JPH10197416A - Standard sample for luminous spectrochemical analysis - Google Patents

Standard sample for luminous spectrochemical analysis

Info

Publication number
JPH10197416A
JPH10197416A JP10042859A JP4285998A JPH10197416A JP H10197416 A JPH10197416 A JP H10197416A JP 10042859 A JP10042859 A JP 10042859A JP 4285998 A JP4285998 A JP 4285998A JP H10197416 A JPH10197416 A JP H10197416A
Authority
JP
Japan
Prior art keywords
analysis
standard sample
sample
metallic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10042859A
Other languages
Japanese (ja)
Inventor
Yamaji Kitaoka
山治 北岡
Susumu Nawata
進 名和田
Hisashi Hori
久司 堀
Katsumi Takahashi
勝己 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP10042859A priority Critical patent/JPH10197416A/en
Publication of JPH10197416A publication Critical patent/JPH10197416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze and grasp a content of each element of a sample to be analyzed and correctly estimate performance of metallic products of various kinds, by subjecting a molded body of a mixture of fine metallic bodies to a plastic deformation process. SOLUTION: A metallic body is specifically formed of an aluminum alloy containing Si by 12-25wt.%, a metallic body is a rapidly solidified body, and a standard sample is an aluminum molded body containing Si by 12-25wt.%. The mixed molded body thus formed is molded to a disk-like shape fit for luminous spectrothemical analysis. The molding should be accompanied with a plastic deformation, e.g. pressing, extrusion, rolling, forging or the like. The molding with the plastic deformation forges metallic bodies constituting the mixed body into a plastic flow and consequently turns the metallic bodies furthermore highly uniform. Particularly, when the extrusion is adopted during the plastic molding, a favorable result can be obtained because a face perpendicular to a flow of the metal at the mold time, namely, a cross section perpendicular to an extrusion direction can be selected as an analysis face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、元素含有量が均一
で品質の安定した発光分光分析用標準試料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a standard sample for emission spectroscopy having a uniform element content and a stable quality.

【0002】[0002]

【従来の技術】金属の組成分析には、迅速に分析できる
方法として、標準試料中の各元素の含有量とベース金属
とのスペクトル強度比を示す検量線から被分析試料の元
素の含有量を定める発光分光分析法が各種金属の分析に
適用されている。
2. Description of the Related Art In the analysis of the composition of metals, as a method capable of rapid analysis, the content of each element in a standard sample is determined from a calibration curve showing the spectral intensity ratio of the base metal to the content of each element. The specified emission spectroscopy has been applied to the analysis of various metals.

【0003】すなわち、発光分光分析法は、前もって作
成しておいた標準試料に基づいて引かれた検量線に被分
析試料のスペクトル強度比を内装してその被分析試料の
元素含有量を検量するものであるから、その被分析試料
の分析精度および正確さは前もって作成しておいた検量
線の正確さとその検量線の日々のドリフト(分析装置に
因り生ずるスペクトル強度比の変動)補正の正確さに左
右される。したがって、正確な分析を行うためには、均
一でしかも元素含有量の既知の標準試料が必要である。
[0003] That is, in the emission spectroscopy, the spectral intensity ratio of a sample to be analyzed is embedded in a calibration curve drawn based on a standard sample prepared in advance, and the element content of the sample to be analyzed is calibrated. Therefore, the analysis accuracy and accuracy of the sample to be analyzed are the accuracy of the calibration curve prepared in advance and the accuracy of the correction of the daily drift of the calibration curve (fluctuation in the spectrum intensity ratio caused by the analyzer). Depends on Therefore, in order to perform an accurate analysis, a standard sample that is uniform and has a known element content is required.

【0004】ところで、一般にこのような発光分光分析
法に使用される標準試料としては、従来目標とする合金
成分を含む金属溶湯を金型に鋳込み40〜60mm径×
5〜10mm厚さのディスク状鋳塊が用いられていて、
化学分析により成分量を同定して標準値を定めこれを標
準試料としている。発光分光分析に当っては、このよう
な標準試料を面削し、平滑な平面としたのち、該平面内
の所定の位置を発光させて発生したスペクトル強度比か
ら検量線を引いている。
In general, as a standard sample used for such emission spectroscopy, a metal melt containing a conventionally desired alloy component is cast into a mold and has a diameter of 40 to 60 mm.
A disk-shaped ingot with a thickness of 5 to 10 mm is used,
The amounts of the components are identified by chemical analysis to determine standard values, which are used as standard samples. In emission spectroscopy, such a standard sample is chamfered to a smooth plane, and a calibration curve is drawn from a spectrum intensity ratio generated by emitting light at a predetermined position in the plane.

【0005】しかしながら、合金溶湯の凝固に際して
は、一般的にそうであるように合金元素が多く含有され
ているような場合には、該合金元素が凝固組織内で偏析
を起こしやすく、その結果発光させる平面ないし三次元
的な位置の違いによってスペクトル強度が異なるため、
このような試料を標準試料として用いた場合には正確な
分析を行うことができない。そこで、合金溶湯の凝固に
際しての偏析をできるだけ少なくするために合金溶湯を
水冷式半連続鋳造法を用いてなるべく高い凝固速度(現
行の半連続鋳造法の鋳造速度はほぼ10℃/sec程度
である)でもって小径の鋳造棒に鋳込み、これをディス
ク状に切断して標準試料として使用することも行われて
いる。
However, when the molten alloy is solidified, as is generally the case, when a large amount of alloying elements is contained, the alloying elements tend to segregate in the solidified structure, and as a result, light emission Because the spectrum intensity differs depending on the difference in the plane or three-dimensional position to be
When such a sample is used as a standard sample, accurate analysis cannot be performed. Therefore, in order to minimize segregation during solidification of the molten alloy, the molten metal is solidified by using a water-cooled semi-continuous casting method as high as possible (the current semi-continuous casting method has a casting rate of about 10 ° C./sec. ) Is cast into a small-diameter cast rod, which is cut into a disk and used as a standard sample.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
たように合金を小径の鋳造棒に鋳込んでも偏析は十分に
解消されず、特に試料の合金元素含有量が多くなるとこ
の偏析は一層顕著となる傾向を有する。例えば、Siが
共晶点以上に含有されるAl−Si系合金の場合には初
晶珪素が晶出しやすく、したがって半連続鋳造法により
小径鋳造棒に鋳込んで凝固させた場合でも晶出した初晶
珪素の偏析により検量線とそのドリフト補正が不明確に
なって、被分析試料の正確な分析を行うことが困難であ
る。
However, as described above, segregation is not sufficiently eliminated even when the alloy is cast into a small-diameter cast rod, and this segregation becomes more remarkable particularly when the alloy element content of the sample is increased. Have a tendency. For example, in the case of an Al-Si alloy containing Si at a temperature higher than the eutectic point, primary crystal silicon is easily crystallized. Therefore, even when solidified by casting into a small-diameter cast rod by a semi-continuous casting method, crystallized. The calibration curve and its drift correction become unclear due to the segregation of primary silicon, and it is difficult to accurately analyze the sample to be analyzed.

【0007】本発明は、上記したような従来の問題点を
解消し、正確な検量線を得ることができ、かつ正確なド
リフト補正を行い得るような発光分光分析用の標準試料
を提供することを目的とするものである。
An object of the present invention is to provide a standard sample for emission spectrometry capable of solving the above-mentioned conventional problems, obtaining an accurate calibration curve, and performing accurate drift correction. It is intended for.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために種々検討を行った結果、微細な金属
体を混合成形して発光分光分析用の標準試料として用い
た場合には分析誤差の原因となる合金元素の偏析の影響
が殆ど認められなくなり、したがって正確な検量線を引
くことができ、かつ正確なドリフト補正を行い得るの
で、被分析試料の各元素の含有量を正確に分析すること
ができることを見いだし本発明を完成したものである。
Means for Solving the Problems The inventors of the present invention have conducted various studies to achieve the above object, and have found that a fine metal body is mixed and molded and used as a standard sample for emission spectral analysis. The effect of segregation of alloying elements, which causes analysis errors, is hardly recognized, so that accurate calibration curves can be drawn and accurate drift correction can be performed. Can be accurately analyzed, and the present invention has been completed.

【0009】すなわち、本発明は微細な金属体の混合成
形体からなる発光分光分析用標準試料を特徴とし、前記
金属体が特にSiを12〜25wt%含有するアルミニ
ウム合金からなり、また前記金属体が急冷凝固体である
ことを要旨とするものである。
That is, the present invention is characterized by a standard sample for emission spectroscopy comprising a mixed compact of a fine metal body, wherein the metal body is made of an aluminum alloy particularly containing 12 to 25 wt% of Si, and Is a rapidly solidified body.

【0010】[0010]

【発明の実施の形態】本発明における金属体は、微細な
粉、粒、片、泊、棒、細線などを指すものであり、これ
ら金属体から上記のように構成した標準試料は、分析面
に多くの金属体を含むことになり、しかもそれらが混合
されるから金属体間に多少の偏析する部分があったとし
ても分析面全体としてみたときに平均化され、標準試料
の三次元的場所による偏析の少ない均一なものとするこ
とができるので、発光分光分析に際して正確な検量線が
引け、正確なドリフト補正が可能となり、その結果被分
析試料の元素含有量を正確に分析することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The metal body in the present invention refers to fine powders, granules, pieces, stays, rods, fine wires, and the like. Therefore, even if there is some segregation between metal bodies, they are averaged when viewed as a whole analysis surface, and the three-dimensional location of the standard sample , A precise calibration curve can be drawn at the time of emission spectroscopy, accurate drift correction can be performed, and as a result, the element content of the sample to be analyzed can be accurately analyzed. .

【0011】また、金属体が急冷凝固体であるとそれ自
体に偏析が少ないから、これらを混合して成形した標準
試料は一層正確な検量線を引くことができ、正確なドリ
フト補正が可能で、被分析試料の元素含有量を正確に分
析することができる。
Further, when the metal body is a rapidly solidified solid body, segregation is small in itself, so that a standard sample formed by mixing these can draw a more accurate calibration curve, and accurate drift correction is possible. In addition, the element content of the sample to be analyzed can be accurately analyzed.

【0012】次に本発明に係る発光分光分析用標準試料
の製造方法を説明する。本発明において、急冷凝固した
微細金属体は、金属溶湯をアトマイズ法、回転穴開きる
つぼ法(側壁に多数の細孔を有するるつぼを回転させて
溶湯を飛沫として飛散させて液滴を空中または水中にて
冷却凝固させる方法)などにより急冷凝固して得られた
粉、粒、または単・双ロール法、水中紡糸法などで急冷
凝固して得られた片、泊、棒、細線などを指し、上記し
たように溶湯を直接的または間接的に冷却水に接触させ
る方法で得られた急冷凝固金属体は、鋳造に際して10
〜10℃/secというような高い冷却速度が得ら
れるところから、凝固によって得られる金属体には偏析
が少ないばかりでなく、これらの急冷凝固法によるとき
は、比較的高温の溶湯を鋳造することができるので鋳造
初期と後期におけるロット内のバラツキも少ないので、
どの部分の金属体を使用しても極めて品質の安定した均
一な組成の標準試料を得ることができる。
Next, a method for producing a standard sample for emission spectroscopy according to the present invention will be described. In the present invention, the rapidly solidified fine metal body is formed by atomizing a molten metal, a crucible method with a rotating hole (rotating a crucible having a large number of pores on a side wall to scatter the molten metal as droplets, and drop droplets in the air or in water). Powder and granules obtained by rapid solidification, etc.), pieces, nights, rods, fine wires, etc. obtained by rapid solidification by single / twin roll method, underwater spinning method, etc. As described above, the rapidly solidified metal body obtained by directly or indirectly bringing the molten metal into contact with the cooling water can be used for casting at the time of casting.
From where high cooling rate such as 2 ~10 6 ℃ / sec is obtained, the metal body obtained by the coagulation not only less segregation, when by these rapid solidification, relatively casting hot melt Since there is little variation in the lot during the early and late stages of casting,
Using any part of the metal body, it is possible to obtain a standard sample having a very stable and uniform composition.

【0013】上記のようにして得られた急冷凝固した金
属体は、さらに切断機や粉砕機などを用いて極微小粉体
状にして十分に混合し均一混合成形体とする。混合は通
常の混合機を用いて行えばよい。また、混合に際して
は、目標とする標準試料に合致した合金組成を有する金
属体の粉体を単独で混合成形するのが最も容易である
が、標準試料に含まれる金属成分を含む2種以上の異な
る組成を有する金属体を組み合わせて混合することもで
きるし、金属体と純金属の粉体を組み合わせて混合する
こともできる。たとえばAl−Si−Cu−Mg系合金
の標準試料を得たい場合に、Al−Cu−Mg系合金の
粉体に、Al−Si系、Al−Cu系、Al−Mg系の
各合金の粉体を所定の配合割合で配合して混合成形して
もよく、Al−Cu−Mg系合金の金属体と金属珪素の
ような純金属の粉体を所定の配合割合に配合して混合成
形したり、純金属同士を混合成形してもよい。なお、純
金属の粉体を選択する場合には、該純金属は必ずしも本
発明による急冷凝固金属体の形態を採る必要はない。
The rapidly solidified metal body obtained as described above is further converted into ultrafine powder using a cutter or a pulverizer and sufficiently mixed to form a homogeneously mixed molded body. Mixing may be performed using a usual mixer. In addition, when mixing, it is easiest to independently mix and mold a powder of a metal body having an alloy composition that matches the target standard sample, but two or more types including the metal component contained in the standard sample are used. Metal bodies having different compositions can be combined and mixed, or a metal body and a powder of a pure metal can be combined and mixed. For example, when it is desired to obtain a standard sample of an Al-Si-Cu-Mg-based alloy, a powder of an Al-Si-based, an Al-Cu-based, or an Al-Mg-based alloy is added to the Al-Cu-Mg-based alloy powder. The body may be mixed and molded at a predetermined mixing ratio, and a metal body of an Al-Cu-Mg alloy and a powder of a pure metal such as metallic silicon may be mixed at a predetermined mixing ratio and mixed and formed. Alternatively, pure metals may be mixed and formed. When a pure metal powder is selected, the pure metal does not necessarily need to take the form of the rapidly solidified metal body according to the present invention.

【0014】次にこのようにして得られた混合成形体を
発光分光分析に適したディスク状の形状に成形加工する
のであるが、成形にはプレス、押出、圧延、鍛造などの
塑性変形を伴う加工を行うのがよい。これは塑性変形を
伴う加工を行うことによって混合成形体を構成する金属
体自体が塑性流動的に鍛練加工されるので一層その均一
性が高められるからである。特に塑性加工中、押出加工
を採用するときは、分析面を成形時の金属の流れに直角
な面、すなわち押出方向に直角な断面を発光分光分析す
る面として選べるから好ましい結果が得られる。
Next, the thus obtained mixed molded body is formed into a disk shape suitable for emission spectroscopic analysis. The forming involves plastic deformation such as pressing, extrusion, rolling and forging. Processing is good. This is because, by performing the processing accompanied by plastic deformation, the metal body itself forming the mixed molded body is forged in a plastic flow, so that the uniformity is further improved. In particular, when extrusion is employed during plastic working, favorable results can be obtained because the analysis surface can be selected as a surface perpendicular to the flow of the metal at the time of molding, that is, a cross section perpendicular to the extrusion direction for emission spectroscopic analysis.

【0015】なんとなれば、この押出加工では、押出方
向に直角な断面ではもとの金属体の断面積が押出比に応
じて減少するので、単位断面積当たりのもとの金属体の
数をあたかも増加させたことと同じことになり、一層正
確な検量線を引くことができるので、被分析試料の組成
を正確に分析することができるからである。
[0015] In this extrusion process, the cross-sectional area of the original metal body in a cross section perpendicular to the extrusion direction decreases in accordance with the extrusion ratio, so that the number of the original metal bodies per unit cross-sectional area is reduced. This is because it is the same as increasing, and a more accurate calibration curve can be drawn, so that the composition of the sample to be analyzed can be accurately analyzed.

【0016】押出加工による成形体の均一性を増すには
分析面の単位面積当たりに存在するもとの金属体の数が
多いほど好ましいから、断面積のなるべく小さい金属体
を選ぶことが好ましい。ここで、金属体の大きさについ
て金属粉体を丸棒に押出加工し、それを押出方向に直角
に切断し、ディスク形状の標準試料を作成する場合につ
いて考えてみると、金属粉体の直径をr、押出比をR、
有効発光分光分析部の直径を5mmとしたときに、該分
析部に含まれる金属粉体の数nは、およそ次の式で表さ
れる。
In order to increase the uniformity of the molded body by extrusion, it is preferable to increase the number of original metal bodies per unit area of the analysis surface. Therefore, it is preferable to select a metal body having a cross-sectional area as small as possible. Here, consider the case where a metal powder is extruded into a round bar with respect to the size of the metal body, cut at a right angle to the extrusion direction, and a disc-shaped standard sample is prepared. Is r, the extrusion ratio is R,
When the diameter of the effective emission spectrometer is 5 mm, the number n of the metal powders contained in the analyzer is approximately expressed by the following equation.

【0017】[0017]

【数1】n=(5/r)・R ここで、押出比をR=25とするとr=5mmのとき、
n=25となり、金属粉体の間に多少の組成の偏りがあ
っても25個のサンプルの平均をとることと同じことに
なる。つまり、押出加工を施した場合には、これを施さ
なかった場合に比べて遥かに試料の均一性が高くなり安
定した高い精度で分析を行うことができるのである。ま
たこのことは、金属粉体を粉塵爆発などの危険性の高
い、例えば60μm以下の超微粒の粉粒体とすることな
く試料作成を行い得るので、作業の安全管理上からいっ
ても極めて有利となる。
N = (5 / r) 2 · R Here, when the extrusion ratio is R = 25, when r = 5 mm,
n = 25, which is the same as taking the average of 25 samples even if there is some deviation in composition between the metal powders. In other words, when the extruding process is performed, the uniformity of the sample is much higher than in the case where the extruding process is not performed, so that the analysis can be performed with stable and high accuracy. This also makes it possible to prepare a sample without making the metal powder into an ultrafine powder having a high risk of dust explosion, for example, 60 μm or less, which is extremely advantageous in terms of work safety management. Becomes

【0018】また、混合成形体の塑性加工は、押出加工
のほか圧延、鍛造などで行ってもよいが、この場合にお
いても本来は合金の塑性流動方向と直角な面を分析面と
することが有利である。しかし、該面を複数回の分析を
繰り返し行い得る程度の大きさ、すなわち40〜60m
mの厚さとするためには大規模な加工を必要とし、経済
的でないために、通常は金属の塑性流動方向に平行な面
で分析を行うことになる。このような面では、金属体が
長く伸びた組織となるので、単位面積当たりのもとの金
属体の数は、押出加工の場合に比べて減少し、試料の均
一性がやや劣ることになるが、この場合においては、サ
イズのより小さい金属体を選べばよい。いずれにして
も、塑性加工を施こして得られた本発明の発光分光分析
用標準試料は、従来の金型鋳造あるいは水冷式連続鋳造
により得られたディスク状鋳塊の試料に比べて遥かに均
一性の高いものとなることに変わりはない。
The plastic working of the mixed molded body may be performed by rolling, forging, or the like in addition to extrusion, but also in this case, a plane perpendicular to the plastic flow direction of the alloy should be used as the analysis plane. It is advantageous. However, the surface is large enough to repeat the analysis a plurality of times, that is, 40 to 60 m.
In order to achieve a thickness of m, large-scale processing is required, and because it is not economical, analysis is usually performed on a plane parallel to the direction of plastic flow of the metal. In such a surface, since the metal body has a long and elongated structure, the number of original metal bodies per unit area is reduced as compared with the case of extrusion processing, and the uniformity of the sample is slightly inferior. However, in this case, a metal body having a smaller size may be selected. In any case, the standard sample for emission spectroscopy of the present invention obtained by performing plastic working is far more than a disk-shaped ingot sample obtained by conventional die casting or water-cooled continuous casting. There will be no change in the uniformity.

【0019】なお、本発明において急冷鋳造により得ら
れる成形体の金属体の大きさは、粉、粒の場合では、直
径5mm以下、好ましくは3mm以下、片、箔などの場
合では、厚さ1.5mm以下、好ましくは0.5mm以
下、棒、細線などの場合では、直径5mm以下、好まし
くは3mm以下であることが望ましい。しかしながら、
例えば0.6μm以下の径の超微粉体のような極端に微
細な金属体とすることは、爆発の危険性を伴うので安全
管理上からいって避けたほうがよい。
In the present invention, the size of the metal body of the compact obtained by quenching casting is 5 mm or less, preferably 3 mm or less in the case of powder or granules, and 1 mm in the case of pieces or foil. In the case of a rod, a thin wire, or the like, the diameter is preferably 5 mm or less, and more preferably 3 mm or less. However,
For example, an extremely fine metal body such as an ultrafine powder having a diameter of 0.6 μm or less involves a risk of explosion, so it is better to avoid it from the viewpoint of safety management.

【0020】本発明における金属体の組成は、目的とす
る標準試料の金属組成に含まれる金属を含有するもので
あれば特に限定されるものではない。特に金属体の組成
を標準試料の組成そのものに合わせる場合に、例えば標
準試料がアルミニウム合金の場合においては、合金の凝
固に際して偏析しやすいTi、Feなどの元素を包晶
点、または共晶点以上含有する合金や初晶珪素を晶出し
やすい共晶点以上の珪素を含有するAl−12〜25w
t%Si系合金などの組成を有する標準試料を製造する
場合に、本発明は格別の効果を発揮するものである。勿
論12wt%以下のSiを含有するアルミニウム合金で
あっても優れた効果を有するものであることは、上記し
た説明から明らかである。
The composition of the metal body in the present invention is not particularly limited as long as it contains a metal contained in the metal composition of the target standard sample. Especially when the composition of the metal body is adjusted to the composition of the standard sample itself, for example, when the standard sample is an aluminum alloy, elements such as Ti and Fe which are easily segregated upon solidification of the alloy have a peritectic point or a eutectic point or higher. Al-12-25w containing silicon above the eutectic point, which is easy to crystallize containing alloys and primary silicon
The present invention is particularly effective when producing a standard sample having a composition such as a t% Si-based alloy. Of course, it is clear from the above description that an aluminum alloy containing 12 wt% or less of Si has an excellent effect.

【0021】また、重力偏析を起こしやすいPb、Bi
などを含有するAl−Pb(Sn)系合金、晶出物の凝
集を起こしやすいAl−Ti−B系合金の標準試料の製
造についても優れた効果を発揮する。その他Cu、Z
n、Mgなどを含有するAl−Cu−Mg系合金やAl
−Cu−Mg−Zn系合金などの多元系合金において
は、勿論標準試料の組成値に合致する組成の合金溶湯を
急冷凝固して得られた混合成形体を塑性加工して標準試
料を得ることができるが、Al−Cu系合金、Al−M
g系合金、Al−Zn系合金などの複数の組成の異なる
金属体を作成しておいて、これを目標とする標準試料組
成に配合混合した後、混合成形体に塑性加工を施すこと
により所望の組成を均一に含有する標準試料とすること
ができるし、これらの任意の組成の合金の金属体にさら
に純金属粉体を加えて合金組成の調整を行うことも可能
である。
In addition, Pb and Bi which are apt to cause gravity segregation
Also, the present invention exerts excellent effects in the production of Al-Pb (Sn) -based alloys containing Al and the like, and the production of standard samples of Al-Ti-B-based alloys which are liable to cause agglomeration of crystallized substances. Other Cu, Z
Al-Cu-Mg alloy containing n, Mg, etc. or Al
-For multi-element alloys such as Cu-Mg-Zn alloys, of course, obtain a standard sample by plastically processing a mixed compact obtained by rapidly solidifying a molten alloy having a composition that matches the composition value of the standard sample. Al-Cu alloy, Al-M
A plurality of metal bodies having different compositions such as a g-based alloy and an Al-Zn-based alloy are prepared, mixed with a target standard sample composition, and then subjected to plastic working on the mixed molded body. Can be used as a standard sample containing the same composition uniformly, and it is also possible to adjust the alloy composition by further adding pure metal powder to a metal body of an alloy having any of these compositions.

【0022】なお、本発明に係る発光分光分析用標準試
料を用いて該試料と冶金学的履歴の異なる被分析試料を
発光分光分析する場合には、特に初晶Si粒の大小によ
って同じSi含有量でもSiのスペクトル強度比が異な
るのでその影響の程度を前もって予備測定を行いこれに
より把握しておき、補正を行う必要がある(JISH1
305参照)。
When a sample to be analyzed having a different metallurgical history from the sample using the standard sample for emission spectroscopy according to the present invention is subjected to emission spectroscopy, particularly, the same Si content is determined depending on the size of primary crystal Si grains. Since the spectral intensity ratio of Si differs depending on the amount, it is necessary to perform preliminary measurement in advance to determine the degree of the effect and to grasp and correct it (JISH1).
305).

【0023】[0023]

【実施例】以下に本発明の実施例を比較例とともに説明
する。 実施例1 JIS AC9B合金(組成:Al−18.9wt%S
i−1.4wt%Cu−10wt%Mg−1.2wt%
Ni−0.4wt%Fe)(配合計算値)を、850℃
で溶製し、穴の開いたるつぼを回転させて溶湯を飛沫化
し、水中冷却することにより10〜10℃/sec
の冷却速度で平均粒径0.8mm(粒子径範囲0.3〜
3mm)の粒状の金属体を作成した。この金属体を十分
に混合して内径100mm、長さ150mmの有底缶に
充填し、該缶を押出加工して40mm径の丸棒を得た。
この丸棒を長さ50mmずつに切断してディスク形状に
し、押出方向に直角な平面を面削して発光分光分析用標
準試料とし、この試料について発光分光分析を行った。
EXAMPLES Examples of the present invention will be described below together with comparative examples. Example 1 JIS AC9B alloy (composition: Al-18.9 wt% S
i-1.4 wt% Cu-10 wt% Mg-1.2 wt%
Ni-0.4 wt% Fe) (calculated value of blending) at 850 ° C.
The molten metal is sprayed by rotating a crucible with a hole, and cooled in water to 10 2 to 10 3 ° C / sec.
At a cooling rate of 0.8 mm in average particle size (particle size range 0.3 to
3 mm) was prepared. This metal body was sufficiently mixed, filled in a bottomed can having an inner diameter of 100 mm and a length of 150 mm, and the can was extruded to obtain a round bar having a diameter of 40 mm.
This round bar was cut into a disk shape by cutting each 50 mm in length, and a plane perpendicular to the extrusion direction was chamfered to obtain a standard sample for emission spectroscopy. Emission spectroscopy was performed on this sample.

【0024】発光分光分析は次の条件で行った。 発光方法 :高圧火花法 発光雰囲気:大気 対電極 :黒鉛棒 使用波長 :Si 390.55nm Al 256.80nm(内標準線) 分析元素 :Si 分析位置 :長さ方向に50nmごとの押出方向に直角な平面における中央 部(1/2半径内)および外周部(1/2半径外の均等位置)Emission spectroscopy was performed under the following conditions. Emission method: High pressure spark method Emission atmosphere: Atmosphere Counter electrode: Graphite rod Working wavelength: Si 390.55 nm Al 256.80 nm (internal standard line) Analytical element: Si Analysis position: Perpendicular to the extrusion direction every 50 nm in the length direction Central part (within 1/2 radius) and outer peripheral part (equal position outside 1/2 radius) in plane

【0025】一試料の分析は同一平面で5回行った。そ
の分析結果を図1に示す。図1における各点は上記5回
の測定の平均値である。また、各試料における中央部と
外周部の測定回数各5回の合計の10回の標準偏差値σ
n−1の値は0.11〜0.16wt%であった。
The analysis of one sample was performed five times on the same plane. FIG. 1 shows the analysis results. Each point in FIG. 1 is an average value of the above five measurements. In addition, a standard deviation value σ of 10 times in total of 5 times each of the number of measurements of the central portion and the outer peripheral portion in each sample.
The value of n-1 was 0.11 to 0.16 wt%.

【0026】図1の結果から、分析値はSi含有量が高
いにもかかわらず18.7〜19.0wt%の間にあ
り、押出方向の分析位置による分析値の振れ幅が小さ
く、しかも同一面の標準偏差値σn−1の値が0.11
〜0.16wt%でバラツキが小さいから、位置の違い
による偏析が少なく、発光分光分析標準試料として適し
ていることが分かる。
From the results shown in FIG. 1, the analytical values are between 18.7 and 19.0 wt% despite the high Si content, and the fluctuation range of the analytical values depending on the analytical position in the extrusion direction is small and the same. The value of the surface standard deviation σ n-1 is 0.11
Since the variation is small at about 0.16 wt%, segregation due to the difference in position is small, and it is understood that the composition is suitable as a standard sample for emission spectrometry.

【0027】実施例2 実施例1で作成した粒状の金属体を600tプレス機で
プレスすることによって40mm径×100長さのプレ
ス棒を得た。このプレス棒を長さ50mmづつに切断し
てディスク形状とし、長さ方向に直角な平面を面削して
発光分光分析用標準試料として発光分光分析を行った。
発光分光分析条件は実施例1と同様である。
Example 2 The granular metal body prepared in Example 1 was pressed with a 600 t press to obtain a pressed rod having a diameter of 40 mm and a length of 100. This press bar was cut into 50 mm length pieces to obtain a disk shape, and a plane perpendicular to the length direction was chamfered to perform emission spectroscopy as a standard sample for emission spectroscopy.
Emission spectroscopy conditions were the same as in Example 1.

【0028】分析の結果、中央部5点の平均値は18.
8wt%、外周部5点の平均値は19.0wt、分析点
10点の標準偏差σn−1の値は0.19wt%であっ
た。この結果から、分析値の振れ幅は小さく、しかも同
一面の標準偏差σn−1の値のバラツキが小さいので、
位置の違いによる偏析が少なく、発光分光分析用標準試
料として適していることが分かる。
As a result of the analysis, the average value of the central five points was 18.
8 wt%, the average value at 5 points on the outer peripheral portion was 19.0 wt, and the value of the standard deviation σ n-1 at 10 analysis points was 0.19 wt%. From this result, the fluctuation width of the analysis value is small, and the variation of the value of the standard deviation σ n−1 of the same surface is small.
It can be seen that segregation due to the difference in position is small, and that it is suitable as a standard sample for emission spectral analysis.

【0029】比較例1 比較材として、AA規格のA390相当合金の高珪素の
Al−Si系合金(Al−16.5wt%Si−4.7
wt%Cu−0.55wt%Mg−0.3wt%F
e)、および低珪素のAl−Si系合金(Al−14.
6wt%Si−0.46wtCu−0.5wt%Mg−
0.3wt%Fe)(いずれも配合計算値)を、800
℃で溶製し、55mm径で10mm厚さの円盤状のキャ
ビティ−を有する金型に鋳造して金型鋳造材を得た。こ
のときの溶湯の冷却速度は、0.5〜3℃/secであ
った。次に該鋳造材の中心軸に直角な平面を面削して標
準試料とし、この試料について発光分光分析を行った。
COMPARATIVE EXAMPLE 1 As a comparative material, a high-silicon Al-Si alloy (Al-16.5 wt% Si-4.7) which is an A390 equivalent alloy of AA standard was used.
wt% Cu-0.55wt% Mg-0.3wt% F
e) and low silicon Al-Si alloys (Al-14.
6wt% Si-0.46wtCu-0.5wt% Mg-
0.3 wt% Fe) (all calculated values of blending)
C. and cast into a mold having a disk-shaped cavity having a diameter of 55 mm and a thickness of 10 mm to obtain a mold casting. The cooling rate of the molten metal at this time was 0.5 to 3 ° C / sec. Next, a plane perpendicular to the central axis of the cast material was chamfered to obtain a standard sample, and emission spectroscopy was performed on this sample.

【0030】発光分光分析による測定は、分析位置を中
心軸に直角な平面の外周部とし、一試料の分析を同一平
面で5回測定し、1mmづつ面削し、これを繰り返し
た。その他は、実施例1の条件と同様条件で行った。分
析結果を図2および図3に示す。図2および図3におけ
る各点は上記5回の測定の平均値である。
In the measurement by the emission spectroscopy, the analysis position was taken as the outer peripheral portion of a plane perpendicular to the central axis, and the analysis of one sample was measured five times on the same plane. The other conditions were the same as those in Example 1. The analysis results are shown in FIGS. Each point in FIGS. 2 and 3 is an average value of the above five measurements.

【0031】図2に示す高珪素のAl−Si系合金の分
析値は16.2〜17.4wt%の間にあり、厚さ方向
の位置の変化による偏析が大きく、しかも同一平面内で
の標準偏差値σn−1(n=5)の値が0.18〜0.
47wt%と大きいので、発光分光分析用標準試料とし
て不適当であることが分かる。
The analytical value of the high silicon Al-Si alloy shown in FIG. 2 is between 16.2 and 17.4 wt%, segregation due to a change in the position in the thickness direction is large, and in the same plane. The value of the standard deviation value σ n-1 (n = 5) is 0.18-0.
Since it is as large as 47% by weight, it is understood that it is not suitable as a standard sample for emission spectroscopy.

【0032】また図3に示す低珪素のAl−Si系合金
の分析値は14.2〜15.0wt%の間にあり、厚さ
方向の位置の変化による偏析が大きく、しかも同一平面
内での標準偏差値σn−1(n=5)の値が0.12〜
0.31wt%と大きいので、発光分光分析用標準試料
として不適当であることが分かる。
The analytical value of the low silicon Al-Si alloy shown in FIG. 3 is between 14.1 and 15.0 wt%, and segregation due to a change in the position in the thickness direction is large, and within the same plane. Of the standard deviation σ n-1 (n = 5) of 0.12 to
Since it is as large as 0.31% by weight, it is understood that it is not suitable as a standard sample for emission spectroscopy.

【0033】比較例2 比較材として、AA規格のA390相当合金の高珪素A
l−Si系合金(Al−15.5wt%Si−4.7w
t%Cu−0.55wt%Mg−0.3wt%Fe)
(配合計算値)を、750℃で溶製し、水冷式半連続鋳
造法で58mm径の鋳造棒を得て標準試料とし、この試
料について発光分光分析を行った。この際に、この鋳造
棒鋳造時における溶湯の冷却速度は、5〜10℃/se
cであった。
Comparative Example 2 As a comparative material, high silicon A of an A390 equivalent alloy of AA standard was used.
l-Si alloy (Al-15.5wt% Si-4.7w)
t% Cu-0.55wt% Mg-0.3wt% Fe)
(Calculated value) was melted at 750 ° C., and a cast rod having a diameter of 58 mm was obtained by a water-cooled semi-continuous casting method, used as a standard sample, and subjected to emission spectroscopic analysis. At this time, the cooling rate of the molten metal during the casting of the casting rod is 5 to 10 ° C./sec.
c.

【0034】発光分光分析による測定は、分析位置を鋳
造方向に直角な平面の中央部(1/2半径内)とその外
周部(1/2半径外の均等位置)を長さ方向に1000
mm毎とし、一試料の分析を同一平面で中央部および外
周部について各5回行った以外は、実施例1の条件と同
様条件で行った。分析結果を図4に示す。図4における
各点は上記5回の測定の平均値である。また各試料にお
ける中央部と外周部の各測定回数の合計である10回の
標準偏差σn−1(n=10)の値は0.5〜1.0で
あった。
In the measurement by the emission spectroscopy, the analysis position is determined by setting the center part (within 1/2 radius) of the plane perpendicular to the casting direction and the outer peripheral part (equal position outside of 1/2 radius) in the length direction to 1000 points.
The measurement was performed under the same conditions as in Example 1 except that the analysis of one sample was performed five times for each of the central part and the peripheral part on the same plane. FIG. 4 shows the analysis results. Each point in FIG. 4 is an average value of the above five measurements. In addition, the value of the standard deviation σ n-1 (n = 10) of 10 times, which is the total of the number of times of each measurement of the central portion and the outer peripheral portion in each sample, was 0.5 to 1.0.

【0035】図4の結果から、分析値は15.0〜1
6.2wt%の間にあり、鋳造方向の分析位置の厚さ方
向の位置の違いによる偏析が大きく、しかも同一平面内
での標準偏差値σn−1(n=5)の値が0.5〜1.
0wt%と大きいので、発光分光分析用標準試料として
不適当であることが分かる。
From the results shown in FIG. 4, the analytical values are 15.0 to 1
It is between 6.2 wt%, and the segregation due to the difference in the analysis position in the casting direction in the thickness direction is large, and the standard deviation value σ n-1 (n = 5) in the same plane is 0.1%. 5-1.
Since it is as large as 0 wt%, it is understood that it is not suitable as a standard sample for emission spectroscopy.

【0036】[0036]

【発明の効果】以上述べたように、本発明に係る発光分
光分析用標準試料は、元素含有量が均一で、品質が安定
しているために、被分析試料の元素含有量を正確に分析
把握することができるから、各種金属製品または半製品
の性能を正確に予測ないしは把握することができる。
As described above, the standard sample for emission spectroscopy according to the present invention has a uniform element content and a stable quality, so that the element content of the sample to be analyzed can be accurately analyzed. Since it can be grasped, the performance of various metal products or semi-finished products can be accurately predicted or grasped.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるJIS AC9B合金に係る標準
試料を発光分光分析した結果を示す図で(a)は分析
値、(b)は標準偏差値を示す図である。
FIG. 1 is a diagram showing the results of emission spectroscopy analysis of a standard sample according to the JIS AC9B alloy according to the present invention. FIG. 1 (a) is a diagram showing analysis values, and FIG.

【図2】金型鋳造法で鋳造した高珪素のAl−Si合金
標準試料を発光分光分析した結果を示す図で、(a)は
分析値、(b)は標準偏差値を示す図である。
FIGS. 2A and 2B are diagrams showing the results of emission spectroscopic analysis of a high silicon Al-Si alloy standard sample cast by a mold casting method, wherein FIG. 2A shows an analysis value and FIG. 2B shows a standard deviation value. .

【図3】金型鋳造法で鋳造した低珪素のAl−Si合金
標準試料を発光分光分析した結果を示す図で、(a)は
分析値、(b)は標準偏差値を示す図である。
3A and 3B are diagrams showing the results of emission spectroscopy analysis of a low silicon Al-Si alloy standard sample cast by a mold casting method, wherein FIG. 3A shows an analysis value and FIG. 3B shows a standard deviation value. .

【図4】水冷式半連続鋳造法で鋳造したA390Al−
Si合金鋳造棒を標準試料として発光分光分析した結果
を示す図で、(a)は分析値、(b)は標準偏差値を示
す図である。
FIG. 4 shows A390Al- cast by a water-cooled semi-continuous casting method.
It is a figure which shows the result of emission spectroscopy analysis using the Si alloy casting rod as a standard sample, (a) is an analysis value, (b) is a figure which shows a standard deviation value.

【手続補正書】[Procedure amendment]

【提出日】平成10年2月25日[Submission date] February 25, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】すなわち、本発明の第1の実施態様は、微
細な金属体の混合成形体に、塑性変形を伴う加工を施し
てなる発光分光分析用標準試料を特徴とするものであ
り、前記金属体が特にSiを12〜25wt%含有する
アルミニウム合金からなり、また前記金属体が急冷凝固
体であり、さらに前記標準試料がSiを12〜25wt
%含有するアルミニウム成形体であることを要旨とする
ものであり、また第2の実施態様は、急冷凝固体からな
る微細な金属体の、Siを12〜25wt%含有するア
ルミニウム混合成形体に、塑性変形を伴う加工を施して
なる発光分光分析用標準試料を特徴とするものである。
That is, in a first embodiment of the present invention , a process involving plastic deformation is applied to a mixed compact of a fine metal body.
And characterized in emission spectroscopy for the standard sample of Te, becomes the metal body is a particularly Si aluminum alloy containing 12~25Wt%, also the metal body is a rapid solidification body, further wherein the standard sample Si is 12 ~ 25wt
% Of aluminum molded body
And in a second embodiment, a quenched solid.
Of fine metal bodies containing 12 to 25 wt% of Si.
Luminium mixed molded body is subjected to processing accompanied by plastic deformation
The standard sample for emission spectroscopy is characterized in that:

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】次にこのようにして得られた混合成形体を
発光分光分析に適したディスク状の形状に成形加工する
のであるが、成形にはプレス、押出、圧延、鍛造などの
塑性変形を伴う加工を行う必要がある。これは塑性変形
を伴う加工を行うことによって混合成形体を構成する金
属体自体が塑性流動的に鍛練加工されるので一層その均
一性が高められるからである。特に塑性加工中、押出加
工を採用するときは、分析面を成形時の金属の流れに直
角な面、すなわち押出方向に直角な断面を発光分光分析
する面として選べるから好ましい結果が得られる。
Next, the thus obtained mixed molded body is formed into a disk shape suitable for emission spectroscopic analysis. The forming involves plastic deformation such as pressing, extrusion, rolling and forging. Processing must be performed. This is because, by performing the processing accompanied by plastic deformation, the metal body itself forming the mixed molded body is forged in a plastic flow, so that the uniformity is further improved. In particular, when extrusion is employed during plastic working, favorable results can be obtained because the analysis surface can be selected as a surface perpendicular to the flow of the metal at the time of molding, that is, a cross section perpendicular to the extrusion direction for emission spectroscopic analysis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 勝己 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Katsumi Takahashi 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nikkei Giken Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 微細な金属体の混合成形体からなること
を特徴とする発光分光分析用標準試料。
1. A standard sample for emission spectroscopy characterized by comprising a mixed compact of a fine metal body.
【請求項2】 前記金属体がアルミニウム合金からなる
ことを特徴とする請求項1記載の発光分光分析用標準試
料。
2. The standard sample for emission spectroscopy according to claim 1, wherein said metal body is made of an aluminum alloy.
【請求項3】 前記金属体がSiを12〜25wt%含
有するアルミニウム合金からなることを特徴とする請求
項2記載の発光分光分析用標準試料。
3. The standard sample for emission spectroscopy according to claim 2, wherein said metal body is made of an aluminum alloy containing 12 to 25 wt% of Si.
【請求項4】 前記金属体が急冷凝固体であることを特
徴とする請求項1ないし3のいずれか1項記載の発光分
光分析用標準試料。
4. The standard sample for emission spectroscopy according to claim 1, wherein said metal body is a rapidly solidified body.
JP10042859A 1998-02-09 1998-02-09 Standard sample for luminous spectrochemical analysis Pending JPH10197416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10042859A JPH10197416A (en) 1998-02-09 1998-02-09 Standard sample for luminous spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10042859A JPH10197416A (en) 1998-02-09 1998-02-09 Standard sample for luminous spectrochemical analysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7219790A Division JP2813662B2 (en) 1995-08-04 1995-08-04 Manufacturing method of standard sample for emission spectroscopy

Publications (1)

Publication Number Publication Date
JPH10197416A true JPH10197416A (en) 1998-07-31

Family

ID=12647767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10042859A Pending JPH10197416A (en) 1998-02-09 1998-02-09 Standard sample for luminous spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPH10197416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444683B1 (en) * 2002-06-24 2004-08-21 현대자동차주식회사 Sample pre-treatment method for aluminum alloy content analysis
CN117191522A (en) * 2023-09-15 2023-12-08 南通众福新材料科技有限公司 Single-point control sample block for controlling high-strength and high-toughness aluminum alloy material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444683B1 (en) * 2002-06-24 2004-08-21 현대자동차주식회사 Sample pre-treatment method for aluminum alloy content analysis
CN117191522A (en) * 2023-09-15 2023-12-08 南通众福新材料科技有限公司 Single-point control sample block for controlling high-strength and high-toughness aluminum alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1778887B1 (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
CA2105968C (en) Aluminum-based alloy cast product and process for producing the same
CN102482752B (en) Process for production of roughly shaped material for engine piston
BRPI0411851A (en) method for melting compound ingot
JP2678797B2 (en) Standard sample for emission spectroscopy
CA2827539C (en) Aluminum alloy for vehicle and wheel for motorcycle
JP2813662B2 (en) Manufacturing method of standard sample for emission spectroscopy
JPH10197416A (en) Standard sample for luminous spectrochemical analysis
CN111349801B (en) Preparation method of aluminum alloy ingot
US5503475A (en) Method for determining the carbon equivalent, carbon content and silicon content of molten cast iron
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
US3630725A (en) Method of preparing an aluminum alloy
JPH1136030A (en) Aluminum alloy for piston, and manufacture of piston
EP0592665A1 (en) Hypereutectic aluminum/silicon alloy powder and production thereof
US7070735B2 (en) Aluminum alloy material for forging and continuous casting process therefor
CN103245541B (en) Preparation method of brazing filler metal standard sample for analysis of atomic absorption
Szymanek et al. Producing ultrafine grain structure in AZ91 magnesium alloy cast by rapid solidification
JPS61259830A (en) Production of wear resistant aluminum alloy extrudate having excellent machineability
JPH07229892A (en) Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy
JPH03135751A (en) Emission spectrochemical analysis of silicon in aluminum alloy
JP2020082140A (en) Mold for production of solid sample for composition analysis of aluminum
Saito et al. High Conductivity Al-Si-Mg Foundry Alloys—Market, Production, Optimization and Development
CN108779521A (en) Low pressure casting aluminium alloy
JP2868017B2 (en) Power steering system component manufacturing method
DE4333709C2 (en) Method for producing a calibration sample, in particular for emission spectroscopy, and calibration sample produced therewith