JPH10195502A - Stainless steel powder, stainless steel member and production of the stainless steel member - Google Patents

Stainless steel powder, stainless steel member and production of the stainless steel member

Info

Publication number
JPH10195502A
JPH10195502A JP9002357A JP235797A JPH10195502A JP H10195502 A JPH10195502 A JP H10195502A JP 9002357 A JP9002357 A JP 9002357A JP 235797 A JP235797 A JP 235797A JP H10195502 A JPH10195502 A JP H10195502A
Authority
JP
Japan
Prior art keywords
stainless steel
powder
raw material
steel member
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9002357A
Other languages
Japanese (ja)
Inventor
Megumi Ameyama
惠 飴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP9002357A priority Critical patent/JPH10195502A/en
Publication of JPH10195502A publication Critical patent/JPH10195502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain stainless steel powder subjected to cold working to form into the raw material for a high strength and high toughness stainless steel member by subjecting the raw material powder of a stainless steel to mechanical milling for a specified time at an ordinary temp. SOLUTION: The raw material powder is suitably composed of 316L series austenitic stainless steel powder and contains 16 to 18% Cr, 12 to 15% Ni and 2 to 3% Mo. This powder is, e.g. charged to a device for milling such as an 'Attoritor(R)', a ball mill or the like and is subjected to cold working at an ordinary temp. for about several min. to several hundreds time. In this way, strains are given to the crystals of the raw material powder by intensive working, and after that, recrystallization occurs, but the average grain size of the crystals is extremely small of several tens to several hundreds nm. The stainless steel powder subjected to the cold working is subjected to heat treatment at 600 at 800 deg.C and is furthermore sintered at a temp. more than the heat treating temp. and also less than 1400 deg.C, by which a member having an ultrafine structure in which austenitic phases and sigma phases are uniformly mixed can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、メカニカルミリングに
よる冷間加工済のステンレス鋼粉末、この冷間加工済ス
テンレス鋼粉末を用いて製造したステンレス鋼部材及
び、該ステンレス鋼部材の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-worked stainless steel powder by mechanical milling, a stainless steel member manufactured by using the cold-worked stainless steel powder, and a method of manufacturing the stainless steel member. It is.

【0002】[0002]

【従来の技術】金属材料、例えば、ステンレス鋼の高強
度化、高靱性化には、材料自体の結晶粒の大きさを微細
にすることが効果的であることが知られている。そのよ
うな結晶粒の微細化を図るための加工方法として、従
来、オーステナイト系のステンレス鋼に対して、冷間圧
延を施した後、適当な熱処理を加えたり、または、上記
ステンレス鋼に線引き加工を施すことが行われている。
2. Description of the Related Art It is known that reducing the size of crystal grains of a material itself is effective in increasing the strength and toughness of a metal material such as stainless steel. Conventionally, as a processing method for achieving such crystal grain refinement, after subjecting austenitic stainless steel to cold rolling, a suitable heat treatment is applied thereto, or wire drawing is performed on the stainless steel. Is performed.

【0003】[0003]

【発明が解決しようとする課題】ところで、図6に示す
ように、上記方法で加工した従来のオーステナイト系の
ステンレス鋼は、結晶の平均粒径が数μm乃至数10μ
mと、未だ結晶粒が充分に微細化されておらず、且つオ
ーステナイト相Aの間に、主としてFe及びCrからな
るシグマ相Bが不均一に分散されているが、このシグマ
相Bは固くて脆いため、目的とする高強度化、高靱性化
が充分に実現されない問題があった。しかも、加工法が
冷間圧延や線引きに限られるため、製品の形状が薄板や
細線等に限定される不具合があった。
As shown in FIG. 6, the conventional austenitic stainless steel processed by the above method has an average crystal grain size of several μm to several tens μm.
m and the crystal grains have not been sufficiently refined yet, and the sigma phase B mainly composed of Fe and Cr is unevenly dispersed between the austenite phase A, but the sigma phase B is hard and Because of brittleness, there was a problem that the desired high strength and high toughness were not sufficiently realized. In addition, since the working method is limited to cold rolling or drawing, there is a problem that the shape of the product is limited to a thin plate, a thin wire, or the like.

【0004】[0004]

【課題を解決するための手段】本発明は前記の課題を解
決して、粉末加工法により高強度、高靱性のステンレス
鋼部材を製造するための原料となる冷間加工済ステンレ
ス鋼粉末、係る粉末を用いて製造したステンレス鋼部材
並びに、該ステンレス鋼部材の製造方法を提供すること
を目的としている。そのため、請求項1の冷間加工済ス
テンレス鋼粉末は、ステンレス鋼の原料粉末に数分間乃
至数100時間、常温でメカニカルミリングを施してな
るものである。
According to the present invention, there is provided a cold-worked stainless steel powder which is a raw material for producing a high-strength, high-toughness stainless steel member by a powder processing method. An object of the present invention is to provide a stainless steel member manufactured using powder and a method for manufacturing the stainless steel member. Therefore, the cold-worked stainless steel powder of the first aspect is obtained by subjecting a raw material powder of stainless steel to mechanical milling at room temperature for several minutes to several hundred hours.

【0005】上記原料粉末内の結晶の平均粒径は、例え
ば、数μm乃至数10μmと、かなり大きいが、上記メ
カニカルミリングによる冷間加工により原料粉末に次第
にひずみが与えられ、元の結晶が破壊されてゆく。その
後、時間の経過とともに、粉末内部で再結晶が始まる
が、再結晶後の結晶の平均粒径は数10nm乃至数10
0nmと、極めて微細なものとなる。係る冷間加工済ス
テンレス鋼粉末は、射出成形や押出成形等の原料とする
ことができる。
The average particle size of the crystals in the raw material powder is considerably large, for example, several μm to several tens μm, but the raw material powder is gradually strained by the cold working by the mechanical milling, and the original crystal is destroyed. It is being done. Thereafter, as time passes, recrystallization starts inside the powder, and the average particle diameter of the recrystallized crystal is several tens nm to several tens.
0 nm, which is extremely fine. Such cold-worked stainless steel powder can be used as a raw material for injection molding, extrusion molding and the like.

【0006】請求項2の冷間加工済ステンレス鋼粉末
は、請求項1の構成において、上記ステンレス鋼の原料
粉末は、Cr16乃至18%、Ni12乃至15%、M
o2乃至3%を含むことを特徴とするものである。上記
の成分構成は、JIS(日本工業規格)のSUS316
またはSUS316Lの規格に対応するものである。
The cold-worked stainless steel powder according to claim 2 is the composition according to claim 1, wherein the raw material powder for the stainless steel is 16 to 18% Cr, 12 to 15% Ni, M
o2 to 3%. The composition of the above components is SUS316 of JIS (Japanese Industrial Standard).
Alternatively, it corresponds to the SUS316L standard.

【0007】請求項3のステンレス鋼部材は、オーステ
ナイト相とシグマ相とが均一に混合した微細組織を有
し、平均結晶粒径が1μm以下のステンレス鋼からなる
ものである。
A third aspect of the present invention is a stainless steel member having a fine structure in which an austenite phase and a sigma phase are uniformly mixed, and having an average crystal grain size of 1 μm or less.

【0008】請求項4のステンレス鋼部材は、請求項3
の構成において、上記ステンレス鋼部材は、ステンレス
鋼の原料粉末に数分間乃至数100時間、常温でメカニ
カルミリングを施した後、600乃至800℃で熱処理
を施し、更にこの熱処理温度以上且つ1400℃以下の
温度で焼結してなることを特徴とするものである。
[0008] The stainless steel member of the fourth aspect is the third aspect of the invention.
In the above structure, the stainless steel member is subjected to mechanical milling at room temperature for several minutes to several hundred hours on a raw material powder of stainless steel, and then to a heat treatment at 600 to 800 ° C., and further to the heat treatment temperature or more and 1400 ° C. or less. Characterized by being sintered at a temperature of

【0009】上記のように、原料粉末にメカニカルミリ
ングによる冷間加工を施すことにより、粉末内部の結晶
の平均粒径を数10乃至数100nm程度の極めて微細
なものとし、その後、シグマ相生成温度域である600
乃至800℃で熱処理を行った後、焼結することによ
り、請求項3のような、オーステナイト相にシグマ相が
混合した微細組織とすることができる。ここでは、粉末
加工法でステンレス鋼部材を製造するので、該ステンレ
ス鋼部材は、板材又は細線の他にバルク形状のものも任
意に作成できる。
As described above, by subjecting the raw material powder to cold working by mechanical milling, the average particle diameter of the crystal inside the powder is made extremely fine of about several tens to several hundreds nm, and then the sigma phase formation temperature is reduced. Area 600
After performing heat treatment at a temperature of from about 800 ° C. to about 800 ° C., sintering can be performed to obtain a fine structure in which an austenite phase and a sigma phase are mixed. Here, since the stainless steel member is manufactured by the powder processing method, the stainless steel member can be arbitrarily made in a bulk shape in addition to the plate material or the fine wire.

【0010】請求項5のステンレス鋼部材は、請求項4
の構成において、上記ステンレス鋼の原料粉末は、Cr
16乃至18%、Ni12乃至15%、Mo2乃至3%
を含むことを特徴とするものである。
[0010] The stainless steel member according to the fifth aspect is the fourth aspect.
Wherein the raw material powder of the stainless steel is Cr
16-18%, Ni12-15%, Mo2-3%
It is characterized by including.

【0011】請求項6のステンレス鋼部材の製造方法
は、ステンレス鋼の原料粉末に数分間乃至数100時
間、常温でメカニカルミリングを施した後、600乃至
800℃(シグマ相生成温度域)で熱処理を施し、更に
この熱処理温度以上且つ1400℃以下の温度で焼結す
ることを特徴とするものである。
According to a sixth aspect of the present invention, the stainless steel material powder is subjected to mechanical milling at room temperature for several minutes to several hundred hours at a normal temperature, and then heat-treated at 600 to 800 ° C. (sigma phase formation temperature range). And sintering at a temperature not lower than the heat treatment temperature and not higher than 1400 ° C.

【0012】請求項7のステンレス鋼部材の製造方法
は、請求項6の方法において、上記メカニカルミリング
の封入ガスとして、N2 ガスまたはH2 ガスを使用した
ことを特徴とするものである。封入されたN2 ガスまた
はH2 ガスは、粉末を固く、脆くして、微粉化を促進す
る役割を果たす。なお、冷間加工後の熱処理時に、通
常、N2 ガスまたはH2 ガスは、ステンレス鋼から分離
される。
A method of manufacturing a stainless steel member according to claim 7 is characterized in that, in the method of claim 6, N 2 gas or H 2 gas is used as the sealing gas for the mechanical milling. The encapsulated N 2 gas or H 2 gas serves to make the powder hard and brittle, and to promote pulverization. During the heat treatment after the cold working, the N 2 gas or the H 2 gas is usually separated from the stainless steel.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基いて説明する。本発明法の粉末加工法により、ステ
ンレス鋼部材を製造する場合、原料粉末としては、各種
の成分組成を有するステンレス鋼粉末を用いることが可
能であるが、好適には、JISのSUS316L(Cr
16乃至18%、Ni12乃至15%、Mo2乃至3
%)に規定されたオーステナイト系のステンレス鋼粉末
を用いる。
Embodiments of the present invention will be described below with reference to the drawings. When a stainless steel member is manufactured by the powder processing method of the present invention, stainless steel powder having various component compositions can be used as a raw material powder. Preferably, JIS SUS316L (Cr
16-18%, Ni 12-15%, Mo2-3
%) Of austenitic stainless steel powder.

【0014】そして、上記ステンレス鋼粉末を、例え
ば、図1に示すようなアトライタ1やボールミル等のミ
リング用装置に挿入し、常温で数分間乃至数100時間
程度、冷間加工を施す。上記アトライタ1は、例えば、
外周部に冷却水の循環通路2が形成された水冷容器3内
に、多数の鋼球4を収容し、水平方向に延びる攪拌棒5
が交差状に取り付けられた垂直方向の軸6を上記水冷容
器3の中央に回転自在に配置してなる装置である。上記
水冷容器3内に、ステンレス鋼粉末と、Arガス、N2
ガスまたはH2 ガスを封入して、軸6を回転させること
により、上記ステンレス鋼粉末に、メカニカルミリング
を施すようになっている。
Then, the stainless steel powder is inserted into a milling device such as an attritor 1 or a ball mill as shown in FIG. 1 and subjected to cold working at room temperature for several minutes to several hundred hours. The attritor 1 is, for example,
A plurality of steel balls 4 are accommodated in a water-cooled container 3 having a cooling water circulation passage 2 formed in an outer peripheral portion thereof, and a stirring rod 5 extending in a horizontal direction is provided.
Is a device in which a vertical shaft 6 attached in a cross shape is rotatably disposed at the center of the water-cooled container 3. A stainless steel powder, Ar gas, N 2
By rotating the shaft 6 with gas or H 2 gas sealed, mechanical milling is performed on the stainless steel powder.

【0015】上記ステンレス鋼粉末は、原料粉末の段階
では、平均粒子径が数10μm乃至数100μm程度の
大きさであり、また、粉末内の結晶の平均粒径は数10
μm程度であるが、アトライタ1で冷間加工を施される
ことにより、原料粉末の結晶に強加工によってひずみが
与えられた後、再結晶する。所定時間冷間加工が施され
て、再結晶したステンレス鋼粉末内の結晶の平均粒径
は、数10乃至数100nmと極めて小さなものとな
る。
The above-mentioned stainless steel powder has a mean particle size of several tens μm to several hundreds μm at the stage of the raw material powder, and the average particle size of crystals in the powder is several tens μm.
Although being about μm, the crystal of the raw material powder is subjected to cold working by the attritor 1 so that the crystal is recrystallized after being subjected to strain by strong working. The average grain size of the crystals in the stainless steel powder that has been cold worked for a predetermined time and recrystallized becomes extremely small, several tens to several hundreds of nm.

【0016】係る冷間加工済のステンレス鋼粉末は、そ
のまま、射出成形や押出成形の原料粉末として、販売す
ることが可能である。また、上記冷間加工済のステンレ
ス鋼粉末を焼結して、所望のステンレス鋼部材を作成す
る場合、上記粉末を金型等の所定の容器に収容し、シグ
マ相生成温度域である600乃至800℃程度の範囲、
好適には700℃程度で所定時間(例えば、2時間程
度)、所定の高圧(例えば、2000気圧程度)の下で
熱処理を施し、引き続き、上記熱処理温度以上で且つ1
400℃以下程度の温度、例えば、800℃程度で所定
時間(例えば、1時間程度)、所定の高圧(例えば、2
000気圧程度)の下で維持して焼結させる。
The cold-processed stainless steel powder can be sold as it is as a raw material powder for injection molding or extrusion molding. Further, when sintering the cold-worked stainless steel powder to form a desired stainless steel member, the powder is stored in a predetermined container such as a mold, and the sigma phase generation temperature range of 600 to Around 800 ° C,
Preferably, heat treatment is performed at about 700 ° C. for a predetermined time (for example, about 2 hours) under a predetermined high pressure (for example, about 2000 atm).
At a temperature of about 400 ° C. or less, for example, about 800 ° C., for a predetermined time (for example, about 1 hour), at a predetermined high pressure (for example, 2 hours).
(Approximately 000 atm) for sintering.

【0017】このようにして得られたステンレス鋼部材
は、オーステナイト相とシグマ相とが均一に混合した超
微細な組織を有し、平均結晶粒径は0.5μm以下とな
る。すなわち、ステンレス鋼粉末に予めメカニカルミリ
ングを施しているので、この冷間加工済ステンレス鋼粉
末の再結晶による軟化と、超微細結晶粒による超塑性流
動とにより、焼結が促進されるが、低温では、粒成長が
遅いため、超微細な結晶粒組織が得られる。
The stainless steel member thus obtained has an ultrafine structure in which an austenite phase and a sigma phase are uniformly mixed, and has an average crystal grain size of 0.5 μm or less. That is, since mechanical milling has been performed on the stainless steel powder in advance, sintering is promoted by softening due to recrystallization of the cold-worked stainless steel powder and superplastic flow by ultra-fine crystal grains. In this case, since the grain growth is slow, an ultrafine grain structure is obtained.

【0018】上記オーステナイト相は靱性に富み、一
方、シグマ相は、固くて脆いものの、高強度、高耐食性
を有するので、上記ステンレス鋼部材は、高靱性、高強
度、高耐食性が付与されたものとなる。上記シグマ相
は、超微細オーステナイト結晶粒界の、特に、三重点に
析出し、結晶粒の粗大化を抑制する。
The austenitic phase is rich in toughness, while the sigma phase is hard and brittle, but has high strength and high corrosion resistance. Becomes The sigma phase precipitates at the ultrafine austenite crystal grain boundaries, particularly at the triple point, and suppresses coarsening of the crystal grains.

【0019】従来、シグマ相は固くて脆いため、ステン
レス鋼の組織内にシグマ相が含まれることは有害である
と考えられていたが、本発明では、結晶粒径を微細化
し、且つオーステナイト相とシグマ相とを均一に混合す
ることにより、シグマ相の持つ欠点よりも高強度、高耐
食性という、シグマ相の長所を生かすことに成功したも
のである。
Conventionally, it has been considered that the sigma phase is hard and brittle, so that the inclusion of the sigma phase in the structure of stainless steel is harmful. However, in the present invention, the crystal grain size is reduced and the austenite phase is reduced. By uniformly mixing the sigma phase with the sigma phase, the inventors succeeded in taking advantage of the advantages of the sigma phase such as higher strength and higher corrosion resistance than the disadvantages of the sigma phase.

【0020】上記方法で製造されるステンレス鋼部材
は、例えば、時計等の計測器具の装飾材料、各種工具、
原子力材料等である。このように、本発明では、粉末加
工法を用いたため、従来の板材や細線ばかりでなく、種
々の形状のステンレス鋼製品を作成することが可能とな
る。また、上記ステンレス鋼部材は最終製品であっても
よいが、上記ステンレス鋼部材を、板材等の中間製品と
して、これに、更に曲げ等の加工を行い、例えば、缶等
の最終製品を得るようにしてもよい。その場合、本発明
法により作成したステンレス鋼の板材は、微細な組織を
有するので、超塑性加工により、容易に変形させること
ができる。
The stainless steel members manufactured by the above method include, for example, decorative materials for measuring instruments such as watches, various tools,
Nuclear materials. As described above, in the present invention, since the powder processing method is used, not only conventional plate materials and thin wires but also stainless steel products of various shapes can be produced. Further, the stainless steel member may be a final product, but the stainless steel member is used as an intermediate product such as a plate material, and further processed such as bending to obtain a final product such as a can. It may be. In that case, the stainless steel plate material produced by the method of the present invention has a fine structure, and can be easily deformed by superplastic working.

【0021】[0021]

【実施例】次に、具体的な実施例を説明する。原料粉末
として、JISのSUS316Lのステンレス鋼粉末
(Cr17.6%、Ni12.3%、Mo2.3%、C
0.01%、Si0.49%、Mn0.84%、P0.
01%、残部Fe)を、PREP(プラズマ回転電極
法)により作製した。粉末の平均粒子径は、約200μ
mであった。この原料粉末に、SUS316Lのステン
レス鋼製の空冷翼付きの容器と、SUS304のステン
レス鋼製のボールとを有する遊星型ボールミルを用い
て、Ar雰囲気中で、最長400時間までメカニカルミ
リングを施した。なお、ミリング処理中の上記容器の外
壁温度は室温より約10℃高い程度である。
Next, a specific embodiment will be described. JIS SUS316L stainless steel powder (Cr 17.6%, Ni 12.3%, Mo 2.3%, C
0.01%, Si 0.49%, Mn 0.84%, P0.
01%, the balance Fe) was produced by PREP (plasma rotating electrode method). The average particle size of the powder is about 200μ
m. This raw material powder was subjected to mechanical milling for up to 400 hours in an Ar atmosphere using a planetary ball mill having a SUS316L stainless steel vessel with air cooling blades and a SUS304 stainless steel ball. The temperature of the outer wall of the container during the milling process is about 10 ° C. higher than room temperature.

【0022】図2にミリング時間と粉末の硬さ(ヴィッ
カース硬さHv)との関係を示す。また、同図に、焼鈍
材の加工前(C.W.0%)の硬さと、該焼鈍材を98
%冷間圧延したもの(C.W.98%)の硬さも示し
た。図2から明らかなように、粉末のミリング開始後、
約10時間で98%冷間圧延材とほぼ同等の硬さとな
り、その後、約200時間まで、ミリングとともに硬さ
は増加するが、200時間以降では、粉末は次第に軟化
した。
FIG. 2 shows the relationship between the milling time and the hardness of the powder (Vickers hardness Hv). Further, FIG. 8 shows the hardness of the annealed material before processing (CW. 0%) and the hardness of the annealed material of 98%.
% Cold-rolled (CW 98%) hardness is also shown. As is clear from FIG. 2, after the start of powder milling,
After about 10 hours, the hardness became almost the same as that of a 98% cold-rolled material. Thereafter, the hardness increased with milling until about 200 hours, but after 200 hours, the powder gradually softened.

【0023】ミリング前期においては、強加工によりひ
ずみが増加するが、ミリング後期には、上記のひずみが
回復し、ミリング前よりも微細な結晶として再結晶が進
行するに伴って、軟化するものと思われる。なお、図3
は、400時間メカニカルミリングを施した粉末の組織
を表すものであり、この図は、顕微鏡写真に基づいて作
成した。
In the first half of the milling, the strain increases due to the strong working, but in the second half of the milling, the above-mentioned strain is recovered, and as the recrystallization progresses as finer crystals than before the milling, it becomes softer. Seem. Note that FIG.
Shows the structure of the powder subjected to mechanical milling for 400 hours, and this figure was made based on a micrograph.

【0024】また、200時間、メカニカルミリングを
施した粉末を800℃で3時間、490MPaでHIP
処理して焼結体とし、組織観察、引張試験を行った。図
4はHIP処理後の組織を示すものであり、同図も顕微
鏡写真に基づいて作成した。図4に示すように、オース
テナイト相中に、ハッチングで示すシグマ相が均一に分
散している。
The powder that has been subjected to mechanical milling for 200 hours is subjected to HIP at 490 MPa at 800 ° C. for 3 hours.
The sintered body was processed and subjected to a structure observation and a tensile test. FIG. 4 shows the structure after the HIP treatment, which was also made based on a micrograph. As shown in FIG. 4, the sigma phase indicated by hatching is uniformly dispersed in the austenite phase.

【0025】図4に示す本実施例の焼結体の降伏強度は
78.7kg/mm2 、引張強度は123.3kg/m
2 、のびは37.4%であった。これに対し、上記実
施例と同一の成分組成を有するSUS316Lのステン
レス鋼の焼鈍材である比較材の降伏強度は23.4kg
/mm2 、引張強度は93.5kg/mm2 、のびは8
4.6%であった。
As shown in FIG. 4, the sintered body of this embodiment has a yield strength of 78.7 kg / mm 2 and a tensile strength of 123.3 kg / m.
m 2 and growth were 37.4%. On the other hand, the yield strength of the comparative material, which is an annealed SUS316L stainless steel having the same component composition as the above example, is 23.4 kg.
/ Mm 2 , tensile strength 93.5 kg / mm 2 , growth 8
It was 4.6%.

【0026】上記の結果から明らかなように、本実施例
の焼結体は、比較材に比べて、降伏強度、引張強度とも
に大幅に向上している。一方、のびは比較材より劣って
いるが、通常、このようなステンレス鋼材において、の
びは20%程度あれば充分であるから、本実施例の3
7.4%の値であれば、差し支えない。
As is evident from the above results, the sintered body of this example has significantly improved both the yield strength and the tensile strength as compared with the comparative material. On the other hand, the growth is inferior to that of the comparative material. However, in such a stainless steel material, it is usually sufficient if the growth is about 20%.
If the value is 7.4%, there is no problem.

【0027】図5に各種ステンレス鋼材の引張強度との
びとの関係を示す。曲線Cはフェライト系のSUS43
0、曲線Dはオーステナイト系のSUS304、曲線E
はオーステナイト系のSUS301であり、点Fは本実
施例のSUS316Lである。また、仮想線で示す直線
Gは、引張強度とのびとの関係の理想曲線であり、本実
施例のものは、この理想曲線Gの近傍に位置している。
FIG. 5 shows the relationship between tensile strength and spread of various stainless steel materials. Curve C is a ferritic SUS43
0, curve D is austenitic SUS304, curve E
Is austenitic SUS301, and point F is SUS316L in the present embodiment. Further, a straight line G indicated by a virtual line is an ideal curve of the relationship between the tensile strength and the spread, and in the present embodiment, the straight line G is located near the ideal curve G.

【0028】[0028]

【発明の効果】以上のように、本発明の冷間加工済ステ
ンレス鋼粉末は、ステンレス鋼の原料粉末に数分間乃至
数100時間、常温でメカニカルミリングを施すことに
より、上記粉末に高ひずみを付与して結晶粒を微細化し
たものであるから、係る冷間加工済ステンレス鋼粉末を
射出成形や押出成形等の原料として使用することによ
り、高強度、高靱性、高耐食性を有するステンレス鋼部
材を製造することが可能になる。
As described above, the cold-worked stainless steel powder of the present invention is subjected to mechanical milling at a normal temperature for several minutes to several hundred hours on the raw material powder of stainless steel, whereby a high strain is applied to the powder. The stainless steel member having high strength, high toughness, and high corrosion resistance by using such cold-worked stainless steel powder as a raw material for injection molding, extrusion molding, etc. Can be manufactured.

【0029】請求項2の冷間加工済ステンレス鋼粉末
は、請求項1の構成において、上記ステンレス鋼の原料
粉末は、Cr16乃至18%、Ni12乃至15%、M
o2乃至3%を含むものであり、このような成分構成の
ステンレス鋼は、上記した高強度、高靱性、高耐食性等
の良好な特性を得る上でとりわけ好ましい。
The cold-worked stainless steel powder of claim 2 is the same as that of claim 1, wherein the raw material powder of the stainless steel is 16 to 18% of Cr, 12 to 15% of Ni,
o2 to 3%, and stainless steel having such a composition is particularly preferable in order to obtain the above-described good properties such as high strength, high toughness, and high corrosion resistance.

【0030】請求項3のステンレス鋼部材は、オーステ
ナイト相とシグマ相とが均一に混合した微細組織を有
し、平均結晶粒径が1μm以下、好ましくは、0.5μ
m以下の超微細な組織を有するステンレス鋼からなるも
のであるから、上記ステンレス鋼部材は高強度、高靱
性、高耐食性を有するものとなる。
The stainless steel member according to claim 3 has a fine structure in which an austenite phase and a sigma phase are uniformly mixed, and has an average crystal grain size of 1 μm or less, preferably 0.5 μm or less.
m, the stainless steel member has high strength, high toughness, and high corrosion resistance.

【0031】請求項4のステンレス鋼部材は、請求項3
の構成において、上記ステンレス鋼部材は、ステンレス
鋼の原料粉末に数分間乃至数100時間、常温でメカニ
カルミリングを施した後、600乃至800℃(シグマ
相生成温度域)で熱処理を施し、更にこの熱処理温度以
上且つ1400℃以下の温度で焼結するようにしたもの
であり、上記のように、予めメカニカルミリングにより
冷間加工を施した粉末をシグマ相生成温度域で熱処理す
ることにより、焼結後のステンレス鋼部材は、オーステ
ナイト相とシグマ相とが均一に混合された超微細な組織
を有し、高強度、高靱性、高耐食性が付与されたものと
なる。
The stainless steel member according to the fourth aspect is the third aspect.
In the above structure, the stainless steel member is subjected to mechanical milling at room temperature for several minutes to several hundred hours on the raw material powder of stainless steel, and then to a heat treatment at 600 to 800 ° C. (sigma phase generation temperature range). The sintering is performed at a temperature not lower than the heat treatment temperature and not higher than 1400 ° C. As described above, the powder that has been subjected to cold working by mechanical milling is heat-treated in the sigma phase generation temperature range, thereby sintering. The subsequent stainless steel member has an ultrafine structure in which the austenite phase and the sigma phase are uniformly mixed, and has high strength, high toughness, and high corrosion resistance.

【0032】係るステンレス鋼部材は、それ自体が最終
製品であってもよいが、例えば、上記ステンレス鋼部材
の板材を用いて、これに曲げ加工等を施すことにより、
最終製品を得るようにしてもよい。その場合も、上記ス
テンレス鋼部材からなる板材は、超塑性加工により、容
易に成形が可能である。
The stainless steel member may be a final product itself. For example, by using a plate material of the above stainless steel member and subjecting it to a bending process or the like,
A final product may be obtained. Also in this case, the plate made of the stainless steel member can be easily formed by superplastic working.

【0033】請求項5のステンレス鋼部材は、請求項4
の構成において、上記ステンレス鋼の原料粉末は、Cr
16乃至18%、Ni12乃至15%、Mo2乃至3%
を含むものであり、係る成分構成は、上記ステンレス鋼
部材に高強度、高靱性、高耐食性を付与する上でとりわ
け好ましい。
The stainless steel member according to the fifth aspect is the fourth aspect.
Wherein the raw material powder of the stainless steel is Cr
16-18%, Ni12-15%, Mo2-3%
Such a component configuration is particularly preferable for imparting high strength, high toughness, and high corrosion resistance to the stainless steel member.

【0034】請求項6のステンレス鋼部材の製造方法
は、ステンレス鋼の原料粉末に数分間乃至数100時
間、常温でメカニカルミリングを施した後、600乃至
800℃(シグマ相生成温度域)で熱処理を施し、更に
この熱処理温度以上且つ1400℃以下の温度で焼結す
るようにしたので、焼結後のステンレス鋼部材は、オー
ステナイト相とシグマ相とが均一に混合した超微細な組
織を有し、係るステンレス鋼部材は、高強度、高靱性、
高耐食性等の良好な特性を呈するものとなる。
According to a sixth aspect of the present invention, there is provided a method for manufacturing a stainless steel member, wherein the raw material powder of stainless steel is subjected to mechanical milling at room temperature for several minutes to several hundred hours, and then heat-treated at 600 to 800 ° C. (sigma phase generation temperature range). And further sintering at a temperature not lower than the heat treatment temperature and not higher than 1400 ° C., the stainless steel member after sintering has an ultrafine structure in which the austenite phase and the sigma phase are uniformly mixed. , Such stainless steel members have high strength, high toughness,
Good characteristics such as high corrosion resistance are exhibited.

【0035】請求項7のステンレス鋼部材の製造方法
は、請求項6の方法において、上記メカニカルミリング
の封入ガスとして、N2 ガスまたはH2 ガスを使用した
ので、これらのガスにより酸化防止を図りつつ、粉末の
微粉化を促進することができるとともに、N2 ガスやH
2 ガスは従来使用していたArガス等よりも安価である
というコスト上の利点が有る。なお、メカニカルミリン
グ中にN2 やH2 がステンレス鋼の成分に固溶するが、
通常、その後の熱処理時にN2 やH2 がステンレス鋼か
ら分離する。
According to a seventh aspect of the present invention, in the method of the sixth aspect, since N 2 gas or H 2 gas is used as the sealing gas for the mechanical milling, oxidation is prevented by these gases. While promoting the pulverization of the powder, as well as N 2 gas and H
The two gases have a cost advantage that they are less expensive than the conventionally used Ar gas or the like. In addition, during mechanical milling, N 2 and H 2 are dissolved in stainless steel components,
Normally, N 2 and H 2 separate from the stainless steel during the subsequent heat treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法で使用するアトライタを示す斜視
図。
FIG. 1 is a perspective view showing an attritor used in the method of the present invention.

【図2】本発明の実施例におけるミリング時間と粉末の
硬さとの関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the milling time and the hardness of the powder in an example of the present invention.

【図3】上記実施例によりメカニカルミリングを施した
粉末の組織を表す説明図。
FIG. 3 is an explanatory view showing the structure of a powder subjected to mechanical milling according to the above embodiment.

【図4】上記メカニカルミリングを施した粉末にHIP
処理して焼結体としたステンレス鋼の組織を示す説明
図。
FIG. 4 shows that HIP is applied to the powder subjected to the mechanical milling.
Explanatory drawing which shows the structure of the stainless steel which processed and was made into the sintered compact.

【図5】各種ステンレス鋼材の引張強度とのびとの関係
を示すグラフ。
FIG. 5 is a graph showing the relationship between tensile strength and spread of various stainless steel materials.

【図6】従来のオーステナイト系のステンレス鋼の組織
を示す説明図。
FIG. 6 is an explanatory view showing the structure of a conventional austenitic stainless steel.

【符号の説明】[Explanation of symbols]

1 アトライタ(ミリング用装置) 1 Attritor (device for milling)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼の原料粉末に数分間乃至数
100時間、常温でメカニカルミリングを施してなる冷
間加工済ステンレス鋼粉末。
A cold-processed stainless steel powder obtained by subjecting a raw material powder of stainless steel to mechanical milling at room temperature for several minutes to several hundred hours.
【請求項2】 上記ステンレス鋼の原料粉末は、Cr1
6乃至18%、Ni12乃至15%、Mo2乃至3%を
含むことを特徴とする請求項1記載の冷間加工済ステン
レス鋼粉末。
2. The stainless steel raw material powder is Cr1
The cold-worked stainless steel powder according to claim 1, comprising 6 to 18%, 12 to 15% Ni, and 2 to 3% Mo.
【請求項3】 オーステナイト相とシグマ相とが均一に
混合した微細組織を有し、平均結晶粒径が1μm以下の
ステンレス鋼からなるステンレス鋼部材。
3. A stainless steel member made of stainless steel having a fine structure in which an austenite phase and a sigma phase are uniformly mixed and having an average crystal grain size of 1 μm or less.
【請求項4】 上記ステンレス鋼部材は、ステンレス鋼
の原料粉末に数分間乃至数100時間、常温でメカニカ
ルミリングを施した後、600乃至800℃で熱処理を
施し、更にこの熱処理温度以上且つ1400℃以下の温
度で焼結してなることを特徴とする請求項3記載のステ
ンレス鋼部材。
4. The stainless steel member is subjected to mechanical milling at room temperature for several minutes to several hundred hours on a raw material powder of stainless steel, and then to a heat treatment at 600 to 800 ° C. The stainless steel member according to claim 3, wherein the member is sintered at the following temperature.
【請求項5】 上記ステンレス鋼の原料粉末は、Cr1
6乃至18%、Ni12乃至15%、Mo2乃至3%を
含むことを特徴とする請求項4記載のステンレス鋼部
材。
5. The stainless steel material powder is Cr1
The stainless steel member according to claim 4, comprising 6 to 18%, 12 to 15% Ni, and 2 to 3% Mo.
【請求項6】 ステンレス鋼の原料粉末に数分間乃至数
100時間、常温でメカニカルミリングを施した後、6
00乃至800℃で熱処理を施し、更にこの熱処理温度
以上且つ1400℃以下の温度で焼結することを特徴と
するステンレス鋼部材の製造方法。
6. After subjecting the raw material powder of stainless steel to mechanical milling at room temperature for several minutes to several hundred hours,
A method for producing a stainless steel member, comprising: performing a heat treatment at a temperature of from 00 to 800 ° C .;
【請求項7】 上記メカニカルミリングの封入ガスとし
て、N2 ガスまたはH2 ガスを使用したことを特徴とす
る請求項6記載のステンレス鋼部材の製造方法。
7. The method for producing a stainless steel member according to claim 6, wherein an N 2 gas or an H 2 gas is used as a sealing gas for said mechanical milling.
JP9002357A 1997-01-09 1997-01-09 Stainless steel powder, stainless steel member and production of the stainless steel member Pending JPH10195502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9002357A JPH10195502A (en) 1997-01-09 1997-01-09 Stainless steel powder, stainless steel member and production of the stainless steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9002357A JPH10195502A (en) 1997-01-09 1997-01-09 Stainless steel powder, stainless steel member and production of the stainless steel member

Publications (1)

Publication Number Publication Date
JPH10195502A true JPH10195502A (en) 1998-07-28

Family

ID=11527025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9002357A Pending JPH10195502A (en) 1997-01-09 1997-01-09 Stainless steel powder, stainless steel member and production of the stainless steel member

Country Status (1)

Country Link
JP (1) JPH10195502A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234894A1 (en) * 2001-02-27 2002-08-28 Hitachi, Ltd. Corrosion resistant, high strength alloy and a method for manufacturing the same
JP2002262909A (en) * 2001-03-09 2002-09-17 Citizen Watch Co Ltd Decoration part and its manufacture
WO2005087410A1 (en) * 2004-03-15 2005-09-22 Gohsyu Co., Ltd. Powder material of alloy and method for production thereof
CN103706793A (en) * 2013-12-18 2014-04-09 潍坊学院 Preparation method of low-nickel high-nitrogen austenitic stainless steel product
JP2021095626A (en) * 2019-12-13 2021-06-24 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Paramagnetic hard stainless steel and method for manufacturing the same
CN113500196A (en) * 2021-07-14 2021-10-15 燕山大学 Method for improving high-temperature oxidation resistance of austenitic stainless steel by regulating and controlling nano-network distribution of Si

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234894A1 (en) * 2001-02-27 2002-08-28 Hitachi, Ltd. Corrosion resistant, high strength alloy and a method for manufacturing the same
US6767416B2 (en) 2001-02-27 2004-07-27 Hitachi, Ltd. Corrosion resistant, high strength alloy and a method for manufacturing the same
JP2002262909A (en) * 2001-03-09 2002-09-17 Citizen Watch Co Ltd Decoration part and its manufacture
JP4601845B2 (en) * 2001-03-09 2010-12-22 シチズンホールディングス株式会社 Decorative part and manufacturing method thereof
WO2005087410A1 (en) * 2004-03-15 2005-09-22 Gohsyu Co., Ltd. Powder material of alloy and method for production thereof
JP2005256133A (en) * 2004-03-15 2005-09-22 Katsuyoshi Kondo Raw alloy powder and manufacturing method therefor
US7909948B2 (en) 2004-03-15 2011-03-22 Gohsyu Co., Ltd. Alloy powder raw material and its manufacturing method
CN103706793A (en) * 2013-12-18 2014-04-09 潍坊学院 Preparation method of low-nickel high-nitrogen austenitic stainless steel product
CN103706793B (en) * 2013-12-18 2016-08-17 潍坊学院 A kind of preparation method saving nickel high-nitrogen austenitic stainless steel goods
JP2021095626A (en) * 2019-12-13 2021-06-24 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Paramagnetic hard stainless steel and method for manufacturing the same
JP2022177290A (en) * 2019-12-13 2022-11-30 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Paramagnetic hard stainless steel and manufacturing process thereof
CN113500196A (en) * 2021-07-14 2021-10-15 燕山大学 Method for improving high-temperature oxidation resistance of austenitic stainless steel by regulating and controlling nano-network distribution of Si

Similar Documents

Publication Publication Date Title
KR100417943B1 (en) Titanium alloy and method for producing the same
JP4123937B2 (en) High strength titanium alloy and method for producing the same
KR100490912B1 (en) High-toughness and high-strength sintered ferritic steel and method of producing the same
US20060127266A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness, and method for production thereof
CN111670262A (en) Method of manufacturing an article using a maraging steel powder stack
CN101168818A (en) Fe-36Ni based alloy wire and manufacturing method thereof
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
JP2002249836A (en) Titanium alloy having high elastic deformability and its manufacturing method
JPS63500950A (en) Ultra-high carbon steel containing aluminum and its processing method
JPH10195502A (en) Stainless steel powder, stainless steel member and production of the stainless steel member
KR101374233B1 (en) Method of manufacturing ultrafine-grained titanium rod for biomedical applications, and titanium rod manufactured by the same
KR102286610B1 (en) High entropy alloy having nanoscale compositionally modulated layered structure and method for manufacturing the same
CN115652171B (en) High-strength precipitation-strengthening type high-entropy alloy and preparation method thereof
JPH1143748A (en) High strength austenitic sintered steel, its production and its use
JP3672903B2 (en) Manufacturing method of oxide dispersion strengthened ferritic steel pipe
JP3020924B1 (en) Manufacturing method of high strength and high corrosion resistant ferritic steel
Bolzoni et al. Effect of α+ β solution treatment and aging on the performance of powder forged Ti-5Al-2.5 Fe
KR101465091B1 (en) Ultrafine-grained multi-phase titanium alloy with excellent strength and ductility and manufacturing method for the same
Raynova Study on low-cost alternatives for synthesising powder metallurgy titanium and titanium alloys
JP2004183097A (en) Method for producing maraging steel and maraging steel
JPS63219527A (en) Manufacture of ferritic stainless steel excellent in cold workability
JP2003003225A (en) Bolt made of titanium alloy
JPH11335771A (en) Oxide-dispersion-strengthened steel and its production
JPS61177360A (en) Manufacture of bidirectional shape memory alloy
JPH03239153A (en) Electrode material for plasma