resonator, manufacturing apparatus for a piezoelectric thin film resonator, piezoelectric thin film resonator, and electronic component
US7124485B2 (en) 2003-04-11 2006-10-24 Tdk Corporation Method of manufacturing a piezoelectric thin film resonator

Similar Documents

Publication Publication Date Title
JP3535474B2 (en) Method for manufacturing FBAR (Film Bulk Acoustic Resonator) element
KR100662865B1 (en) Film bulk acoustic resonator and the method for manufacturing the same
US20020166218A1 (en) Method for self alignment of patterned layers in thin film acoustic devices
US8631547B2 (en) Method of isolation for acoustic resonator device
CN110417374B (en) Film bulk acoustic resonator and preparation method thereof
US20060006965A1 (en) RF filter and method for fabricating the same
JPWO2004088840A1 (en) Piezoelectric thin film device and manufacturing method thereof
JP2008244653A (en) Manufacturing method for thin-film bulk wave resonator
CN109995342B (en) Preparation method of air-gap type film bulk acoustic resonator
JP7306726B2 (en) Manufacturing method of film bulk acoustic wave resonator
KR20040091407A (en) Film bulk acoustic resonator having air gap floating from substrate and method for manufacturing the same
JP2006135443A (en) Surface acoustic wave element and manufacturing method of surface acoustic wave element
US20220385267A1 (en) Surface acoustic wave device with high electromechanical coupling coefficient based on double-layer electrodes and preparation method thereof
CN113541636A (en) Acoustic wave resonator and preparation method thereof
JPH10200354A (en) Production of surface acoustic wave element
US7615910B1 (en) High frequency surface acoustic wave device
JPH10200369A (en) Piezoelectric thin film resonator
CN114301406B (en) Cavity type piezoelectric single crystal acoustic wave resonator and preparation method thereof
US20230327644A1 (en) Ladder filter with transversely-excited film bulk acoustic resonators having different pitches
US20230283256A1 (en) Filter with multiple resonators having different passivation thickness distributions
JP6892061B2 (en) Manufacturing method of bulk elastic wave resonator
JP2006050591A (en) High-frequency filter and manufacturing method thereof
CN114301412A (en) Lamb wave acoustic wave device with improved substrate structure and manufacturing method thereof
KR100485701B1 (en) FBAR fabrication method using LOCOS and fabricated FBAR by the same
CN117200742A (en) Fin-shaped resonant structure array-based bulk acoustic wave filter and preparation method thereof