JPH10196831A - Proportional solenoid control valve - Google Patents

Proportional solenoid control valve

Info

Publication number
JPH10196831A
JPH10196831A JP3421897A JP3421897A JPH10196831A JP H10196831 A JPH10196831 A JP H10196831A JP 3421897 A JP3421897 A JP 3421897A JP 3421897 A JP3421897 A JP 3421897A JP H10196831 A JPH10196831 A JP H10196831A
Authority
JP
Japan
Prior art keywords
spool
solenoid
spring
leaf spring
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3421897A
Other languages
Japanese (ja)
Inventor
Kenji Masuda
健二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3421897A priority Critical patent/JPH10196831A/en
Publication of JPH10196831A publication Critical patent/JPH10196831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To proportionally control the displacement of a spool as an analog amount so as to reduce costs by providing a non-linear solenoid and a leaf spring to face each other holding the spool therebetween and supporting the leaf spring from its backside with a non-linear spring receiving seat. SOLUTION: When currents of a pair of left and right solenoids 10 are 0, a spool 5 is pulled back from a leaf spring 12 and its normal position is maintained. Then, when one solenoid 10 is energized, the solenoid 10 produces a non-linear attracting force matching a current and a suction gap in a plunger 11, presses the center part of one leaf spring 12 via a pushrod 34 and the spool 5, simultaneously deforms the leaf spring 12 in an arch shape and its effective spring length is reduced while the outside other end of the leaf spring 12 is in contact with the seat of one non-linear spring receiver 13. That is, the leaf spring 12 exerts a non-linear spring characteristics, and after balanced the spool 5 is displaced in proportion to the current and placed in a standstill state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、流体圧用の流体を制
御する比例電磁制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a proportional electromagnetic control valve for controlling a fluid for hydraulic pressure.

【0002】[0002]

【従来の技術】従来、この種の比例電磁制御弁として、
例えば図2に示すごときものが知られている。この比例
電磁制御弁は、主管路用ポート3、…すなわちポート
P、A、B、Tにつながる弁室2′を有する本体1′
と、ランド16、…と環状溝17を有するスプール5′
と、上記弁室2′に摺動自在に嵌め合う上記スプール
5′をばね受け25を介してノーマル位置に保持するコ
イルばね26と、上記スプール5′をはさんで上記コイ
ルばね26に対抗する比例ソレノイド24と、上記弁室
2′において上記スプール5′によって区画される制御
室6′と戻り連絡路48にて連通している戻り室2
7′、27′と、上記制御室6′及び上記戻り室2
7′、27′の弁開閉部8、…とからなる。上記比例ソ
レノイド24は図3に詳細を示すごとく(雑誌:油圧と
空気圧、Vol.22、No.1、52頁参照)、プラ
ンジャ内油通路29を有しプッシュロッド34を有する
プランジャ11′と、カートリッジ透磁性材部30′と
カートリッジ非透磁性材部19′とを有するカートリッ
ジ18′と、油通路28を有し磁気漏洩部36を介して
上記カートリッジ非透磁性材部19′に一体である継鉄
31と、上記継鉄31と上記カートリッジ透磁性材部3
0′とを磁気的につなぐカップ状の継鉄38と、上記カ
ートリッジ18′と上記継鉄31等で形成する外部から
密閉されたソレノイド室9′と、コイル14′と、スペ
ーサ35と、ベアリング33等で構成する。なお、図2
には更に差動変圧器39とドライバ40とが示されてい
る。上記比例電磁制御弁は、以上の構成によって比例ソ
レノイド24を付勢することで電流にほぼ比例した吸引
する電磁力をプランジャ11′上に発生させて、スプー
ル5′をコイルばね26に抗して変位させ、弁開閉部
8、…の開度を比例的に制御する。この際、比例ソレノ
イド24の吸引力は制御範囲内において変位に関係無く
単に電流の大きさにほぼ比例するので、スプール5′の
変位はコイルばね26の力と電磁力とが釣り合った位置
で安定して静止する。従って、比例ソレノイド24の付
勢下において複数個の弁開閉部8、8は、P→A、B→
T流れを許容し、方向切換機能を持つと同時に弁通過流
量を電気的にしてアナログ量として制御する。なお、ソ
レノイド室9′は戻り室27′に対しての流入流出でき
る作動液体で満たしていて、比例電磁制御弁の可動部に
適度の粘性ダンピング効果を与えている。
2. Description of the Related Art Conventionally, as this kind of proportional solenoid control valve,
For example, the one shown in FIG. 2 is known. This proportional electromagnetic control valve comprises a main body port 1 'having a valve chamber 2' connected to a main pipeline port 3,..., Ports P, A, B, T.
And a spool 5 'having a land 16,... And an annular groove 17
And a coil spring 26 for holding the spool 5 'slidably fitted in the valve chamber 2' at a normal position via a spring receiver 25, and opposing the coil spring 26 with the spool 5 'interposed therebetween. A return chamber 2 communicating with a proportional solenoid 24 and a control chamber 6 ′ defined by the spool 5 ′ in the valve chamber 2 ′ via a return communication path 48.
7 ', 27', the control room 6 'and the return room 2
7 ', 27' valve opening / closing portions 8,... As shown in detail in FIG. 3 (magazine: hydraulic and pneumatic, Vol. 22, No. 1, page 52), the proportional solenoid 24 includes a plunger 11 'having a plunger oil passage 29 and a push rod 34; A cartridge 18 'having a cartridge magnetically permeable material portion 30' and a cartridge non-magnetically permeable material portion 19 'and an oil passage 28 integrated with the cartridge non-magnetically permeable material portion 19' via a magnetic leakage portion 36. Yoke 31, the yoke 31, and the cartridge magnetically permeable member 3
0 ', a cup-shaped yoke 38 for magnetically connecting the solenoid, a solenoid chamber 9' sealed from the outside formed by the cartridge 18 'and the yoke 31, etc., a coil 14', a spacer 35, and a bearing. 33 and the like. Note that FIG.
3 further shows a differential transformer 39 and a driver 40. The above-described proportional electromagnetic control valve generates an electromagnetic force to be attracted on the plunger 11 'substantially in proportion to the current by energizing the proportional solenoid 24 by the above configuration, and causes the spool 5' to oppose the coil spring 26. , And the opening degree of the valve opening / closing portions 8,... Is proportionally controlled. At this time, since the attraction force of the proportional solenoid 24 is simply proportional to the magnitude of the current regardless of the displacement within the control range, the displacement of the spool 5 'is stable at a position where the force of the coil spring 26 and the electromagnetic force are balanced. And stop. Accordingly, under the bias of the proportional solenoid 24, the plurality of valve opening / closing portions 8, 8 move from P → A, B →
Allows T flow, has a direction switching function, and at the same time, electrically controls the valve passage flow rate as an analog quantity. The solenoid chamber 9 'is filled with a working liquid capable of flowing into and out of the return chamber 27', thereby giving a suitable viscous damping effect to the movable part of the proportional electromagnetic control valve.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来の
比例電磁制御弁の比例ソレノイドは吸引ギャップの大お
きいノーマル位置においてその吸引力を増大さす必要が
あるので、有効制御範囲において有効に利用できる吸引
力は必ずしも高くなく、電磁力の利用効率について必ず
しも良好でなかった。また、上記比例ソレノイドは良好
な比例特性を得るために磁路の一部に特殊な形状すなわ
ち磁気漏洩部とカートリッジ非透磁性材部からなる特殊
な磁路形状を要求し、加工を困難とし高価となる欠点が
あった。そこで、本発明の目的は、ソレノイドの発生で
きる吸引力を有効に利用するために比例ソレノイドに替
えて非線形ソレノイドすなわち通常のオンオフ用の直流
ソレノイドに相当する吸引力特性を有する簡素なソレノ
イドを使用してこれを電流制御し、コイルばねに替えて
板ばねを利用して非線形ばね特性を得て対抗さし、比例
特性を得て、制御弁の最大能力(圧力×流量)を低コス
トで増大する比例電磁制御弁を提供することである。
However, the proportional solenoid of the conventional proportional electromagnetic control valve needs to increase its suction force at a normal position where the suction gap is large, and can be effectively used in the effective control range. The attraction force was not always high, and the utilization efficiency of the electromagnetic force was not always good. In addition, the above-mentioned proportional solenoid requires a special shape for a part of the magnetic path, that is, a special magnetic path shape composed of a magnetic leakage portion and a cartridge non-permeable material portion, in order to obtain good proportional characteristics, which makes processing difficult and expensive. There was a disadvantage. Therefore, an object of the present invention is to use a simple solenoid having a suction force characteristic equivalent to a non-linear solenoid, that is, a normal on / off DC solenoid, in place of the proportional solenoid in order to effectively use the suction force generated by the solenoid. The current is controlled, and a non-linear spring characteristic is obtained by using a leaf spring instead of a coil spring to obtain a countermeasure, a proportional characteristic is obtained, and the maximum capacity (pressure × flow rate) of the control valve is increased at low cost. The object is to provide a proportional solenoid control valve.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の比例電磁制御弁は基本的には図1に例示す
るように、主管路用ポート3、…につながる弁室2′を
有する本体1′と、ランド16、…と環状溝17を有す
るスプール5′と、上記弁室2′に摺動自在に嵌め合う
上記スプール5′をノーマル位置に保持するコイルばね
26と、上記スプール5′をはさんで上記コイルばね2
6に対抗する比例ソレノイド24とを備えた比例電磁制
御弁において、スプール5をはさんで非線形ソレノイド
10と板ばね12とを対抗させるとともに上記板ばね1
2を背後から非線形ばね受け13の座にて支えることを
特徴とする。
In order to achieve the above object, a proportional solenoid control valve of the present invention is basically provided with a valve chamber 2 'connected to a main line port 3, as shown in FIG. , A land 5, a spool 5 ′ having an annular groove 17, a coil spring 26 for holding the spool 5 ′ slidably fitted in the valve chamber 2 ′ in a normal position, The above coil spring 2 sandwiching the spool 5 '
In a proportional solenoid control valve provided with a proportional solenoid 24 opposing the non-linear solenoid 6, the non-linear solenoid 10 and the leaf spring 12 are opposed to each other with the spool 5 interposed therebetween.
2 is supported from behind by a seat of the non-linear spring support 13.

【0005】[0005]

【作用】上記構成において、非線形ソレノイド10の電
流を0とするときは、スプール5は板ばね12によって
引き戻されてノーマル位置を保持する。このとき、主管
路用ポート3、…はスプール形式に従った流路連通形態
をとる。次に、上記非線形ソレノイド10を付勢する
と、非線形ソレノイド10は電流と吸引ギャップに見合
った非線形な吸引力を発生しスプール5を介して板ばね
12の一端である中央部を押圧し、このとき板ばね12
は弓なりに変形すると同時に上記板ばね12の外側他端
は非線形ばね受け13の座と接しながらその有効ばね長
を減じ、つまり板ばね12は非線形ばね特性を奏し、釣
り合い状態の後、スプール5はあたかも電流に比例する
ごとく変位するのである。ここで一定の電流値での吸引
力は吸引ギャップが小さくなるにつれて増大する傾向と
なるが非線形ばね特性からの反力の上昇割合の方が大き
いので、スプール5の変位は必ず制御されて静止する。
つまり非線形ソレノイド10は簡素な構造にして電磁力
の利用効率を大幅に高めるごとくして弁開閉部での流れ
を電気的にアナログ量として制御できると同時に弁の最
大能力を大幅に増大さすことができる。
In the above configuration, when the current of the nonlinear solenoid 10 is set to 0, the spool 5 is pulled back by the leaf spring 12 and maintains the normal position. At this time, the main pipeline ports 3,... Take a flow path communication form according to a spool type. Next, when the non-linear solenoid 10 is energized, the non-linear solenoid 10 generates a non-linear suction force corresponding to the current and the suction gap, and presses the central portion which is one end of the leaf spring 12 via the spool 5. Leaf spring 12
At the same time, the other end of the leaf spring 12 reduces its effective spring length while being in contact with the seat of the non-linear spring receiver 13, that is, the leaf spring 12 exhibits a non-linear spring characteristic. It displaces as if it were proportional to the current. Here, the suction force at a constant current value tends to increase as the suction gap becomes smaller, but since the rate of increase of the reaction force from the non-linear spring characteristic is larger, the displacement of the spool 5 is always controlled and stopped. .
That is, the nonlinear solenoid 10 has a simple structure, so that the flow in the valve opening / closing section can be electrically controlled as an analog amount as well as the efficiency of use of the electromagnetic force can be greatly increased. At the same time, the maximum capacity of the valve can be greatly increased. it can.

【0006】[0006]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。図1は比例電磁制御弁の基本的実施例を示
しており、この比例電磁制御弁は、主管路用ポート3、
…すなわちポートP、A、B、Tにつながる弁室2を有
する本体1と、ランド16、…と環状溝17、…を有す
るスプール5と、上記弁室2に摺動自在に嵌め合う上記
スプール5をノーマル位置に保持する板ばね12、12
と、上記板ばね12、12を背後から座をもって支える
非線形ばね受け13、13と、上記スプール5をはさん
で上記板ばね12、12にそれぞれ対抗する非線形ソレ
ノイドすなわち通常のオンオフ用の吸引力特性を有する
直流ソレノイド10、10と、制御室6と、戻り連絡路
48にて連通している戻り室27、27と、弁開閉部
8、…と、上記スプール5によって上記戻り室27、2
7から区画されて圧抜き連通路49にて連通する圧抜き
室7、7と、上記圧抜き連通路49につながる圧抜きポ
ート4と、Oリング45、…、46、46と、ボルト2
0、…とよりなる。以上の各構成部材1、2、3、5、
6、8、16、17、27、48は、主管路用ポート
3、…と圧抜きポート4とに関するポートの構成にかか
わる点、更に上記本体1での上記板ばね12、12の収
容とソレノイド10、10の取り付けに関する点を除い
て、図2で述べた従来のものと同一であり、同じ部材に
は同一番号を付して説明を省略する。上記ボルト20、
…は上記板ばね12と上記非線形ばね受け13とを包み
込むようにした上記ソレノイド10を上記本体1に固定
する一方、上記板ばね12の一端の中央部と連なる部分
を上記本体1の端面に接するとともに上記板ばね12の
外側自由端他端を上記非線形ばね受け13の座に接する
ごとくする。上記ソレノイド10はプッシュロッド34
を有するプランジャ11と、カートリッジ透磁性材部3
0とカートリッジ非透磁性材部19とを有するカートリ
ッジ18と、上記カートリッジ非透磁性材部19に一体
鑞付けされて中央に上記プッシュロッド34のための穴
をもつ継鉄21と、上記継鉄21と上記カートリッジ透
磁性材部30とを磁気的につなぐ継鉄22、23と、上
記カートリッジ18と上記継鉄21とカバー15とOリ
ング47とで形成する外部から密閉されて上記圧抜き室
7に通じるソレノイド室9と、コイル14と、端子箱3
7とで構成する。上記構成の比例電磁制御弁の動作につ
いて次に述べる。ソレノイド10、10の電流が0のと
きは、スプール5は板ばね12、12によって引き戻さ
れてノーマル位置を保持する。このとき、主管路用ポー
ト3、…はスプール形式に従った流路連通形態をとる。
次に、一方の上記ソレノイド10が付勢されると、ソレ
ノイド10は電流と吸引ギャップに見合った非線形な吸
引力をプランジャ11に発生さしプッシュロッド34と
スプール5とを介して一方の板ばね12の一端である中
央部を押圧し、このとき板ばね12は弓なりに変形する
と同時に上記板ばね12の外側自由端他端は一方の非線
形ばね受け13の座と接しながらその有効ばね長を減
じ、つまり板ばね12は非線形ばね特性を奏し、釣り合
い状態の後、スプール5はあたかも電流に比例するごと
く変位して静止する。ここで一定の電流値での吸引力は
吸引ギャップが小さくなるにつれて増大する傾向となる
が非線形ばね特性からの反力の上昇割合の方が大きいの
で、スプール5の変位は必ず制御され安定して静止す
る。つまり簡素な構造であるソレノイド10にして本来
ソレノイドの発生できる吸引力を有効に利用しつつ弁開
閉部8、…での流れ(仮にP→A、B→Tとする)を電
気的にアナログ量として制御すると同時に弁の最大能力
を大幅に増大さすことができる。他方のソレノイド10
が付勢されたときは弁開閉部8、…での流れ(仮にP→
B、A→Tする)がかわるだけで、その他一方の付勢の
場合と何ら変わるところはない。また、主管路用ポート
3、…に関連するポートの構成は2ポートであっても良
く、必要に応じてソレノイド10は1個でも良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 shows a basic embodiment of a proportional electromagnetic control valve.
, That is, a main body 1 having a valve chamber 2 connected to the ports P, A, B, T, a spool 5 having lands 16,... And an annular groove 17, and the spool slidably fitted in the valve chamber 2. Leaf springs 12, 12 for holding 5 in a normal position
Non-linear spring receivers 13 and 13 for supporting the leaf springs 12 and 12 from behind, and non-linear solenoids opposed to the leaf springs 12 and 12 with the spool 5 interposed therebetween, that is, a normal on-off suction force characteristic. , The control chamber 6, the return chambers 27, 27 communicating with the return communication path 48, the valve opening / closing section 8,.
, 46, 46, and bolt 2, a pressure relief chamber 7, 7, which is partitioned from and communicates with a pressure relief communication passage 49, a pressure relief port 4 connected to the pressure relief communication passage 49.
0,... Each of the above constituent members 1, 2, 3, 5,
6, 8, 16, 17, 27, and 48 are points related to the configuration of the ports related to the main pipeline ports 3,... And the pressure release port 4, and further, the housing of the leaf springs 12 and 12 in the main body 1 and the solenoid Except for the points 10 and 10, which are the same as the conventional one described in FIG. 2, the same members are denoted by the same reference numerals and description thereof will be omitted. The bolt 20,
.. Fix the solenoid 10 enclosing the leaf spring 12 and the non-linear spring receiver 13 to the main body 1, and contact a portion connected to the center of one end of the leaf spring 12 with the end face of the main body 1. At the same time, the other end of the outer free end of the leaf spring 12 is brought into contact with the seat of the nonlinear spring receiver 13. The solenoid 10 is a push rod 34
Plunger 11 having cartridge and cartridge magnetically permeable member 3
0, a cartridge 18 having a cartridge impermeable material portion 19, a yoke 21 which is integrally brazed to the cartridge impermeable material portion 19 and has a hole for the push rod 34 in the center, and a yoke 21. The yoke 22, 23 for magnetically connecting the cartridge 21 and the cartridge magnetically permeable material portion 30, and the pressure release chamber which is sealed from the outside and formed by the cartridge 18, the yoke 21, the cover 15, and the O-ring 47. 7, a coil chamber 14, a terminal box 3 and a solenoid chamber 9.
7. The operation of the proportional electromagnetic control valve having the above configuration will be described below. When the current of the solenoids 10, 10 is 0, the spool 5 is pulled back by the leaf springs 12, 12 and holds the normal position. At this time, the main pipeline ports 3,... Take a flow path communication form according to a spool type.
Next, when one of the solenoids 10 is energized, the solenoid 10 generates a non-linear suction force corresponding to the current and the suction gap on the plunger 11, and the one leaf spring is formed via the push rod 34 and the spool 5. The central portion, which is one end of the spring 12, is pressed. At this time, the leaf spring 12 is deformed in an arched shape, and at the same time, the other end of the outer free end of the leaf spring 12 is in contact with the seat of one non-linear spring receiver 13 to reduce its effective spring length. That is, the leaf spring 12 has a non-linear spring characteristic, and after the balanced state, the spool 5 is displaced as if proportional to the current and stops. Here, the suction force at a constant current value tends to increase as the suction gap becomes smaller, but since the rate of increase in the reaction force from the nonlinear spring characteristic is larger, the displacement of the spool 5 is always controlled and stabilized. Stand still. In other words, the flow through the valve opening / closing portions 8,... (Tentatively P → A, B → T) is electrically analogized while effectively utilizing the suction force that can be generated by the solenoid by making the solenoid 10 a simple structure. At the same time, the maximum capacity of the valve can be greatly increased. The other solenoid 10
Is energized, the flow in the valve opening / closing section 8,...
B, A → T), but there is no difference from the other case of energizing. Further, the configuration of the ports related to the main pipeline ports 3,... May be two ports, and the number of the solenoids 10 may be one if necessary.

【0007】[0007]

【発明の効果】以上の説明で明らかなように、本発明の
比例電磁制御弁は、スプール5をはさんで非線形ソレノ
イド10と板ばね12とを対抗させるとともに上記板ば
ね12を背後から非線形ばね受け13の座にて支えるよ
うにしたから、非線形な吸引力特性を有する簡素なソレ
ノイドにして電流によってスプールの変位をアナログ量
として比例的に制御でき、低コストであって、しかも本
来ソレノイドの発生できる吸引力を有効に利用するので
弁の最大能力を大幅に増大さすことができる。
As is apparent from the above description, the proportional solenoid control valve of the present invention makes the non-linear solenoid 10 and the leaf spring 12 oppose each other with the spool 5 interposed therebetween, and the non-linear spring Since it is supported at the seat of the receiver 13, the displacement of the spool can be proportionally controlled as an analog amount by a current by using a simple solenoid having a non-linear suction force characteristic. The maximum capacity of the valve can be greatly increased by effectively utilizing the available suction force.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の比例電磁制御弁の基本的実施例を示す
断面図
FIG. 1 is a sectional view showing a basic embodiment of a proportional electromagnetic control valve of the present invention.

【図2】従来の比例電磁制御弁を示す断面図FIG. 2 is a sectional view showing a conventional proportional electromagnetic control valve.

【図3】従来の比例ソレノイドを示す断面図FIG. 3 is a sectional view showing a conventional proportional solenoid.

【符号の説明】[Explanation of symbols]

1′…本体、2′…弁室、3、3…主管路用ポート、5
…スプール、10…非線形ソレノイド、12…板ばね、
13…非線形ばね受け、16…ランド、17…環状溝。
1 ': body, 2': valve chamber, 3, 3 ... port for main pipeline, 5
... spool, 10 ... non-linear solenoid, 12 ... leaf spring,
13: Non-linear spring receiver, 16: Land, 17: Annular groove.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主管路用ポート3、…につながる弁室
2′を有する本体1′と、ランド16、…と環状溝17
を有するスプール5′と、上記弁室2′に摺動自在に嵌
め合う上記スプール5′をノーマル位置に保持するコイ
ルばね26と、上記スプール5′をはさんで上記コイル
ばね26に対抗する比例ソレノイド24とを備えた比例
電磁制御弁において、スプール5をはさんで非線形ソレ
ノイド10と板ばね12とを対抗させるとともに上記板
ばね12を背後から非線形ばね受け13の座にて支える
ことを特徴とする比例電磁制御弁。
1. A main body 1 'having a valve chamber 2' connected to a main conduit port 3, a land 16, and an annular groove 17.
, A coil spring 26 for holding the spool 5 ′ slidably fitted in the valve chamber 2 ′ in a normal position, and a proportional spring opposed to the coil spring 26 across the spool 5 ′. In the proportional electromagnetic control valve including the solenoid 24, the non-linear solenoid 10 and the leaf spring 12 are opposed to each other with the spool 5 interposed therebetween, and the leaf spring 12 is supported from behind by a seat of the non-linear spring receiver 13. Proportional solenoid control valve.
JP3421897A 1997-01-10 1997-01-10 Proportional solenoid control valve Pending JPH10196831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3421897A JPH10196831A (en) 1997-01-10 1997-01-10 Proportional solenoid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3421897A JPH10196831A (en) 1997-01-10 1997-01-10 Proportional solenoid control valve

Publications (1)

Publication Number Publication Date
JPH10196831A true JPH10196831A (en) 1998-07-31

Family

ID=12408022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3421897A Pending JPH10196831A (en) 1997-01-10 1997-01-10 Proportional solenoid control valve

Country Status (1)

Country Link
JP (1) JPH10196831A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170939A1 (en) * 2016-03-30 2017-10-05 Ckd株式会社 Flow path switching valve and manufacturing method therefor
JP2017187162A (en) * 2016-03-30 2017-10-12 Ckd株式会社 Flow passage selector valve and manufacturing method thereof
US10344887B2 (en) 2016-07-25 2019-07-09 Ckd Corporation Electromagnetic actuator
DE102019006442B3 (en) * 2019-09-12 2021-01-21 Staiger Gmbh & Co. Kg Valve
US11268628B2 (en) 2017-12-25 2022-03-08 Ckd Corporation Electromagnetic actuator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170939A1 (en) * 2016-03-30 2017-10-05 Ckd株式会社 Flow path switching valve and manufacturing method therefor
JP2017187162A (en) * 2016-03-30 2017-10-12 Ckd株式会社 Flow passage selector valve and manufacturing method thereof
TWI662211B (en) * 2016-03-30 2019-06-11 日商Ckd股份有限公司 Flow path switching valve and manufacturing method thereof
US10907748B2 (en) 2016-03-30 2021-02-02 Ckd Corporation Flow path switching valve and manufacturing method therefor
US11566723B2 (en) 2016-03-30 2023-01-31 Ckd Corporation Flow path switching valve and manufacturing method therefor
US10344887B2 (en) 2016-07-25 2019-07-09 Ckd Corporation Electromagnetic actuator
US11268628B2 (en) 2017-12-25 2022-03-08 Ckd Corporation Electromagnetic actuator
DE102019006442B3 (en) * 2019-09-12 2021-01-21 Staiger Gmbh & Co. Kg Valve

Similar Documents

Publication Publication Date Title
EP0986779B1 (en) Electrohydraulic proportional pressure reducing-relieving valve
US6220569B1 (en) Electrically controlled proportional valve
US5467797A (en) Two-position three-way solenoid valve
US4585206A (en) Proportional flow control valve
EP0919754A3 (en) Proportional variable force solenoid control valve with armature damping
JP4294776B2 (en) Integrated electro-hydraulic actuator
US4362182A (en) Nozzle force feedback for pilot stage flapper
US4919168A (en) Valve arrangement
US20020079005A1 (en) Self-holding type solenoid-operated valve
JPH10196831A (en) Proportional solenoid control valve
KR100476246B1 (en) Proportional pressure control valve
TW554148B (en) Solenoid for solenoid valve
JPH11218253A (en) Proportional solenoid type direction throttle valve
US10969033B2 (en) Proporational flow control valve with an integrated pressure compensator and features for flow force reduction
JPH0246384A (en) Solenoid valve
US6883545B2 (en) Three-way switching valve
EP0545157B1 (en) Proportional pressure control valve
GB2352495A (en) Pressure balanced flow control valve
JPH0341179Y2 (en)
JPH01261581A (en) Control valve
JP2000055231A (en) Proportional throttle valve
EP0864474A3 (en) Solenoid controlled valve and antilock control apparatus using the same
JPH0685978U (en) Liquid pressure controller
JPS5891984A (en) Electricity-oil proportion type relief valve
JPH026083B2 (en)