JPH10196304A - Device to cool wall surrounded with flow on both sides - Google Patents

Device to cool wall surrounded with flow on both sides

Info

Publication number
JPH10196304A
JPH10196304A JP9353641A JP35364197A JPH10196304A JP H10196304 A JPH10196304 A JP H10196304A JP 9353641 A JP9353641 A JP 9353641A JP 35364197 A JP35364197 A JP 35364197A JP H10196304 A JPH10196304 A JP H10196304A
Authority
JP
Japan
Prior art keywords
wall
flow
cooling medium
pin
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9353641A
Other languages
Japanese (ja)
Inventor
Kenneth Hall
ホール ケネス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of JPH10196304A publication Critical patent/JPH10196304A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer

Abstract

PROBLEM TO BE SOLVED: To simplify a cooling means, perform casting of a pin togetherwith a blade when a wall to be cooled is a cast turbine blade, and provide a means to allow constitution convenient to the efficiency of the rear edge of the blade. SOLUTION: A wall W to be cooled has the outside surrounded with a flow of a heating medium and the inside surrounded with a flow of a cooling medium. In a so formed cooling device, a plurality of thermal bridges in the shape of a pin S having high thermal conductivity and slight solubility is arranged. The pin is thrust in a space E on which a load is exerted by a cooling medium. The pin S is formed favorably of a synthetic diamond formed of isotope and cast togetherwith the wall W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は外側で熱い媒体の流
れにより,かつ内側で冷却媒体の流れにより囲まれる壁
(W)を冷却するための装置に関する。
The present invention relates to a device for cooling a wall (W) surrounded by a flow of a hot medium on the outside and a flow of a cooling medium on the inside.

【0002】[0002]

【従来の技術】この種の冷却されるべき壁は例えばター
ボ機械,特に軸流ガスタービンの例えば内部冷却式羽根
として形成される。
2. Description of the Related Art A wall to be cooled of this kind is formed, for example, as an internally cooled blade of a turbomachine, in particular of an axial gas turbine.

【0003】冷却媒体としての液体,蒸気又は空気によ
り内部で冷却される中空のタービン羽根は従来久しく公
知である。この場合特に問題となるのは,この種の羽根
の,閉じた回路内で冷却媒体により通流される後縁の冷
却である。後縁を形成する壁は熱を排出すべき狭い隙間
を備えている。このことのために,狭い隙間の幅は所定
の最小値を下回ってはならない。後縁の過熱を回避する
には,材料の大きな集積が存在してもならない。それの
みならず,壁厚は強度の理由から所定の寸法を下回って
はならない。これらの諸条件を満たすために,内部冷却
式の羽根はその後縁のところに大きな丸み半径を有して
おり,このことは羽根効率に不利に作用する。
[0003] Hollow turbine blades internally cooled by liquid, steam or air as a cooling medium have been known for a long time. Particularly problematic in this case is the cooling of the trailing edge of such a blade, which is passed by a cooling medium in a closed circuit. The wall forming the trailing edge has a narrow gap from which heat can be dissipated. For this, the width of the narrow gap must not be less than a predetermined minimum. To avoid overheating of the trailing edge, there must not be a large accumulation of material. In addition, the wall thickness must not be less than the specified dimensions for strength reasons. In order to meet these conditions, internally cooled blades have a large radius at the trailing edge, which adversely affects blade efficiency.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題とすると
ころは,特に狭い隙間からの熱排出を改善する装置を内
部冷却式の壁に形成することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a device on an internally cooled wall for improving heat dissipation, particularly from narrow gaps.

【0005】[0005]

【課題を解決するための手段】上記課題は本発明によれ
ば,請求項1に記載のように,冷却媒体の流れにより囲
まれる壁に,高い熱伝導性を有する難溶性のピンの形状
の複数の熱的なブリッジが配置されており,これらのピ
ンが冷却媒体により負荷されるスペース内に突入してい
ることにより解決される。
According to the present invention, there is provided, according to the present invention, a method in which a wall surrounded by a flow of a cooling medium is provided with a shape of a hardly soluble pin having high thermal conductivity. The solution is that a plurality of thermal bridges are arranged, the pins protruding into the space loaded by the cooling medium.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態は請求項2以
下に記載したとおりである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention are as described in claim 2 and the following.

【0007】[0007]

【実施例】次ぎに,内部冷却式のガスタービン羽根につ
き本発明の1実施例を図面に示して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention for an internally cooled gas turbine blade will be described with reference to the drawings.

【0008】図面には本発明の理解にとって重要なエレ
メントだけが図示されている。関与する媒体の流れ方向
は矢印により示されている。
The drawings show only those elements which are important for an understanding of the invention. The direction of flow of the media involved is indicated by arrows.

【0009】図1に示す鋳造された羽根は3つの内室
a,b,cを備えており,これらの内室は冷却媒体例え
ば蒸気により図平面に対して垂直に通流される。その場
合,羽根輪郭を形成する壁W(この壁の外側の囲りを熱
ガスが通流する)の内側に沿って冷却媒体が通流され,
壁から熱が冷却媒体によって奪われる。少なくとも前方
の2つの室a,b内には,ガイドリブ,流れ通路,イン
パクト冷却のための挿入体及び類似物のような図示され
ていない補助手段を壁冷却の改善のために設けることが
できる。本実施例の場合には,冷却媒体は閉じた回路内
で循環しており,従って,前縁,吸込側,吐出側のみな
らず後縁の領域内でも流れ通路内への冷却媒体の吹き出
しは行われない。
The cast blade shown in FIG. 1 has three internal chambers a, b, c, which are passed perpendicularly to the plane of the drawing by a cooling medium, for example steam. In that case, the cooling medium flows along the inside of the wall W forming the blade contour (the hot gas flows through the outer periphery of this wall),
Heat is removed from the walls by the cooling medium. In at least the front two chambers a, b, auxiliary means, not shown, such as guide ribs, flow channels, impact cooling inserts and the like, can be provided for improving wall cooling. In the case of the present embodiment, the cooling medium is circulated in a closed circuit, so that the blowing of the cooling medium into the flow passage in the region of the trailing edge as well as the leading edge, the suction side, the discharge side. Not done.

【0010】このことにより,後縁のジオメトリに関す
る問題点が生じる。これを図2にもとづいて説明する。
壁により形成された狭い隙間Eは攻撃する熱の排出のた
めの十分な冷却媒体を受容することができるように,最
小の大きさを有していなければならない。それゆえ,縁
の内側の丸みは直径dを有するように形成される。強度
の理由から,壁厚Tは最小の値を下回ってはならない。
後縁の過熱を回避するために,この箇所に大きな材料集
積が生じてはならない。それゆえ,寸法Laは一般に壁
厚Tに相応している。これらすべてのことから,縁の外
側の丸みは比較的大きな直径Daを有するように形成さ
れる。冷却される後縁についてここまでのことは公知で
ある。
This creates problems with the geometry of the trailing edge. This will be described with reference to FIG.
The narrow gap E formed by the wall must have a minimum size in order to be able to receive sufficient cooling medium for the discharge of the attacking heat. Therefore, the inner radius of the edge is formed to have a diameter d. For reasons of strength, the wall thickness T must not fall below a minimum value.
In order to avoid overheating of the trailing edge, no significant material accumulation should occur at this point. The dimension La therefore generally corresponds to the wall thickness T. From all this, the outer radius of the edge is formed to have a relatively large diameter Da. This is known for trailing edges to be cooled.

【0011】本発明はここを出発点として解決手段を提
供する。図3によれば,冷却媒体の流れにより囲まれる
壁内の改善された熱排出のために,ピンSの形状の複数
の熱的なブリッジが配置される。これらのピンは,冷却
媒体により負荷されるスペース,換言すれば狭い隙間E
内に突入するように設けられる。
The present invention provides a solution starting from here. According to FIG. 3, a plurality of thermal bridges in the form of pins S are arranged for improved heat dissipation in the wall surrounded by the flow of the cooling medium. These pins provide a space to be loaded by the cooling medium, in other words, a narrow gap E
It is provided so as to rush into the inside.

【0012】製作上の理由で,熱的なブリッジは難溶性
の材料から成る。この種の内部冷却式の羽根が一般には
鋳造により製作されるため,ピンは予め鋳造コア内に配
置され,羽根と一緒に一体に鋳造されることが提案され
る。このことの有する利点は,この領域内に石英ストラ
ット又はアルミニウム合金ストラットの形状の一般的な
スペーサを省くことができることにある。
[0012] For manufacturing reasons, the thermal bridge is made of a poorly soluble material. Because such internally cooled vanes are generally manufactured by casting, it is proposed that the pins be pre-arranged in a casting core and cast integrally with the vanes. The advantage of this is that common spacers in the form of quartz or aluminum alloy struts can be omitted in this area.

【0013】図3から判るように,壁厚Tが従来と変わ
らず,かつその縁の内側の丸みdが従来と変わらなけれ
ば,従来に比して後縁の寸法Lnを有する比較的大きな
材料集積が可能である。このことは著しく鋭い後縁の形
成を可能ならしめ,このことは縁の外側の丸みの直径D
nが比較的小さくなる点で優れている。
As can be seen from FIG. 3, if the wall thickness T does not change from the conventional one and the roundness d inside the edge does not change from the conventional one, a relatively large material having the dimension Ln of the trailing edge as compared with the conventional one Integration is possible. This allows the formation of a very sharp trailing edge, which is the outer diameter D of the edge.
This is excellent in that n is relatively small.

【0014】所望の熱排出を保証するために,高い熱伝
導率を有するピンが選択される。このことのために適当
な材料として合成ダイヤモンドが推奨される。アイソト
ープC−14から成る合成ダイヤモンドは熱伝導率に関
して特別に有利である。
To ensure the desired heat dissipation, pins with a high thermal conductivity are selected. Synthetic diamond is recommended as a suitable material for this. Synthetic diamond consisting of isotope C-14 is particularly advantageous with regard to thermal conductivity.

【0015】ピンSは例えば円筒状に形成される。勿
論,比較的大きな熱交換面を備えたその他のジオメトリ
も可能であり,例えば多角形横断面を有するピン,又は
歯付きのピンが使用されてもよい。
The pin S is formed, for example, in a cylindrical shape. Of course, other geometries with relatively large heat exchange surfaces are also possible, for example pins with a polygonal cross section or toothed pins may be used.

【0016】与えられた条件,−換言すれば,後縁ジオ
メトリ及び壁厚;冷却媒体により通流されるべき狭い隙
間のジオメトリ;羽根後縁の熱負荷;冷却媒体の種類,
温度及び流れ速度−では,選択されたピン材料の熱伝導
率並びに通流される狭い隙間内に突入する交換面が,羽
根高さにわたり使用されるべきピンの数の尺度となる。
Given conditions, in other words: trailing edge geometry and wall thickness; geometry of the narrow gap to be passed by the cooling medium; heat load on the blade trailing edge; type of cooling medium;
In terms of temperature and flow rate, the thermal conductivity of the selected pin material and the exchange surface which penetrates into the narrow gap through which it flows is a measure of the number of pins to be used over the blade height.

【0017】図4によれば,羽根高さにわたり半径方向
に段階的かつ規則的に行われたピンの配列が後方の室c
の縦断面で示されている。羽根高さにわたる熱負荷に応
じて不均一なピッチでピンを配置することもでき,又は
種々異なる熱交換面を備えたピンを同じピッチで配列す
ることも可能であるのは勿論である。
According to FIG. 4, the arrangement of the pins in a stepwise and regular manner in the radial direction over the height of the blades results in a rear chamber c.
Is shown in vertical section. It is of course possible to arrange the pins at a non-uniform pitch depending on the heat load over the blade height, or to arrange the pins with different heat exchange surfaces at the same pitch.

【0018】本発明は図示の実施例に制約されないのは
いうまでもない。図示の実施例と相違して,別の羽根部
分を,それも熱を排出しなければならない大きな材料集
積により問題となるあらゆる箇所,例えば羽根基部又は
羽根先端の領域をこの新しい形式で冷却することも可能
であるのは勿論である。さらに,本発明は羽根又は狭い
隙間に制約されず,むしろ媒体の流に囲まれかつ冷却さ
れるべきすべてのエレメントにおいて適用されることが
できる。
It goes without saying that the invention is not restricted to the embodiment shown. In contrast to the illustrated embodiment, the cooling of the other blade parts in any new way, which is also a problem due to the large material accumulation which must also dissipate heat, for example, the area of the blade base or blade tips, Of course, it is also possible. Furthermore, the invention is not restricted to vanes or narrow gaps, but rather can be applied to all elements that are surrounded by a medium flow and to be cooled.

【0019】[0019]

【発明の効果】本発明の利点とするところは,特に,手
段がシンプルであることにある。冷却されるべき壁が鋳
造されたタービン羽根である場合には,羽根と一緒にピ
ンを鋳造することができる。この手段はさらに羽根の後
縁の,効率に有利な構成を可能にする。
An advantage of the present invention is, in particular, that the means is simple. If the wall to be cooled is a cast turbine blade, the pins can be cast with the blade. This measure also allows an advantageous configuration of the trailing edge of the blade.

【図面の簡単な説明】[Brief description of the drawings]

【図1】羽根の横断面図である。FIG. 1 is a cross-sectional view of a blade.

【図2】公知技術にもとづく後縁を備えた図1の一点鎖
線zで囲んだ箇所の詳細図である。
FIG. 2 is a detailed view of a portion surrounded by an alternate long and short dash line z in FIG. 1 having a trailing edge based on a known technique.

【図3】本発明にもとづく後縁を図2と同様に示す図で
ある。
3 shows a trailing edge according to the invention in the same way as in FIG. 2;

【図4】羽根の本発明にもとづく後縁領域の縦断面図で
ある。
FIG. 4 is a longitudinal sectional view of a trailing edge region of a blade according to the present invention.

【符号の説明】[Explanation of symbols]

a,b,c 羽根の内室, d 縁の内側の丸み, D
a及びDn 縁の外側の丸みの直径, E 狭い隙間,
La及びLn 材料集積の寸法, S 冷却のための
ピン, T 壁厚, W 冷却されるべき壁
a, b, c Inner chamber of blade, d Roundness inside edge, D
a and the diameter of the outer roundness of the Dn edge, E a narrow gap,
La and Ln dimensions of material accumulation, S pin for cooling, T wall thickness, W wall to be cooled

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 外側で熱い媒体の流れにより,かつ内側
で冷却媒体の流れにより囲まれる壁(W)を冷却するた
めの装置において,冷却媒体の流れにより囲まれる壁
に,高い熱伝導性を有する難溶性のピン(S)の形状の
複数の熱的なブリッジが配置されており,これらのピン
が冷却媒体により負荷されるスペース(E)内に突入し
ていることを特徴とする両側で流れにより囲まれる壁を
冷却するための装置。
An apparatus for cooling a wall (W) surrounded by a flow of a hot medium on the outside and a flow of a cooling medium on the inside, wherein the wall surrounded by the flow of the cooling medium has high thermal conductivity. A plurality of thermal bridges in the form of hardly soluble pins (S) are arranged, and these pins protrude into the space (E) loaded by the cooling medium, on both sides. A device for cooling a wall surrounded by a flow.
【請求項2】 ピン(S)がアイソトープC−14から
成る合成ダイヤモンドから成る請求項1記載の装置。
2. Apparatus according to claim 1, wherein the pin (S) comprises a synthetic diamond comprising the isotope C-14.
【請求項3】 ピン(S)が壁(W)と一緒に鋳造され
ている請求項1記載の装置。
3. The device according to claim 1, wherein the pin (S) is cast with the wall (W).
【請求項4】 冷却媒体により負荷されるスペースが,
少なくとも部分的に,冷却されるべき壁(W)自体によ
り形成された閉じた狭い隙間(E)から成る請求項1記
載の装置。
4. The space loaded by the cooling medium is:
2. The device according to claim 1, comprising at least in part a closed narrow gap formed by the wall to be cooled itself.
【請求項5】 狭い隙間(E)がターボ機械の内部冷却
式の羽根の後縁により形成されている請求項4記載の装
置。
5. The device according to claim 4, wherein the narrow gap (E) is formed by the trailing edge of the internally cooled vanes of the turbomachine.
【請求項6】 狭い隙間(E)が少なくともほぼ,ター
ボ機械の羽根の全高にわたり延びており,かつ,多数の
ピン(S)がこの高さにわたり分配して配置されている
請求項5記載の装置。
6. The method according to claim 5, wherein the narrow gap extends at least approximately over the entire height of the turbomachine blade, and a number of pins are distributed over this height. apparatus.
JP9353641A 1996-12-23 1997-12-22 Device to cool wall surrounded with flow on both sides Pending JPH10196304A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19654115A DE19654115A1 (en) 1996-12-23 1996-12-23 Device for cooling a wall on both sides
DE19654115.8 1996-12-23

Publications (1)

Publication Number Publication Date
JPH10196304A true JPH10196304A (en) 1998-07-28

Family

ID=7816083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9353641A Pending JPH10196304A (en) 1996-12-23 1997-12-22 Device to cool wall surrounded with flow on both sides

Country Status (4)

Country Link
EP (1) EP0851095B1 (en)
JP (1) JPH10196304A (en)
CN (1) CN1186151A (en)
DE (2) DE19654115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333022B2 (en) * 2019-08-06 2022-05-17 General Electric Company Airfoil with thermally conductive pins

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59910200D1 (en) 1999-04-21 2004-09-16 Alstom Technology Ltd Baden Coolable component
DE19926817A1 (en) * 1999-06-12 2000-12-14 Abb Research Ltd Turbine component, especially blade, has elements with very good heat conducting qualities integrated into blade so that they partially or completely intersperse blade in direction of greatest temperature gradients
GB0008897D0 (en) 2000-04-12 2000-05-31 Cheiros Technology Ltd Improvements relating to heat transfer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE559676C (en) * 1931-08-20 1932-09-22 E H Hans Holzwarth Dr Ing Method for cooling blades, in particular for internal combustion turbines
GB2087065B (en) * 1980-11-08 1984-11-07 Rolls Royce Wall structure for a combustion chamber
DE3211139C1 (en) * 1982-03-26 1983-08-11 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Axial turbine blades, in particular axial turbine blades for gas turbine engines
GB8607526D0 (en) * 1986-03-26 1986-04-30 Artus R G C Cooled component assembly
US5810552A (en) * 1992-02-18 1998-09-22 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
US5348446A (en) * 1993-04-28 1994-09-20 General Electric Company Bimetallic turbine airfoil
FR2714254B1 (en) * 1993-12-20 1996-03-08 Aerospatiale Heat transfer element, usable in particular in electronics as a printed circuit or component support and its manufacturing process.
US5566752A (en) * 1994-10-20 1996-10-22 Lockheed Fort Worth Company High heat density transfer device
US5536143A (en) * 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333022B2 (en) * 2019-08-06 2022-05-17 General Electric Company Airfoil with thermally conductive pins

Also Published As

Publication number Publication date
EP0851095A1 (en) 1998-07-01
CN1186151A (en) 1998-07-01
EP0851095B1 (en) 2002-09-25
DE19654115A1 (en) 1998-06-25
DE59708321D1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US6257831B1 (en) Cast airfoil structure with openings which do not require plugging
JP4181860B2 (en) Part wall with intermittent ribbed heat transfer surface
JP4315599B2 (en) Turbine blade
JP3486191B2 (en) Turbine vane with platform cavity for dual supply of cooling fluid
JP3053174B2 (en) Wing for use in turbomachine and method of manufacturing the same
US6481966B2 (en) Blade for gas turbines with choke cross section at the trailing edge
JP4669202B2 (en) Gas turbine blade
US7311498B2 (en) Microcircuit cooling for blades
KR20060057508A (en) Airfoil with supplemental cooling channel adjacent leading edge
US4563125A (en) Ceramic blades for turbomachines
JP2005264934A (en) Turbine air foil and inlet arrangement method for cooling circuit
JP2001107704A (en) Coolable air foil, cooling circuit and cooling method for wall
JPH10274001A (en) Turbulence promotion structure of cooling passage of blade inside gas turbine engine
JP2004293557A (en) Method of manufacturing mold of blade of gas turbine engine
JP2004308658A (en) Method for cooling aerofoil and its device
JPH07145702A (en) Turbine cooling blade
JP2005061406A (en) Cooling circuit and hollow airfoil
JP2005061407A (en) Turbine rotor blade and layout method of inlet of cooling circuit
KR20010039613A (en) Turbine blade tip with offset squealer
EP2607624A1 (en) Vane for a turbomachine
JP2005201273A (en) Improved cooling air exhaust slot for turbine blade
JP2008111441A (en) Turbomachine turbine shroud sector
JPH08503530A (en) Coolable airfoil and core for casting the airfoil
JP2001050004A (en) Blade profile with heat-insulated front edge
US20050265836A1 (en) Cooled rotor blade and method for cooling a rotor blade