JPH10198926A - Magnetoresistive effect magnetic head - Google Patents

Magnetoresistive effect magnetic head

Info

Publication number
JPH10198926A
JPH10198926A JP114097A JP114097A JPH10198926A JP H10198926 A JPH10198926 A JP H10198926A JP 114097 A JP114097 A JP 114097A JP 114097 A JP114097 A JP 114097A JP H10198926 A JPH10198926 A JP H10198926A
Authority
JP
Japan
Prior art keywords
film
ferromagnetic
ferromagnetic film
magnetostriction
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP114097A
Other languages
Japanese (ja)
Inventor
Reiko Arai
礼子 荒井
Katsuro Watanabe
克朗 渡辺
Yoshihiro Hamakawa
佳弘 濱川
Keishi Shigematsu
恵嗣 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP114097A priority Critical patent/JPH10198926A/en
Publication of JPH10198926A publication Critical patent/JPH10198926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistive effect magnetic head without a Barkhousen noise and improving the soft magnetic characteristic of a magneto resistive effect film by making the ferromagnetic film a laminated film between a film having negative or zero magnetostriction and a film having positive or zero magntostriction, and making the absolute value of the magnetostriction of the ferromagnetic film a specified value or below in the magnetoresistive effect film of a spin valve structure. SOLUTION: The magneto resistive effect film 20 of the spin valve structure is constituted of a first ferromgnetic film 21, a non-magnetic conductive film 22, a second ferromagnetic film 23 and an anti-ferromagnetic film 24. The intrasurface magnetization of the first ferromagnetic film 21 and second ferromagnetic film 23 are turned in the directions tilting by 90 deg. to each other in the state that an external magnetic field isn't applied. The magnetization of the first ferromagnetic film 21 is rotated freely, and thus, a resistance change occurs, and an output is generated. Then, the first ferromagnetic film 21 consists of a third ferromagnetic film 25 having the negative or zero magnetostriction and a fourth ferromagnetic film 26 having the positive or zero magnetostriction. Then, the absolute value of the magnetostriction of the first ferromagnetic film is required to be 4×10<-7> or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気抵抗効果ヘッド
に関する。
The present invention relates to a magnetoresistive head.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、高感度な再
生用ヘッドが求められており、その再生ヘッドは、磁気
抵抗効果(以下MR)を利用した磁気抵抗効果型ヘッド
が用いられている。現在磁気ディスク装置に搭載されて
いるMRヘッドは、磁性膜の磁化の方向と信号検出電流
とのなす角度に依存して抵抗が変化する異方性磁気抵抗
効果が用いられている。MRヘッドで、外部磁界を感知
して抵抗が変化する部分(感磁部)にはNiFe膜が用
いられており、その磁気抵抗変化率は最大で約3%であ
る。そのため、数Gb/in2 程度の高面記録密度になる
とこの異方性磁気抵抗効果を用いたMRヘッドでは感度
不足になることが予想され、より高感度な磁気抵抗変化
を示すものが要求されている。
2. Description of the Related Art With the increase in density of magnetic recording, a high-sensitivity reproducing head is required. As the reproducing head, a magneto-resistive head utilizing a magneto-resistive effect (hereinafter, MR) is used. I have. An MR head currently mounted on a magnetic disk device uses an anisotropic magnetoresistance effect in which resistance changes depending on an angle between a direction of magnetization of a magnetic film and a signal detection current. In the MR head, a NiFe film is used in a portion (magnetic sensing portion) where the resistance is changed by sensing an external magnetic field, and its magnetoresistance change rate is about 3% at the maximum. For this reason, when the areal recording density becomes as high as several Gb / in 2 , it is expected that the MR head using this anisotropic magnetoresistive effect will become insufficient in sensitivity, and a magnetic head exhibiting a more sensitive magnetoresistive change is required. ing.

【0003】近年、Co/Cu,Fe/Cr或いはNi
Fe/Cuのように強磁性膜と非磁性導電性膜とを交互
に積層させた多層構造で、強磁性膜間の反強磁性的結合
を利用して巨大な磁気抵抗効果(約50%)が得られる
ことが報告された。しかし、この磁気抵抗変化率を得る
ために必要な飽和磁界は数kOeと非常に高く、実際の
MRヘッドに適用するには困難である。
In recent years, Co / Cu, Fe / Cr or Ni
It has a multilayer structure in which ferromagnetic films and non-magnetic conductive films are alternately laminated like Fe / Cu, and a giant magnetoresistance effect (about 50%) utilizing antiferromagnetic coupling between ferromagnetic films. Was reported to be obtained. However, the saturation magnetic field required to obtain this magnetoresistance change rate is as high as several kOe, which is difficult to apply to an actual MR head.

【0004】一方、二層の強磁性膜を非磁性導電性膜で
分離し、一方の強磁性膜に反強磁性膜を隣接して磁化の
方向を固定させ、もう一方の強磁性膜が外部磁界により
磁化反転し、二層の強磁性膜の互いの磁化方向のなす角
度によって高い磁気抵抗変化が得られることが報告され
ている(特開平7−62534号公報)。これはスピンバルブ
構造と呼ばれ、比較的小さな磁界で飽和し、次世代の磁
気ヘッド用磁気抵抗効果膜として現在最も注目されてい
る。
On the other hand, two ferromagnetic films are separated by a nonmagnetic conductive film, an antiferromagnetic film is adjacent to one ferromagnetic film to fix the direction of magnetization, and the other ferromagnetic film is It has been reported that the magnetization is reversed by a magnetic field, and a high magnetoresistance change can be obtained depending on the angle between the magnetization directions of the two ferromagnetic films (Japanese Patent Laid-Open No. 7-62534). This is called a spin valve structure, which is saturated with a relatively small magnetic field, and is currently receiving the most attention as a next-generation magnetoresistive film for a magnetic head.

【0005】このスピンバルブ膜は、その強磁性膜の材
料によって磁気抵抗変化率及び磁気特性が異なる。例え
ば、特開平7−652852 号公報に記載のCo/Cu/Co
の場合は、磁気抵抗変化率は約8%と高いが、保磁力が
20Oeと大きく軟磁気特性が良好ではない。またNi
Fe/Cu/NiFeの場合は、保磁力が約1Oeと軟
磁気特性は良好であるが、磁気抵抗変化率は約4%と低
い。さらに、CoFe,NiFeCoを強磁性膜に用い
たスピンバルブ構造の報告もなされており、これは上記
CoやNiFeを用いた場合に比べて、磁気抵抗変化率
が高く、かつ軟磁気特性が良いとされている。
The spin valve film has a different magnetoresistance ratio and magnetic characteristics depending on the material of the ferromagnetic film. For example, Co / Cu / Co described in JP-A-7-652852 is disclosed.
In the case of (1), the magnetoresistance ratio is as high as about 8%, but the coercive force is as large as 20 Oe, and the soft magnetic properties are not good. Also Ni
In the case of Fe / Cu / NiFe, the coercive force is about 1 Oe and the soft magnetic properties are good, but the magnetoresistance ratio is as low as about 4%. Furthermore, a spin valve structure using CoFe and NiFeCo for a ferromagnetic film has also been reported, which has a higher magnetoresistance ratio and a better soft magnetic property than those using Co or NiFe. Have been.

【0006】しかし、これらの報告では強磁性膜の磁歪
には触れておらず、その値が大きいと、膜を素子化した
後に膜応力の影響を受けやすくなり、磁壁が生じてバル
クハウゼンノイズが発生するという問題が残る。図4に
CoFeの組成と磁歪の関係を示すが、Coの磁歪は約
−25×10~7と大きく、CoFeもその組成によって
絶対値が10~6台となりかなり大きい。Feの含有量が
約10wt%では、磁歪がほぼゼロになるが、最近の検
討で、NiFe上に形成したCoFeは、膜厚が薄いと
ころでは膜厚によって磁歪が正に大きくなることが分か
った。図5に、ガラス基板上に形成したTa(5nm)
/NiFe(5nm)/CoFeの磁歪とCoFe膜厚d
との関係を示す。CoFeの組成は、90Co−10F
e(wt%),92Co−8Fe(wt%)である。C
o−10Fe(wt%)は、膜厚が20nm以上あると
その磁歪はほぼゼロだが、膜厚が薄くなると共に磁歪は
正に大きくなり、3nmでは14×10~7となる。ま
た、Co−8Fe(wt%)の膜も同様に、20nmで
磁歪−5×10~7が、3nmでは9×10~7となり、磁
歪が負から正に大きく変わってしまう。保磁力の点か
ら、これらCo及びCoFeの膜厚は5nm以下にしなけれ
ばならない。Co−10Fe(wt%),Co−8Fe
(wt%)いずれの膜も5nm以下では正に大きく、C
oFeの組成を変えるだけでは磁歪を小さくすることは
難しい。
However, these reports do not mention the magnetostriction of the ferromagnetic film. If the value is large, the film becomes susceptible to the film stress after the device is formed into an element, and a domain wall is generated to reduce Barkhausen noise. The problem of occurring occurs. FIG. 4 shows the relationship between the composition of CoFe and the magnetostriction. The magnetostriction of Co is as large as about −25 × 10 to 7, and the absolute value of CoFe is considerably large, depending on the composition, of the order of 10 to 6 . When the Fe content is about 10 wt%, the magnetostriction becomes almost zero. However, recent studies have revealed that CoFe formed on NiFe has a positive magnetostriction depending on the film thickness where the film thickness is small. . FIG. 5 shows Ta (5 nm) formed on a glass substrate.
/ NiFe (5 nm) / CoFe magnetostriction and CoFe film thickness d
The relationship is shown below. The composition of CoFe is 90Co-10F
e (wt%) and 92Co-8Fe (wt%). C
Although the magnetostriction of o-10Fe (wt%) is almost zero when the film thickness is 20 nm or more, the magnetostriction becomes larger as the film thickness becomes smaller, and becomes 14 × 10 to 7 at 3 nm. Similarly, the film of Co-8Fe (wt%) has a magnetostriction of −5 × 10 to 7 at 20 nm, and has a magnetostriction of 9 × 10 to 7 at 3 nm, and the magnetostriction greatly changes from negative to positive. From the viewpoint of coercive force, the film thickness of these Co and CoFe must be 5 nm or less. Co-10Fe (wt%), Co-8Fe
(Wt%) All films are positively large below 5 nm,
It is difficult to reduce magnetostriction only by changing the composition of oFe.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、軟磁
気特性が良好で磁気抵抗変化率の大きい磁気抵抗効果膜
を有し、バルクハウゼンノイズのない信頼性の高い磁気
抵抗効果型磁気ヘッドを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly reliable magnetoresistive magnetic head having a magnetoresistive film having good soft magnetic characteristics and a large magnetoresistance change rate and free of Barkhausen noise. Is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は第一の強磁性膜と第二の非磁性導電性膜と
の積層膜を単位積層膜とし、前記単位積層膜を複数層積
層し、前記強磁性膜の互いの磁化のなす角度によって電
気抵抗が変化する図1に示した磁気抵抗効果膜と、前記
磁気抵抗効果膜に信号検出電流を流すための一対の電極
とを有する磁気抵抗効果型磁気ヘッドで、前記単位積層
膜の前記強磁性膜が、負又はゼロの磁歪をもつ第三の強
磁性膜と、正又はゼロの磁歪をもつ第四の強磁性膜との
積層膜であり、前記第一の強磁性膜の磁歪の絶対値を4
×10~7以下にする。
In order to achieve the above object, the present invention provides a unit laminated film comprising a first ferromagnetic film and a second non-magnetic conductive film, and a plurality of unit laminated films. The magnetoresistive film shown in FIG. 1 in which the electric resistance changes depending on the angle between the magnetizations of the ferromagnetic films, and a pair of electrodes for flowing a signal detection current through the magnetoresistive film. Wherein the ferromagnetic film of the unit laminated film comprises a third ferromagnetic film having a negative or zero magnetostriction and a fourth ferromagnetic film having a positive or zero magnetostriction. An absolute value of magnetostriction of the first ferromagnetic film is 4
× 10 to 7 or less.

【0009】また、非磁性導電性薄膜を中間層として第
一の強磁性膜と第二の強磁性膜が積層されており、第一
の強磁性膜の磁化方向が第一の強磁性膜に隣接して設け
られた反強磁性膜によって固定されている図2に示す磁
気抵抗効果膜と、前記磁気抵抗効果膜に信号検出電流を
流すための一対の電極とを有するスピンバルブ型磁気ヘ
ッドで、少なくとも前記第二の強磁性膜が、負又はゼロ
の磁歪をもつ第三の強磁性膜と、正又はゼロの磁歪をも
つ第四の強磁性膜との積層膜であり、第二の強磁性膜の
磁歪の絶対値を4×10~7以下にする。
Further, a first ferromagnetic film and a second ferromagnetic film are laminated with a nonmagnetic conductive thin film as an intermediate layer, and the magnetization direction of the first ferromagnetic film is set to the first ferromagnetic film. A spin-valve magnetic head having a magnetoresistive film shown in FIG. 2 fixed by an antiferromagnetic film provided adjacently and a pair of electrodes for flowing a signal detection current through the magnetoresistive film. Wherein at least the second ferromagnetic film is a laminated film of a third ferromagnetic film having a negative or zero magnetostriction and a fourth ferromagnetic film having a positive or zero magnetostriction; The absolute value of the magnetostriction of the magnetic film is set to 4 × 10 to 7 or less.

【0010】さらに、前記磁気抵抗効果膜を構成するに
際して、以下の要素を加えることが望ましい。
Further, it is desirable to add the following elements when forming the magnetoresistive film.

【0011】(1)前記第三及び第四の強磁性膜の磁歪
の絶対値が2×10~6以下である。
(1) The absolute value of the magnetostriction of the third and fourth ferromagnetic films is 2 × 10 to 6 or less.

【0012】(2)前記第三及び第四の強磁性膜がNi
Fe合金,CoもしくはCo合金である。
(2) The third and fourth ferromagnetic films are made of Ni
Fe alloy, Co or Co alloy.

【0013】(3)前記NiFe合金のFe含有量が1
6〜24wt%であり、その膜厚が1nm〜10nmの
範囲である。
(3) The Fe content of the NiFe alloy is 1
6 to 24 wt%, and the film thickness is in the range of 1 nm to 10 nm.

【0014】(4)前記Co合金がCo−Fe合金で、
Fe含有量が6〜14wt%であり、Co及びCo合金
の膜厚が5nm以下である。
(4) The Co alloy is a Co—Fe alloy,
The Fe content is 6 to 14 wt%, and the film thickness of Co and the Co alloy is 5 nm or less.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施例を示す。Embodiments of the present invention will be described below.

【0016】本発明に従う多層積層膜の断面図を図1
に、スピンバルブ膜の断面図を図2に示す。
FIG. 1 is a sectional view of a multilayer laminated film according to the present invention.
FIG. 2 shows a cross-sectional view of the spin valve film.

【0017】図1に示される磁気抵抗効果膜10は、強
磁性膜11と非磁性導電性膜12の積層膜を単位積層膜
とし、複数層含んでいる。本発明によると、強磁性膜1
1の少なくとも一つには、負またはゼロの磁歪を持つ強
磁性膜15と、正またはゼロの磁歪を持つ強磁性膜16
で構成されている。ここで、強磁性膜15及び16は逆
に積層しても良い。
The magnetoresistive effect film 10 shown in FIG. 1 includes a multilayer film of a ferromagnetic film 11 and a nonmagnetic conductive film 12 as a unit multilayer film, and includes a plurality of layers. According to the present invention, the ferromagnetic film 1
At least one of the ferromagnetic films 15 has a negative or zero magnetostriction and a ferromagnetic film 16 has a positive or zero magnetostriction.
It is composed of Here, the ferromagnetic films 15 and 16 may be stacked in reverse.

【0018】また、図2に示されるスピンバルブ構造の
磁気抵抗効果膜20は、第一の強磁性膜21,非磁性導
電性膜22,第二の強磁性膜23及び反強磁性膜24か
ら構成されている。第一の強磁性膜21と第二の強磁性
膜23の面内磁化は、外部磁界が印加されていない状態
でお互いに対して90度傾いた方向に向けられている。
さらに第二の強磁性膜23は、反強磁性膜24によっ
て、好ましい方向に磁化が固定されている。媒体からの
磁界により、第一の強磁性膜21の磁化は自由に回転
し、それにより抵抗変化が生じて出力が発生する。本発
明によると、第一の強磁性膜21は負またはゼロの磁歪
を持つ第三の強磁性膜25と、正またはゼロの磁歪を持
つ第四の強磁性膜26からなる。ここで、第一の強磁性
膜25及び26も上記と同様逆に積層しても良い。ま
た、磁気抵抗効果膜20を基板側から反強磁性膜24/
第二の強磁性膜23/非磁性導電性膜22/第一の強磁
性膜21とすることも出来る。
The spin-valve magnetoresistive film 20 shown in FIG. 2 is composed of a first ferromagnetic film 21, a nonmagnetic conductive film 22, a second ferromagnetic film 23 and an antiferromagnetic film 24. It is configured. The in-plane magnetizations of the first ferromagnetic film 21 and the second ferromagnetic film 23 are oriented in directions inclined by 90 degrees with respect to each other in a state where no external magnetic field is applied.
Further, the magnetization of the second ferromagnetic film 23 is fixed in a preferable direction by the antiferromagnetic film 24. Due to the magnetic field from the medium, the magnetization of the first ferromagnetic film 21 rotates freely, thereby causing a change in resistance and generating an output. According to the present invention, the first ferromagnetic film 21 includes a third ferromagnetic film 25 having a negative or zero magnetostriction and a fourth ferromagnetic film 26 having a positive or zero magnetostriction. Here, the first ferromagnetic films 25 and 26 may be stacked in the same manner as above. Further, the magneto-resistance effect film 20 is placed on the antiferromagnetic film 24 /
The second ferromagnetic film 23 / non-magnetic conductive film 22 / first ferromagnetic film 21 can also be used.

【0019】スピンバルブ型磁気抵抗効果膜20を用い
た本発明の一実施例を次に説明する。基板31の上に、
磁気抵抗効果膜20の配向性を良くするための下地膜3
2であるTa5nm,第三の強磁性膜25であるNiF
e5nm,第四の強磁性膜26であるCoFe2nm,
非磁性導電性膜22であるCu2nm,第二の強磁性膜
24であるCoFe3nm、さらに反強磁性膜であるC
rMnPt30nm,保護膜であるTa5nmを順次形
成し、所定の形状にパタ−ニングする。このときのNi
Feの組成は、CoFeの組成及び膜厚によって決めら
れる。図6にCoFe組成が90Co−10Fe(wt
%)の場合の、NiFeの磁歪(組成)とガラス上に作製
したTa(5nm)/NiFe(5nm)/CoFe積
層膜の磁歪の関係を示す。図から明らかなように、積層
膜の磁歪を小さくするためには、NiFeの組成を変え
て磁歪を負に大きくすれば良いことが分かる。本実施例
ではCoFeの膜厚は2nmであるから、CoFeの組
成を用いた場合は、NiFeの組成は約83Ni−17Fe
(wt%)、磁歪にして−15×10~7とすればよい。
もちろん、この組成に限定する必要はなく、CoFeの
組成及び膜厚を変える場合には、同様にNiFeの組成
を変えれば良い。また、磁気抵抗効果膜20の抵抗変化
率を大きくするために、第四の強磁性膜及び第二の強磁
性膜のどちらか一方あるいは両方をCoにしても良い。
An embodiment of the present invention using the spin valve type magnetoresistive film 20 will be described below. On the substrate 31,
Base film 3 for improving the orientation of magnetoresistive film 20
2 Ta, 5 nm, and third ferromagnetic film 25, NiF
e5 nm, CoFe2 nm as the fourth ferromagnetic film 26,
Cu 2 nm as the nonmagnetic conductive film 22, CoFe 3 nm as the second ferromagnetic film 24, and C as the antiferromagnetic film
An rMnPt of 30 nm and a protective film of Ta of 5 nm are sequentially formed and patterned in a predetermined shape. Ni at this time
The composition of Fe is determined by the composition and film thickness of CoFe. FIG. 6 shows that the CoFe composition is 90Co-10Fe (wt.
%) Shows the relationship between the magnetostriction (composition) of NiFe and the magnetostriction of a Ta (5 nm) / NiFe (5 nm) / CoFe laminated film formed on glass. As is clear from the figure, in order to reduce the magnetostriction of the laminated film, it is sufficient to change the composition of NiFe to increase the magnetostriction to a negative value. In the present embodiment, the film thickness of CoFe is 2 nm. Therefore, when the composition of CoFe is used, the composition of NiFe is about 83Ni-17Fe.
(Wt%), may be the -15 × 10 ~ 7 in the magnetostriction.
Of course, it is not necessary to limit to this composition, and when changing the composition and the film thickness of CoFe, the composition of NiFe may be similarly changed. In order to increase the resistance change rate of the magnetoresistive film 20, one or both of the fourth ferromagnetic film and the second ferromagnetic film may be made of Co.

【0020】次に、リフトオフ用ホトレジスト層を形成
したあと、永久磁石膜であるCoCrPt40nmを積層し、
縦バイアス印加層35を形成する。次に、電極膜36で
あるAu0.2μmを形成したあと、リフトオフ用レジ
スト層を除去する。さらに、真空中で1kOeの磁界を
媒体対向面と垂直に印加しながら、230℃で1時間熱
処理して、反強磁性膜24であるCrMnPtを着磁
し、本発明のGMRヘッドを作製する。
Next, after a lift-off photoresist layer is formed, a permanent magnet film of CoCrPt 40 nm is laminated,
A vertical bias applying layer 35 is formed. Next, after forming Au 0.2 μm as the electrode film 36, the lift-off resist layer is removed. Further, while applying a magnetic field of 1 kOe in a direction perpendicular to the medium facing surface in a vacuum, a heat treatment is performed at 230 ° C. for 1 hour to magnetize the CrMnPt, which is the antiferromagnetic film 24, thereby producing the GMR head of the present invention.

【0021】本実施例では、スピンバルブ膜の反強磁性
膜24としてCrMnPtを用いたが、特にこれに限定
されることはなく、CrMn−X1(X1:Pd,A
u,Rh,Ru)を用いることもできる。さらに、Fe
Mn合金,MnIr合金等のdisorder系の反強磁性膜を
用いることもできる。この場合は、着時の熱処理は不要
である。さらに、NiMn,NiMn−X2(X2:C
o,Ti,Zr,Ru,Rh)でも良いが、この場合は
熱処理よりもさらに高温で長時間の熱処理を必要とす
る。ただしスピンバルブ膜の特性の安定性を考慮して熱
処理温度は260℃以下が良い。実施例では、磁気抵抗
効果膜20を基板側から第三の強磁性膜25/第四の強
磁性膜26/非磁性導電性膜22/第二の強磁性膜23
/反強磁性膜24の順に積層したが、逆に基板側から反
強磁性膜24/第二の強磁性膜23/非磁性導電性膜2
2/第四の強磁性膜6/第三の強磁性膜25と配置する
こともできる。この場合の反強磁性膜24には非導電性
の材料、例えばNiOを用いることも可能である。また
本実施例では、縦バイアス印加層として永久磁石膜であ
るCoCrPtを用いたが、特にこれに限定されること
はない。たとえば反強磁性膜を用いることも可能で、こ
の場合下地膜として強磁性膜を形成する必要がある。こ
の場合、第二の強磁性膜23の磁化を固定するための反
強磁性膜24と、縦バイアス印加層に用いている反強磁
性膜35の着磁方向がお互いに対して90°傾いている
ため、ブロッキング温度の異なる材料を用いる必要があ
る。この時、第二の強磁性膜23/反強磁性膜24との
間の交換結合磁界が、縦バイアス印加層35の強磁性膜
/反強磁性膜との間の交換結合磁界よりも大きい方が好
ましい。
In this embodiment, CrMnPt is used as the antiferromagnetic film 24 of the spin valve film. However, the present invention is not limited to this, and CrMn-X1 (X1: Pd, A
u, Rh, Ru) can also be used. Further, Fe
A disorder antiferromagnetic film such as a Mn alloy or a MnIr alloy can also be used. In this case, heat treatment at the time of wearing is unnecessary. Further, NiMn, NiMn-X2 (X2: C
o, Ti, Zr, Ru, Rh) may be used, but in this case, a longer time heat treatment is required at a higher temperature than the heat treatment. However, the heat treatment temperature is preferably 260 ° C. or less in consideration of the stability of the characteristics of the spin valve film. In the embodiment, the magnetoresistive film 20 is formed by forming the third ferromagnetic film 25 / fourth ferromagnetic film 26 / nonmagnetic conductive film 22 / second ferromagnetic film 23 from the substrate side.
/ Anti-ferromagnetic film 24 is stacked in this order, but on the contrary, from the substrate side, anti-ferromagnetic film 24 / second ferromagnetic film 23 / non-magnetic conductive film 2
2 / fourth ferromagnetic film 6 / third ferromagnetic film 25. In this case, the antiferromagnetic film 24 may be made of a non-conductive material, for example, NiO. In the present embodiment, CoCrPt, which is a permanent magnet film, is used as the vertical bias application layer, but the invention is not particularly limited to this. For example, an antiferromagnetic film can be used. In this case, a ferromagnetic film needs to be formed as a base film. In this case, the magnetization directions of the antiferromagnetic film 24 for fixing the magnetization of the second ferromagnetic film 23 and the antiferromagnetic film 35 used for the longitudinal bias applying layer are inclined by 90 ° with respect to each other. Therefore, it is necessary to use materials having different blocking temperatures. At this time, the exchange coupling magnetic field between the second ferromagnetic film 23 and the antiferromagnetic film 24 is larger than the exchange coupling magnetic field between the ferromagnetic film and the antiferromagnetic film of the longitudinal bias applying layer 35. Is preferred.

【0022】[0022]

【発明の効果】磁気抵抗効果を利用した多層磁性構造及
びスピンバルブ構造の磁気抵抗効果膜で、強磁性膜を負
又はゼロの磁歪を持つ強磁性膜と、正又はゼロの磁歪を
持つ強磁性膜との積層膜とし、その強磁性膜の磁歪の絶
対値を4×10~7以下にすることによって、軟磁気特性
を向上することが出来る。これにより、バルクハウゼン
ノイズがなく、信頼性の高い磁気抵抗効果型磁気ヘッド
を提供することができる。
According to the present invention, a ferromagnetic film having a negative or zero magnetostriction and a ferromagnetic film having a positive or zero magnetostriction are formed of a multilayer magnetic structure and a spin valve structure utilizing a magnetoresistance effect. The soft magnetic properties can be improved by forming a laminated film with the film and setting the absolute value of the magnetostriction of the ferromagnetic film to 4 × 10 to 7 or less. Thus, a highly reliable magnetoresistive head without Barkhausen noise can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果膜の断面図。FIG. 1 is a sectional view of a magnetoresistive film according to the present invention.

【図2】本発明の磁気抵抗効果膜の断面図。FIG. 2 is a sectional view of a magnetoresistive film according to the present invention.

【図3】本発明の磁気抵抗効果型磁気ヘッドの断面図。FIG. 3 is a cross-sectional view of a magnetoresistive head according to the present invention.

【図4】CoFeのFe組成と磁歪との特性図。FIG. 4 is a characteristic diagram of Fe composition and magnetostriction of CoFe.

【図5】NiFe/CoFeの磁歪とCoFeの膜厚と
の特性図。
FIG. 5 is a characteristic diagram of the magnetostriction of NiFe / CoFe and the thickness of CoFe.

【図6】NiFeの磁歪(組成)とNiFe/CoFe
の磁歪との特性図。
FIG. 6 shows magnetostriction (composition) of NiFe and NiFe / CoFe.
FIG. 3 is a characteristic diagram of the magnetostriction of FIG.

【符号の説明】[Explanation of symbols]

20…磁気抵抗効果膜、22…非磁性導電性膜、23,
25,26…強磁性膜、24…反強磁性膜、30…磁気
抵抗効果型ヘッド、31…基板、32…下地膜、34…
保護膜、35…縦バイアス印加層、36…電極。
20: magnetoresistive effect film, 22: non-magnetic conductive film, 23,
25, 26: ferromagnetic film, 24: antiferromagnetic film, 30: magnetoresistive head, 31: substrate, 32: base film, 34:
Protective film, 35: vertical bias applying layer, 36: electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 重松 恵嗣 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Keiji Shigematsu 2880 Kozu, Odawara City, Kanagawa Prefecture, Hitachi, Ltd. Storage Systems Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】第一の強磁性膜と第二の非磁性導電性膜と
の積層膜を単位積層膜とし、前記単位積層膜を複数層積
層し、前記強磁性膜の互いの磁化のなす角度によって電
気抵抗が変化する磁気抵抗効果膜と、前記磁気抵抗効果
膜に信号検出電流を流すための一対の電極とを有する磁
気抵抗効果型磁気ヘッドにおいて、 前記単位積層膜の前記第一の強磁性膜が、負又はゼロの
磁歪をもつ第三の強磁性膜と、正又はゼロの磁歪をもつ
第四の強磁性膜との積層膜であり、前記第一の強磁性膜
の磁歪の絶対値が4×10~7以下であることを特徴とす
る磁気抵抗効果型磁気ヘッド。
1. A laminated film of a first ferromagnetic film and a second non-magnetic conductive film is a unit laminated film, a plurality of the unit laminated films are laminated, and magnetization of the ferromagnetic films is formed. In a magneto-resistance effect type magnetic head having a magneto-resistance effect film whose electric resistance changes according to an angle and a pair of electrodes for flowing a signal detection current through the magneto-resistance effect film, the first strength of the unit laminated film The magnetic film is a laminated film of a third ferromagnetic film having a negative or zero magnetostriction and a fourth ferromagnetic film having a positive or zero magnetostriction, wherein the absolute value of the magnetostriction of the first ferromagnetic film is A magnetoresistive head having a value of 4 × 10 to 7 or less.
【請求項2】前記第三の強磁性膜及び前記第四の強磁性
膜の磁歪の絶対値が2×10~6以下である請求項1の磁
気抵抗効果型磁気ヘッド。
2. The magnetoresistive head according to claim 1, wherein the absolute value of the magnetostriction of the third ferromagnetic film and the fourth ferromagnetic film is 2 × 10 to 6 or less.
【請求項3】前記第三の強磁性膜及び前記第四の強磁性
膜がNiFe合金,CoもしくはCo合金である請求項
1の磁気抵抗効果型磁気ヘッド。
3. The magnetoresistive head according to claim 1, wherein said third ferromagnetic film and said fourth ferromagnetic film are made of NiFe alloy, Co or Co alloy.
【請求項4】非磁性導電性薄膜を中間層として第一の強
磁性膜と第二の強磁性膜が積層されており、前記第一の
強磁性膜の磁化方向が前記第一の強磁性膜に隣接して設
けられた反強磁性膜によって固定されている磁気抵抗効
果膜と、前記磁気抵抗効果膜に信号検出電流を流すため
の一対の電極とを有するスピンバルブ構造の磁気抵抗効
果型磁気ヘッドにおいて、少なくとも前記第二の強磁性
膜が、負又はゼロの磁歪をもつ第三の強磁性膜と、正又
はゼロの磁歪をもつ第四の強磁性膜との積層膜であり、
前記第二の強磁性膜の磁歪の絶対値が4×10~7以下で
あることを特徴とする磁気抵抗効果型磁気ヘッド。
4. A first ferromagnetic film and a second ferromagnetic film are laminated with a non-magnetic conductive thin film as an intermediate layer, and the magnetization direction of the first ferromagnetic film is the first ferromagnetic film. A spin-valve magnetoresistive effect type having a magnetoresistive film fixed by an antiferromagnetic film provided adjacent to the film and a pair of electrodes for passing a signal detection current through the magnetoresistive film. In the magnetic head, at least the second ferromagnetic film is a laminated film of a third ferromagnetic film having a negative or zero magnetostriction and a fourth ferromagnetic film having a positive or zero magnetostriction,
The magnetoresistance effect type magnetic head, wherein the absolute value of the magnetostriction of the second ferromagnetic film is 4 × 10 to 7 or less.
【請求項5】前記第三の強磁性膜及び前記第四の強磁性
膜の磁歪の絶対値が2×10~6以下である請求項4の磁
気抵抗効果型磁気ヘッド。
5. The magnetoresistive head according to claim 4, wherein the absolute value of the magnetostriction of the third ferromagnetic film and the fourth ferromagnetic film is 2 × 10 to 6 or less.
【請求項6】前記第一の強磁性膜、前記第三の強磁性膜
及び前記第四の強磁性膜が、それぞれ、NiFe,Ni
FeCo合金、及びCoもしくはCo合金である請求項
4の磁気抵抗効果型磁気ヘッド。
6. The first ferromagnetic film, the third ferromagnetic film, and the fourth ferromagnetic film are formed of NiFe and Ni, respectively.
5. The magneto-resistance effect type magnetic head according to claim 4, wherein the magnetic head is made of an FeCo alloy, Co or a Co alloy.
【請求項7】前記NiFe合金のFe含有量が16〜2
4wt%であり、その膜厚が1nm〜10nmの範囲で
ある請求項1または請求項4の磁気抵抗効果型磁気ヘッ
ド。
7. The NiFe alloy having an Fe content of 16 to 2
5. The magnetoresistive head according to claim 1, wherein the thickness is 4 wt% and the thickness is in a range of 1 nm to 10 nm.
【請求項8】前記Co合金がCo−Fe合金で、Fe含
有量が6〜14wt%であり、Co及びCo合金の膜厚
が5nm以下である請求項1または請求項4の磁気抵抗
効果型磁気ヘッド。
8. The magnetoresistive effect type according to claim 1, wherein the Co alloy is a Co—Fe alloy, the Fe content is 6 to 14 wt%, and the film thickness of Co and the Co alloy is 5 nm or less. Magnetic head.
JP114097A 1997-01-08 1997-01-08 Magnetoresistive effect magnetic head Pending JPH10198926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP114097A JPH10198926A (en) 1997-01-08 1997-01-08 Magnetoresistive effect magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP114097A JPH10198926A (en) 1997-01-08 1997-01-08 Magnetoresistive effect magnetic head

Publications (1)

Publication Number Publication Date
JPH10198926A true JPH10198926A (en) 1998-07-31

Family

ID=11493151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP114097A Pending JPH10198926A (en) 1997-01-08 1997-01-08 Magnetoresistive effect magnetic head

Country Status (1)

Country Link
JP (1) JPH10198926A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674617B2 (en) 2002-03-07 2004-01-06 International Business Machines Corporation Tunnel junction sensor with a multilayer free-layer structure
US6690163B1 (en) 1999-01-25 2004-02-10 Hitachi, Ltd. Magnetic sensor
JP2007173809A (en) * 2005-12-16 2007-07-05 Seagate Technology Llc Magnetism sensing device including sense enhancing layer
US7961438B2 (en) 2008-05-28 2011-06-14 Tdk Corporation Magnetoresistive device of the CPP type, and magnetic disk system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690163B1 (en) 1999-01-25 2004-02-10 Hitachi, Ltd. Magnetic sensor
US6674617B2 (en) 2002-03-07 2004-01-06 International Business Machines Corporation Tunnel junction sensor with a multilayer free-layer structure
JP2007173809A (en) * 2005-12-16 2007-07-05 Seagate Technology Llc Magnetism sensing device including sense enhancing layer
JP2013102178A (en) * 2005-12-16 2013-05-23 Seagate Technology Llc Magnetic sensitive device including sense enhancing layer
US7961438B2 (en) 2008-05-28 2011-06-14 Tdk Corporation Magnetoresistive device of the CPP type, and magnetic disk system

Similar Documents

Publication Publication Date Title
JP3295152B2 (en) Magnetoresistance effect type weak magnetic field sensor
JPH11296823A (en) Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system
JP2002150512A (en) Magnetoresistive element and magnetoresistive magnetic head
JP2009283126A (en) Giant magnetoresistive sensor with pinning layer
JP2002124721A (en) Spin valve structure and its formation method as well as reproducing head and its manufacturing method
US6545848B1 (en) Magnetic transducer, thin film magnetic head and method of manufacturing the same
US20090080125A1 (en) Magnetic head
JP2005019990A (en) Magnetic device having improved antiferromagnetic coupling film
JPH1196516A (en) Production of spin valve magneto-resistive head and spin valve magneto-resistive head produced by the production process
JP2001118217A (en) Spin valve type thin-film magnetic device, thin-film magnetic head, and manufacturing method of spin valve thin-film magnetic device
JP2001156358A (en) Magneto-resistance effect element and magnetic memory element
JP3212569B2 (en) Dual spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing dual spin valve thin film magnetic element
US20020044397A1 (en) Spin valve magnetoresistance effect head and compound magnetic head using it and magnetic recording medium drive unit
JP2005109243A (en) Magnetoresistance effect element and magnetic head
EP0560350B1 (en) Magneto-resistance effect element
US6270588B1 (en) Magnetoresistive effect sensor, thin-film magnetic head with the sensor and manufacturing method of the thin-film magnetic head
JP2001076479A (en) Magnetic memory element
JP2001274479A (en) Spin valve structure, magnetoresistive effect element, and thin film magnetic head
JPH10198926A (en) Magnetoresistive effect magnetic head
JPH10208216A (en) Magnetoresistive head and method for initializing the head
JPH11175919A (en) Magneto-resistance effect type magnetic head
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
KR20000053639A (en) Spin valve type magnetoresistive effect element and manufacturing method thereof
JP2000276714A (en) Spin valve sensor fixing magnetization with current
JPH1049834A (en) Multilayer magnetoresistance film, magnetoresistance element, and magnetoresistance magnetic head

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031128

A977 Report on retrieval

Effective date: 20050516

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050808

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101