JPH10199822A - Semiconductor heat treatment device - Google Patents

Semiconductor heat treatment device

Info

Publication number
JPH10199822A
JPH10199822A JP1735697A JP1735697A JPH10199822A JP H10199822 A JPH10199822 A JP H10199822A JP 1735697 A JP1735697 A JP 1735697A JP 1735697 A JP1735697 A JP 1735697A JP H10199822 A JPH10199822 A JP H10199822A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
type
thermocouples
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1735697A
Other languages
Japanese (ja)
Inventor
Minoru Nakano
稔 中野
Masaaki Ueno
正昭 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP1735697A priority Critical patent/JPH10199822A/en
Publication of JPH10199822A publication Critical patent/JPH10199822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor heat treatment device which can effect a highly precisely temperature-control respective zones in a heat treatment furnace and which can execute highly precise heat treatment on a substrate. SOLUTION: The inner part of a heat treatment furnace 4 is divided into plural heating zones 6. Heaters 7 are dividedly arranged for the respective heating zones 6 and thermocouples 8 selected from the plural types of thermocouples 8 differing in characteristics are arranged for the respective heating zones 6. A CPU 13 is connected to the thermocouples 8, and a memory 1 and an operation display terminal 15 are connected to the CPU 13. A memory 14 stores data for converting detection signals outputted from the plural types of thermocouples 8 into temperature signals. The operation display terminal 15 outputs the type-identification signals of the thermocouples 8 for the respective heating zones 6. CPU 13 takes in the detection signals from the thermocouples according to the output signal of the operation display terminal 15, converts the detection signals into the temperature signals with data taken out from the memory 14, and the calorific value of the heater 7 is adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体ウェーハ
や液晶用のガラス基板等の基板に所望の熱処理を施す半
導体熱処理装置に関する。
The present invention relates to a semiconductor heat treatment apparatus for performing a desired heat treatment on a substrate such as a semiconductor wafer or a glass substrate for liquid crystal.

【0002】[0002]

【従来の技術】従来、縦型熱拡散装置や縦型減圧CVD
装置等を構成する半導体熱処理装置は、例えば、基板に
不純物質を拡散させたり、基板表面に薄膜を形成するた
め、熱処理炉内に基板を収容し、熱処理炉に配置した加
熱手段で炉内部を加熱するようになっている。そして、
この従来の半導体熱処理装置は、熱処理炉に配置した温
度センサ(温度検知手段)により炉内部の温度を検知
し、その検知結果に従って炉内部の温度を制御するよう
になっている。
2. Description of the Related Art Conventionally, a vertical heat diffusion apparatus and a vertical reduced pressure CVD
The semiconductor heat treatment apparatus constituting the apparatus, for example, accommodates the substrate in a heat treatment furnace and diffuses the inside of the furnace with heating means arranged in the heat treatment furnace in order to diffuse impurities into the substrate or form a thin film on the substrate surface. It is designed to be heated. And
In this conventional semiconductor heat treatment apparatus, the temperature inside the furnace is detected by a temperature sensor (temperature detecting means) arranged in the heat treatment furnace, and the temperature inside the furnace is controlled according to the detection result.

【0003】[0003]

【発明が解決しようとする課題】近年、基板の熱処理品
質の向上の要求に応えるため、熱処理炉内部の広範囲を
多くのゾーン(温度制御地域)に分割し、各ゾーンを各
別に高精度に温度制御する必要がある。しかし、従来の
半導体熱処理装置は、熱処理炉の内部温度を検知する温
度センサが一種類であったため、各ゾーン毎の温度制御
条件に温度センサの特性が必ずしも合致していなかっ
た。従って、熱処理炉内部の各ゾーンを高精度に温度制
御するのが困難であった。
In recent years, in order to meet the demand for improving the heat treatment quality of a substrate, a wide area inside the heat treatment furnace is divided into a number of zones (temperature control areas), and each of the zones is individually and precisely controlled in temperature. You need to control. However, the conventional semiconductor heat treatment apparatus has only one type of temperature sensor for detecting the internal temperature of the heat treatment furnace, and thus the characteristics of the temperature sensor do not always match the temperature control conditions for each zone. Therefore, it has been difficult to control the temperature of each zone inside the heat treatment furnace with high accuracy.

【0004】そこで、この発明は、熱処理炉内部の各ゾ
ーンを高精度に温度制御でき、基板に高精度の熱処理を
施すことができる半導体熱処理装置を提供することを目
的とする。
Accordingly, an object of the present invention is to provide a semiconductor heat treatment apparatus capable of controlling the temperature of each zone inside a heat treatment furnace with high accuracy and performing a heat treatment with high accuracy on a substrate.

【0005】[0005]

【課題を解決するための手段】本発明の半導体熱処理装
置は、内部に収容した基板に所望の熱処理を施すため、
内部を複数の加熱ゾーンに分割し、該加熱ゾーン毎に加
熱手段を分割配置するとともに、特性の異なる複数種の
温度検知手段を前記加熱ゾーンに配置してなる熱処理炉
と、前記各種類毎の温度検知手段から出力された検知信
号を温度信号に変換するためのデータを記憶した記憶手
段と、前記温度検知手段の種類識別信号を出力する操作
手段と、前記温度検知手段から検知信号を取り込むとと
もに、前記操作手段の出力信号に応じて該検知信号を前
記記憶手段から取り出したデータによって温度信号に変
換し、前記加熱手段の発熱量を調整する温度制御手段
と、を備えたことを特徴としている。
The semiconductor heat treatment apparatus of the present invention performs a desired heat treatment on a substrate housed therein.
The inside is divided into a plurality of heating zones, and the heating means is divided and arranged for each heating zone, and a heat treatment furnace in which a plurality of types of temperature detecting means having different characteristics are arranged in the heating zone, A storage unit that stores data for converting a detection signal output from the temperature detection unit into a temperature signal, an operation unit that outputs a type identification signal of the temperature detection unit, and a detection signal from the temperature detection unit. Temperature control means for converting the detection signal into a temperature signal in accordance with the output signal from the storage means in response to the output signal of the operation means, and adjusting the amount of heat generated by the heating means. .

【0006】ここで、特性の異なる複数種の温度検知手
段を加熱ゾーンに配置するとは、加熱ゾーン毎或いは必
要な加熱ゾーンに全ての種類の温度検出手段を配置する
場合のみならず、加熱ゾーンの温度制御条件に適合する
特性を有する温度検知手段を複数種の温度検知手段のな
かから適宜選択して、その選択した温度検知手段を全て
の加熱ゾーン或いは必要な加熱ゾーンに配置することを
いう。従って、加熱ゾーン毎に異なる種類の温度検知手
段が配置されたり、隣接する加熱ゾーンの幾つかに同種
の温度検知が配置されたりすることがある。また、温度
検知手段とは、熱電対やサーミスタ等をいい、熱電対の
場合の検知信号は熱起電力であり、サーミスタの場合の
検知信号は抵抗値である。
Here, the arrangement of a plurality of types of temperature detecting means having different characteristics in the heating zone means not only the case where all kinds of temperature detecting means are arranged in each heating zone or in a necessary heating zone, but also in the case of the heating zone. This means that a temperature detecting means having a characteristic conforming to the temperature control conditions is appropriately selected from a plurality of types of temperature detecting means, and the selected temperature detecting means is arranged in all heating zones or necessary heating zones. Therefore, different types of temperature detection means may be arranged for each heating zone, or the same type of temperature detection may be arranged in some of the adjacent heating zones. The temperature detecting means refers to a thermocouple, a thermistor, or the like. The detection signal in the case of a thermocouple is a thermoelectromotive force, and the detection signal in the case of a thermistor is a resistance value.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき詳述する。図1は、本発明の実施の一形態を示
す半導体熱処理装置1の構成図である。図1に示すよう
に、半導体熱処理装置1は、複数の基板2を所定間隔で
積載したボート3を収容する熱処理炉4を備えている。
この熱処理炉4は、図中上部が閉塞された筒状体であ
り、下部の開口部をボート3を載置したベース5によっ
て閉塞されるようになっている。そして、この熱処理炉
4は、図1の上下方向で複数の加熱ゾーン6(61〜6
n)に分割されており、その各加熱ゾーン6毎に電熱ヒ
ータ(加熱手段)7が配置されている。また、この熱処
理炉4の各加熱ゾーン6には、それぞれ熱電対(温度検
知手段)8が配置されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram of a semiconductor heat treatment apparatus 1 showing one embodiment of the present invention. As shown in FIG. 1, the semiconductor heat treatment apparatus 1 includes a heat treatment furnace 4 that houses a boat 3 on which a plurality of substrates 2 are loaded at predetermined intervals.
The heat treatment furnace 4 is a tubular body whose upper part is closed in the figure, and the lower opening part is closed by a base 5 on which the boat 3 is mounted. Then, the heat treatment furnace 4, a plurality of heating zones 6 (61 through 65 in the vertical direction in FIG. 1
n), and an electric heater (heating means) 7 is arranged for each heating zone 6. A thermocouple (temperature detecting means) 8 is arranged in each heating zone 6 of the heat treatment furnace 4.

【0008】ここで、熱電対8は、R型、S型、B型、
K型、J型といったように複数種類の熱電対(8R〜8
J)が用いられており、これらの種類の内の各加熱ゾー
ン6の加熱条件に最適な特性を有する熱電対が使用され
る。図1に示す例では、加熱ゾーン61にはR型の熱電
対8Rが配置され、加熱ゾーン6nにはJ型の熱電対8
Jが配置されている。なお、各加熱ゾーン6(61〜6
n)毎に全種類の熱電対をそれぞれ配置するようにして
もよい。
Here, the thermocouples 8 are of R type, S type, B type,
A plurality of types of thermocouples (8R to 8
J), and a thermocouple having characteristics optimal for the heating conditions of each heating zone 6 of these types is used. In the example shown in FIG. 1, the heating zone 61 is disposed thermocouple 8R of R-type, the heating zone 6n J-type thermocouple 8
J is arranged. In addition, each heating zone 6 (6 1-6
All types of thermocouples may be arranged for each n).

【0009】各加熱ゾーン6に配置された熱電対8は、
各種類毎にチャネル9(91〜9n)が割り当てられて
おり、これらのチャネルを介して温度制御部10に接続
されている。温度制御部10は、各チャネル9に接続さ
れるアンプ11と、このアンプ11にA/Dコンバータ
12を介して接続されるCPU(温度制御手段)13
と、このCPU13に接続されたメモリ(記憶手段)1
4とを備えている。
The thermocouples 8 arranged in each heating zone 6 include:
For each type channel 9 (9 1 ~9n) is assigned, it is connected to a temperature control unit 10 via these channels. The temperature control unit 10 includes an amplifier 11 connected to each channel 9 and a CPU (temperature control unit) 13 connected to the amplifier 11 via an A / D converter 12.
And a memory (storage means) 1 connected to the CPU 13.
4 is provided.

【0010】メモリ14には、図2(a)に示すよう
に、各種類毎の熱電対8から出力された検知信号(熱起
電力)を温度信号(温度)に変換するためのデータ(信
号変換データ)が記憶されている。この信号変換データ
は、熱電対8の種類を表す識別信号(R型・・・J型)
に関係付けられており、各種類毎の熱電対8からの熱起
電力をそれぞれ温度に対応付けている。例えば、R型の
熱電対では熱起電力18.8mVが温度1600℃に対
応し、S型熱電対では熱起電力16.7mVが温度16
00℃に対応する。なお、信号変換データは、図2
(b)に示すように変換式の形式で設定することもでき
る。すなわち、熱電対の各種類(R型、S型、B型・・
・)毎に変換関数(fR、fS、fB・・・)を設定して
おき、熱起電力(v)が得られることによって対応する
種類の温度(TR、TS、TB・・・)に変換するように
してもよい。
As shown in FIG. 2A, data (signals) for converting the detection signals (thermo-electromotive force) output from the thermocouples 8 of each type into temperature signals (temperature) are stored in the memory 14. Conversion data) is stored. This signal conversion data is an identification signal indicating the type of the thermocouple 8 (R type... J type).
And the thermoelectromotive force from the thermocouple 8 for each type is associated with the temperature. For example, an R-type thermocouple has a thermoelectromotive force of 18.8 mV corresponding to a temperature of 1600 ° C., and an S-type thermocouple has a thermoelectromotive force of 16.7 mV having a temperature of 16
Corresponds to 00 ° C. The signal conversion data is shown in FIG.
It can also be set in the form of a conversion formula as shown in FIG. That is, each type of thermocouple (R type, S type, B type ...
·) Conversion for each function (f R, f S, f B ···) may be set to the corresponding type of temperature by thermal electromotive force (v) is obtained (T R, T S, T B ...) may be converted.

【0011】操作表示端末(操作手段)15は、作業者
によって操作され、各加熱ゾーン6に配置された熱電対
8の種類に対応する識別信号(種類識別信号:R型・・
・J型)をCPU13に出力するようになっている。図
3は、この操作表示端末15に記憶されたデータを示す
ものであり、作業者が所望の識別信号(R型・・・J
型)を入力すると、その識別信号(R型・・・J型)及
び対応するチャネル番号が前記したようにCPU13に
出力される。
An operation display terminal (operation means) 15 is operated by an operator, and an identification signal (type identification signal: R type...) Corresponding to the type of the thermocouple 8 arranged in each heating zone 6.
(J type) is output to the CPU 13. FIG. 3 shows the data stored in the operation display terminal 15, and the operator can input a desired identification signal (R type... J
), The identification signal (R type... J type) and the corresponding channel number are output to the CPU 13 as described above.

【0012】CPU13は、この操作表示端末15から
出力された識別信号(R型・・・J型)に対応したチャ
ネルの各熱電対8から検知信号を取り入れるとともに、
識別信号(R型・・・J型)に対応する信号変換データ
をメモリ14から読み出し、検知信号を温度信号に変換
する。そして、CPU13は、その温度信号に基づいて
通電制御手段17(171〜17n)の作動を制御す
る。ここに、通電制御手段17は、電源18とヒータ7
に接続されており、電源18からヒータ7に供給される
電流量を調整するようになっている。なお、作業者は操
作表示端末(操作手段)15から一種類の識別信号(種
類識別信号:R型・・・J型)を出力させるばかりでは
なく、各加熱ゾーン毎に種類の異なる識別信号を出力さ
せて、各加熱ゾーン毎に熱電対の種類を指定するように
してもよい。
The CPU 13 takes in the detection signal from each thermocouple 8 of the channel corresponding to the identification signal (R type... J type) output from the operation display terminal 15,
The signal conversion data corresponding to the identification signal (R type... J type) is read from the memory 14 and the detection signal is converted into a temperature signal. Then, CPU 13 controls the operation of the energization control means 17 (17 1 ~17n) based on the temperature signal. Here, the power supply control means 17 includes a power supply 18 and a heater 7.
And adjusts the amount of current supplied from the power supply 18 to the heater 7. The operator not only outputs one type of identification signal (type identification signal: R type... J type) from the operation display terminal (operation means) 15, but also outputs different types of identification signals for each heating zone. The output may be performed to specify the type of thermocouple for each heating zone.

【0013】上記のように構成された本実施の形態に係
る半導体熱処理装置1は、ボート3に所定の基板2が積
載され、そのボート3が熱処理炉4の内部に収容され
て、ヒータ7への通電スイッチ(図示せず)がオンされ
ると、上記した温度信号に基づいた制御の下に、電流が
電源18から通電制御手段17を介してヒータ7へ供給
される。熱処理炉4の各加熱ゾーン6に配置されたヒー
タ7は、供給される電流に応じて発熱し、各加熱ゾーン
6に位置する基板2を加熱する。
In the semiconductor heat treatment apparatus 1 according to the present embodiment configured as described above, a predetermined substrate 2 is loaded on a boat 3, the boat 3 is housed in a heat treatment furnace 4, Is turned on, a current is supplied from the power supply 18 to the heater 7 via the power supply control means 17 under control based on the above-mentioned temperature signal. The heaters 7 arranged in the respective heating zones 6 of the heat treatment furnace 4 generate heat in accordance with the supplied current, and heat the substrates 2 located in the respective heating zones 6.

【0014】この温度制御では、CPU13は、各加熱
ゾーン6に配置された熱電対8の検知信号を取り入れる
とともに、メモリ14から識別信号(R型・・・J型)
に対応する信号変換データを読み出し、検知信号を温度
信号に変換する。そして、CPU13は、その変換した
温度信号に基づいて通電制御手段17の作動を制御し、
各加熱ゾーン6のヒータ7への通電量を調節して、各加
熱ゾーン6の温度を所定温度に維持する。
In this temperature control, the CPU 13 takes in the detection signals of the thermocouples 8 arranged in the respective heating zones 6 and identifies the identification signals (R type... J type) from the memory 14.
Is read, and the detection signal is converted into a temperature signal. Then, the CPU 13 controls the operation of the energization control unit 17 based on the converted temperature signal,
The amount of electricity supplied to the heater 7 in each heating zone 6 is adjusted to maintain the temperature of each heating zone 6 at a predetermined temperature.

【0015】このように、本実施の形態によれば、熱処
理炉4の内部を複数の加熱ゾーン6(61〜6n)に分
割し、その各加熱ゾーン6に特性の異なる熱電対8(8
R〜8J)を配置して、その熱電対8の検知信号を温度
信号に高精度に変換できるため、その温度信号に基づい
て各加熱ゾーン6に配置したヒータ7への通電量を正確
に制御することができる。その結果、熱処理炉4の広範
囲に亘る加熱ゾーン6が高精度に温度制御され、基板2
には優れた熱処理が施される。
[0015] Thus, according to this embodiment, heat treatment furnace 4 of the inner is divided into a plurality of heating zones 6 (6 1 ~6n), thermocouple 8 different characteristics in each of its heating zone 6 (8
R to 8J), and the detection signal of the thermocouple 8 can be converted into a temperature signal with high accuracy. Therefore, based on the temperature signal, the amount of power to the heaters 7 arranged in each heating zone 6 can be accurately controlled. can do. As a result, the temperature of the heating zone 6 over a wide range of the heat treatment furnace 4 is controlled with high precision, and
Is subjected to an excellent heat treatment.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
は、熱処理炉の内部を複数の加熱ゾーンに分割し、各加
熱ゾーンに加熱手段を配置するとともに、各加熱ゾーン
に特性が異なる温度検知手段を適宜配置し、温度制御手
段が操作手段の出力信号に基づい温度検知手段の検知信
号を記憶手段のデータで温度信号に高精度で変換するこ
とができるため、その温度信号に基づいて、温度制御手
段が加熱手段の発熱量を正確に制御することができる。
従って、本発明によれば、熱処理炉が広範囲に亘り高精
度に温度制御されるため、基板に優れた熱処理を施すこ
とが可能になる。
As is clear from the above description, the present invention divides the inside of the heat treatment furnace into a plurality of heating zones, arranges heating means in each of the heating zones, and sets the temperature in each of the heating zones to different values. The detection means is appropriately arranged, and the temperature control means can convert the detection signal of the temperature detection means to the temperature signal with the data of the storage means with high accuracy based on the output signal of the operation means. The temperature control means can accurately control the amount of heat generated by the heating means.
Therefore, according to the present invention, since the temperature of the heat treatment furnace is controlled over a wide range with high accuracy, it is possible to perform excellent heat treatment on the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す半導体熱処理装置の
構成図である。
FIG. 1 is a configuration diagram of a semiconductor heat treatment apparatus according to an embodiment of the present invention.

【図2】温度検知手段の種類と検知信号及び温度信号の
対応関係図であり、(a)は温度検知手段の種類と検知
信号及び温度信号の対応関係テーブルを表し、(b)は
温度検知手段の種類に対応する変換式を表す。
FIG. 2 is a diagram showing a correspondence relationship between types of temperature detection means and detection signals and temperature signals. FIG. 2A shows a correspondence table between the types of temperature detection means and detection signals and temperature signals, and FIG. Represents a conversion formula corresponding to the type of means.

【図3】操作手段のメモリ内のデータを示す図である。FIG. 3 is a diagram showing data in a memory of the operation means.

【符号の説明】[Explanation of symbols]

1 半導体熱処理装置 2 基板 4 熱処理炉 6 加熱ゾーン 7 ヒータ(加熱手段) 8 熱電対(温度検知手段) 13 CPU(温度制御手段) 14 メモリ(記憶手段) 15 操作表示端末(操作手段) DESCRIPTION OF SYMBOLS 1 Semiconductor heat treatment apparatus 2 Substrate 4 Heat treatment furnace 6 Heating zone 7 Heater (heating means) 8 Thermocouple (temperature detection means) 13 CPU (temperature control means) 14 Memory (storage means) 15 Operation display terminal (operation means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に収容した基板に所望の熱処理を施
すため、内部を複数の加熱ゾーンに分割し、該加熱ゾー
ン毎に加熱手段を分割配置するとともに、特性の異なる
複数種の温度検知手段を前記加熱ゾーンに配置してなる
熱処理炉と、 前記各種類毎の温度検知手段から出力された検知信号を
温度信号に変換するためのデータを記憶した記憶手段
と、 前記温度検知手段の種類識別信号を出力する操作手段
と、 前記温度検知手段から検知信号を取り込むとともに、前
記操作手段の出力信号に応じて該検知信号を前記記憶手
段から取り出したデータによって温度信号に変換し、前
記加熱手段の発熱量を調整する温度制御手段と、 を備えたことを特徴とする半導体熱処理装置。
In order to perform a desired heat treatment on a substrate housed therein, the inside is divided into a plurality of heating zones, heating means are divided and arranged for each of the heating zones, and a plurality of kinds of temperature detecting means having different characteristics are provided. A heat treatment furnace arranged in the heating zone, a storage unit storing data for converting a detection signal output from the temperature detection unit for each type into a temperature signal, and a type identification of the temperature detection unit Operating means for outputting a signal, while taking in a detection signal from the temperature detecting means, converting the detection signal into a temperature signal by data taken from the storage means in accordance with the output signal of the operating means, A semiconductor heat treatment apparatus comprising: a temperature control unit that adjusts a calorific value.
JP1735697A 1997-01-14 1997-01-14 Semiconductor heat treatment device Pending JPH10199822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1735697A JPH10199822A (en) 1997-01-14 1997-01-14 Semiconductor heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1735697A JPH10199822A (en) 1997-01-14 1997-01-14 Semiconductor heat treatment device

Publications (1)

Publication Number Publication Date
JPH10199822A true JPH10199822A (en) 1998-07-31

Family

ID=11941777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1735697A Pending JPH10199822A (en) 1997-01-14 1997-01-14 Semiconductor heat treatment device

Country Status (1)

Country Link
JP (1) JPH10199822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124021A3 (en) * 2012-02-23 2014-01-23 Testo Ag Temperature measuring device, temperature measuring device set and method for configuring a temperature measuring device that can be operated with a thermocouple

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124021A3 (en) * 2012-02-23 2014-01-23 Testo Ag Temperature measuring device, temperature measuring device set and method for configuring a temperature measuring device that can be operated with a thermocouple
CN104204747A (en) * 2012-02-23 2014-12-10 特斯托股份公司 Temperature measuring device, temperature measuring device set and method for configuring a temperature measuring device that can be operated with a thermocouple
JP2015513668A (en) * 2012-02-23 2015-05-14 テスト アクチエンゲゼルシャフト Temperature measuring device, temperature measuring device set, and method for setting a temperature measuring device operating with a thermocouple
US9658115B2 (en) 2012-02-23 2017-05-23 Testo Ag Temperature measuring device, temperature measuring device set and method for configuring a temperature measuring device that can be operated with a thermocouple

Similar Documents

Publication Publication Date Title
TWI406323B (en) Multi-zone resistive heater
JP4579993B2 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
US20100163546A1 (en) Wiring structure, heater driving device, measuring device, and control system
US20060158207A1 (en) Method and apparatus for testing semiconductor wafers by means of a temperature-regulated chuck device
KR20140136482A (en) Apparatus and method for controlling heating of base within chemical vapour deposition chamber
US9892941B2 (en) Multi-zone resistive heater
JPH10199822A (en) Semiconductor heat treatment device
JP2006147943A (en) Substrate processor and semiconductor device manufacturing method
JP2004207687A (en) Semiconductor manufacturing equipment and manufacturing method using the same
JPS58103125A (en) Heat controlling device
JP2004115904A (en) Substrate treatment apparatus
JP3670757B2 (en) Sample temperature control method and apparatus
JP2001083019A (en) Temperature measurement apparatus
SU1337676A1 (en) Temperature measuring device
KR20050088989A (en) Heat treatment system and heat treatment method
JPH04363026A (en) Semiconductor manufacturing apparatus
JP2566141Y2 (en) Temperature distribution detector in vertical furnace
KR101002939B1 (en) Control system of multi-point temperature in heater
JP2005101387A (en) Wafer burn-in apparatus
JPS63115074A (en) Semiconductor high-temperature acceleration testing device
JP2501892B2 (en) Thermocouple input measuring instrument
JPH03225819A (en) Temperature measurement at the time of taking profile data of substrate heat treat furnace and substrate boat used therefor
SU1101693A2 (en) Micro calorimeter
JP2643990B2 (en) Diffusion furnace equipment
JP2001345271A (en) Method of wafer heating control