JPH1019412A - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JPH1019412A
JPH1019412A JP19573396A JP19573396A JPH1019412A JP H1019412 A JPH1019412 A JP H1019412A JP 19573396 A JP19573396 A JP 19573396A JP 19573396 A JP19573396 A JP 19573396A JP H1019412 A JPH1019412 A JP H1019412A
Authority
JP
Japan
Prior art keywords
air
desiccant
conditioning system
regeneration
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19573396A
Other languages
Japanese (ja)
Inventor
Kensaku Maeda
健作 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP19573396A priority Critical patent/JPH1019412A/en
Publication of JPH1019412A publication Critical patent/JPH1019412A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1044Rotary wheel performing other movements, e.g. sliding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact and efficient air-conditioning system capable of adsorption and regeneration of the desiccant through a batch process by combining a heat pump with the desiccant. SOLUTION: In an air-conditioning system in which a plurality of desiccant parts are arranged in a switching manner so as to be alternately distributed in a treatment air passage A and a regeneration air passage B, at least four desiccant parts 103A-103D are arranged so that each two desiccant parts are arranged in the treatment air passage A and the regeneration air passage B, the treatment air passage A introduces the treatment air to a heat exchanger 104 to perform the sensible heat exchange between the treatment air and the regeneration air before passing through the desiccant after the treatment air is introduced to one desiccant part to perform the first adsorption, and cools the treatment air, and then, introduces it to the other desiccant part to perform the second adsorption, and further, introduces it to a low heat source of a heat pump 200 to perform the heat exchange and cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空調システムに係
り、特に複数のデシカントを処理空気と再生空気に交互
に切り換えて流通させて処理空気を連続的に処理する空
調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioning system for continuously processing air by switching a plurality of desiccants alternately between processing air and regeneration air.

【0002】[0002]

【従来の技術】図5は、USP第4,430,864号
に開示された従来技術であり、これは、処理空気経路A
と、再生空気経路Bと、2つのデシカントベッド103
A,103Bと、デシカントの再生及び処理空気の冷却
を行うヒートポンプ200とを有している。このヒート
ポンプ200は、2つのデシカントベッド103A,1
03Bに埋設された熱交換器210,220を高低熱源
として用いるもので、一方のデシカントベッドは処理空
気を通過させて吸着工程を行い、他方のデシカントは再
生空気を通過させて再生工程を行う。この空調処理を所
定時間行った後、4方切り換え弁105,106を切り
換えて、再生及び処理空気を逆のデシカントベッドに流
して全体としては同様の工程を、それぞれのデシカント
ベッドにおいては逆の工程を行う。
2. Description of the Related Art FIG. 5 shows a prior art disclosed in US Pat. No. 4,430,864, which shows a process air path A.
And regeneration air path B and two desiccant beds 103
A, 103B, and a heat pump 200 for regenerating the desiccant and cooling the processing air. This heat pump 200 has two desiccant beds 103A, 1A.
The heat exchangers 210 and 220 buried in 03B are used as high and low heat sources. One desiccant bed performs an adsorption step by passing process air, and the other desiccant performs a regeneration step by passing regeneration air. After the air conditioning process has been performed for a predetermined time, the four-way switching valves 105 and 106 are switched to flow the regeneration and processing air to the opposite desiccant bed, and the same process as a whole is performed. I do.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の技
術においては、ヒートポンプ200の高低の熱源と各デ
シカントがそれぞれ一体化されていたために、冷房効果
ΔQに相当する熱量がヒートポンプ(冷凍機)にそのま
ま負荷される。すなわち、ヒートポンプ(冷凍機)の能
力以上の効果が出せない。したがって、装置を複雑にし
ただけの効果が得られなかった。
In the prior art as described above, since the high and low heat sources of the heat pump 200 and the respective desiccants are integrated with each other, the amount of heat corresponding to the cooling effect ΔQ is equal to the heat pump (refrigerator). Is loaded as is. That is, the effect beyond the capacity of the heat pump (refrigerator) cannot be obtained. Therefore, the effect of only making the apparatus complicated cannot be obtained.

【0004】そこで、このような問題点を解決するため
に、図6に示すように、再生空気経路Bにヒートポンプ
200の高温熱源220を配して再生空気を加熱し、処
理空気経路Aにヒートポンプ200の低温熱源210を
配して処理空気を冷却するとともに、デシカント103
通過後の処理空気とデシカント103通過前の再生空気
との間で顕熱交換を行う熱交換器104を設けることが
考えられる。ここでは、デシカント103として、処理
空気経路Aと再生空気経路Bの双方にまたがって回転す
るデシカントロータを用いている。
In order to solve such a problem, as shown in FIG. 6, a high-temperature heat source 220 of a heat pump 200 is disposed in a regeneration air path B to heat regeneration air, and a heat pump is disposed in a processing air path A. 200 low-temperature heat source 210 is arranged to cool the processing air, and the desiccant 103
It is conceivable to provide a heat exchanger 104 for performing sensible heat exchange between the processed air after passing and the regenerated air before passing through the desiccant 103. Here, a desiccant rotor that rotates over both the processing air path A and the regeneration air path B is used as the desiccant 103.

【0005】これにより、図7に示すように、ヒートポ
ンプ200による冷却効果(Δq)の他に、処理空気と
再生空気の間の顕熱交換による冷却効果(ΔQ−Δq)
を併せた冷却効果(ΔQ)を得ることがてきるので、コ
ンパクトな構成で図5の空調システムより高い効率を得
ることができる。
Accordingly, as shown in FIG. 7, in addition to the cooling effect (Δq) by the heat pump 200, the cooling effect (ΔQ-Δq) by sensible heat exchange between the processing air and the regeneration air.
, A cooling effect (ΔQ) can be obtained, so that higher efficiency can be obtained with a compact configuration than the air conditioning system of FIG.

【0006】しかしながら、この構成の空調システムに
おいても、ヒートポンプの高温熱源と低温熱源の温度差
が、すなわち温度ヘッドが、図7に示すように高くなり
(ΔT)、そのためにエネルギー効率の改善が不充分で
あった。
However, also in the air conditioning system having this configuration, the temperature difference between the high-temperature heat source and the low-temperature heat source of the heat pump, that is, the temperature of the temperature head becomes high (ΔT) as shown in FIG. It was enough.

【0007】本発明は上記課題に鑑み、ヒートポンプと
デシカントを組み合わせて、バッチ的なプロセスにより
デシカントの吸着・再生を行うコンパクトで効率の高い
空調システムを提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a compact and highly efficient air conditioning system which combines a heat pump and a desiccant to adsorb and regenerate the desiccant by a batch process.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、請求項1に記載の発明は、
複数のデシカント部を交互に処理空気経路及び再生空気
経路に流通するように切り換え可能に配置し、前記再生
空気経路にヒートポンプの高温熱源を配して再生空気を
加熱し、前記処理空気経路にヒートポンプの低温熱源を
配して処理空気を冷却し、処理空気経路において前記デ
シカント部に処理空気中の水分を吸着し、再生空気経路
において再生空気によって前記デシカント部を再生する
ようにした空調システムにおいて、前記デシカント部を
2つづつが前記処理空気経路及び再生空気経路に配置さ
れるように少なくとも4つ設け、前記処理空気経路は、
処理空気を1つの前記デシカント部に導いて第1の吸着
を行った後、上記デシカント通過前の再生空気との間で
顕熱交換を行う熱交換器に導いて冷却し、他のデシカン
ト部に導いて第2の吸着を行い、さらに前記ヒートポン
プの低熱源に導いて熱交換を行って冷却するようになっ
ていることを特徴とする空調システムである。
Means for Solving the Problems The present invention has been made to solve the above problems, and the invention according to claim 1 has the following features.
A plurality of desiccant parts are switchably disposed so as to alternately flow through a processing air path and a regeneration air path, a high-temperature heat source of a heat pump is arranged in the regeneration air path to heat regeneration air, and a heat pump is disposed in the processing air path. An air conditioning system that cools the processing air by arranging a low-temperature heat source, adsorbs moisture in the processing air to the desiccant part in the processing air path, and regenerates the desiccant part by the regeneration air in the regeneration air path. At least four desiccant parts are provided such that two desiccant parts are arranged in the processing air path and the regeneration air path, and the processing air path is
After conducting the first adsorption by introducing the treated air to one desiccant part, the treated air is guided to a heat exchanger that performs sensible heat exchange with the regenerated air before passing through the desiccant, and cooled, and then to another desiccant part. An air conditioning system characterized by being guided to perform a second adsorption, and further guided to a low heat source of the heat pump to perform heat exchange for cooling.

【0009】これにより、処理空気中の水分の吸着工程
を間に熱交換による冷却工程を含む2段階の吸着工程と
したことにより、同じ熱を汲み上げるヒートポンプの最
低温度が高くなる。従って、ヒートポンプの温度ヘッド
が小さくなり、省エネルギーとなる。また、同じデシカ
ントを使って2回吸着させるので、吸湿能力を大きくと
れるため、相対的に装置を小型化することができる。
Thus, the minimum temperature of the heat pump for pumping the same heat is increased by adopting a two-stage adsorption step including a cooling step by heat exchange between the adsorption steps of the moisture in the processing air. Therefore, the temperature head of the heat pump becomes small, and energy is saved. Further, since the adsorption is performed twice using the same desiccant, the hygroscopic capacity can be increased, so that the apparatus can be relatively downsized.

【0010】請求項2に記載の発明は、複数のデシカン
ト部を処理空気経路及び再生空気経路に対して相対移動
して流通を切り換えるようになっていることを特徴とす
る請求項1に記載の空調システムである。これにより、
複数の弁を各経路に設けて連動させる必要がなく、装置
の構成が簡単になる。
According to a second aspect of the present invention, the plurality of desiccant sections are moved relative to the processing air path and the regeneration air path to switch the flow. It is an air conditioning system. This allows
There is no need to provide a plurality of valves in each path to operate in conjunction with each other, and the configuration of the apparatus is simplified.

【0011】請求項3に記載の発明は、前記各デシカン
ト部が機械的に結合されて連動可能となっていることを
特徴とする請求項2に記載の空調システムであり、デシ
カント自体及び経路構成、駆動機構などを簡単化するこ
とができる。請求項4に記載の発明は、前記相対移動が
直線的移動であることを特徴とする請求項3に記載の空
調システムである。請求項5に記載の発明は、前記相対
移動が回転移動であることを特徴とする請求項3に記載
の空調システムである。
According to a third aspect of the present invention, there is provided an air conditioning system according to the second aspect, wherein the desiccant units are mechanically coupled to each other so as to be interlocked with each other, and the desiccant itself and a route configuration are provided. , Drive mechanism and the like can be simplified. The invention according to claim 4 is the air conditioning system according to claim 3, wherein the relative movement is a linear movement. The invention according to claim 5 is the air conditioning system according to claim 3, wherein the relative movement is a rotational movement.

【0012】請求項6に記載の発明は、前記ヒートポン
プは蒸気圧縮式ヒートポンプであることを特徴とする請
求項1に記載の空調システムである。請求項7に記載の
発明は、前記ヒートポンプは吸収式ヒートポンプである
ことを特徴とする請求項1に記載の空調システムであ
る。
The invention according to claim 6 is the air conditioning system according to claim 1, wherein the heat pump is a vapor compression heat pump. The invention according to claim 7 is the air conditioning system according to claim 1, wherein the heat pump is an absorption heat pump.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る空調システム
の一実施例を図面を参照して説明する。図1及び図2は
本発明の空調システムの基本構成を示すもので、処理空
気経路Aと再生空気経路Bと、4つに区分されたデシカ
ント103A,103B,103C,104Dと、デシ
カントの再生及び処理空気の冷却を行うヒートポンプ2
00とを有している。ヒートポンプとしては、任意のも
のを採用してよいが、ここでは、出願人が先に特願平8
−22133において提案した蒸気圧縮式ヒートポンプ
を用いるものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an air conditioning system according to the present invention will be described below with reference to the drawings. FIGS. 1 and 2 show the basic configuration of an air conditioning system according to the present invention, in which a processing air path A, a regeneration air path B, four desiccants 103A, 103B, 103C, and 104D, and desiccant regeneration and regeneration. Heat pump 2 for cooling process air
00. As the heat pump, an arbitrary one may be adopted.
It is assumed that the vapor compression type heat pump proposed in US Pat.

【0014】図1において処理空気経路Aは、処理空気
入口(通常は室内空気取入口)、経路110、処理空気
の送風機102、経路111を経て、上記デシカントを
収納するケーシング302の第1の処理空気入口に接続
され、該第1の処理空気入口からケーシング302内部
のデシカント103Bを経由して、ケーシング302の
第1の処理空気出口に導かれる。さらに、ケーシング3
02の第1の処理空気出口は経路113を介して再生空
気との熱交換を行なう熱交換器104に接続され、熱交
換器104の処理空気出口は経路114を介してケーシ
ング302の第2の処理空気入口に接続され、該第2の
処理空気入口からケーシング302に入った空気は内部
のデシカント103Aを通過して、ケーシング302の
第2の処理空気出口に導かれ、ケーシング302の第2
の処理空気出口は経路115を介してヒートポンプ20
0の低熱源熱交換器220に接続され、低熱源熱交換器
220の処理空気の出口は経路116を介して処理空気
出口に至る。
In FIG. 1, a processing air path A passes through a processing air inlet (usually a room air intake), a path 110, a processing air blower 102, and a path 111, and is provided with a first processing of a casing 302 for housing the desiccant. It is connected to an air inlet, and is guided from the first processing air inlet to the first processing air outlet of the casing 302 via the desiccant 103B inside the casing 302. Furthermore, casing 3
02 is connected to the heat exchanger 104 for performing heat exchange with the regeneration air via the path 113, and the processing air outlet of the heat exchanger 104 is connected to the second outlet of the casing 302 via the path 114. Air that is connected to the processing air inlet and enters the casing 302 from the second processing air inlet passes through the internal desiccant 103A, is guided to the second processing air outlet of the casing 302, and is connected to the second processing air outlet of the casing 302.
The processing air outlet of the heat pump 20
0 is connected to the low heat source heat exchanger 220, and the processing air outlet of the low heat source heat exchanger 220 reaches the processing air outlet via the path 116.

【0015】再生空気経路Bは、再生空気入口(通常は
外気取入口)から経路120、送風機140、経路12
1、処理空気と熱交換関係にある顕熱熱交換器104、
経路122、ヒートポンプ200の高温熱源熱交換器2
10及び経路123を経て、ケーシング302の2つの
再生空気入口に通じる経路124Bまたは124Aに至
る。この2つの再生空気入口は、デシカントに連動した
シャッター301Aまたは301Bによって一方の入口
が選択的に閉塞するよう構成されており、この再生空気
入口はケーシング302内のデシカント103C及び1
03Dを介してケーシング302の2つの再生空気出口
の一方から経路125Aまたは125Bに導かれ、さら
に経路126を経て再生空気出口に至る。
The regeneration air path B includes a path 120, a blower 140, and a path 12 from a regeneration air inlet (usually, outside air intake).
1. a sensible heat exchanger 104 having a heat exchange relationship with the processing air;
Path 122, high-temperature heat source heat exchanger 2 of heat pump 200
10 and a path 123 to a path 124B or 124A leading to two regeneration air inlets of the casing 302. One of the two regeneration air inlets is selectively closed by a shutter 301A or 301B linked to the desiccant, and the two regeneration air inlets are desiccants 103C and 103C in a casing 302.
One of the two regeneration air outlets of the casing 302 is guided to the path 125A or 125B via 03D, and further reaches the regeneration air exit via the path 126.

【0016】4つに区分されたデシカント103A,1
03B,103C,104Dは、プーリ310〜313
及びベルト機構304を介してモータ303によって駆
動され、ケーシング302の内部をケーシングに対して
相対的に移動させられる。デシカント103A及び10
3Bが吸着過程でデシカント103C及び103Dが再
生過程の場合には、図1に示す位置に、デシカント10
3A及び103Bが再生過程でデシカント103C及び
103Dが吸着過程の場合には、図2に示す位置に移動
する。その際、デシカント103A,103B,103
C,103Dの動きに連動して図1の場合はシャッター
301Aが経路124Aに接続した空気入口を閉塞し、
図2の場合はシャッター301Bが経路124Bに接続
した空気入口を閉塞するように構成されている。なお、
図中、丸で囲ったアルファベットK〜Tは、図3と対応
する空気の状態を示す記号である。
The desiccant 103A, 1 divided into four parts
03B, 103C and 104D are pulleys 310 to 313
And a motor 303 via a belt mechanism 304 to move the inside of the casing 302 relative to the casing. Desiccant 103A and 10
In the case where 3B is in the adsorption process and the desiccants 103C and 103D are in the regeneration process, the desiccant 10C is placed at the position shown in FIG.
When the desiccants 103C and 103D are in the adsorption process while 3A and 103B are in the regeneration process, they move to the position shown in FIG. At that time, the desiccants 103A, 103B, 103
In the case of FIG. 1 in conjunction with the movement of C and 103D, the shutter 301A closes the air inlet connected to the path 124A,
In the case of FIG. 2, the shutter 301B is configured to close the air inlet connected to the path 124B. In addition,
In the figure, circled letters K to T are symbols indicating the state of air corresponding to FIG.

【0017】次に、前述のように構成されたヒートポン
プを熱源とする空調システムの動作を、図3の湿り空気
線図を参照しながら説明する。図1では、デシカント1
03A,103B,103C,103Dの位置が、デシ
カント103Bを処理空気の第1の吸着工程に、デシカ
ント103Aを処理空気の第2の吸着工程に、デシカン
ト103C,103Dを再生空気系統に繋ぐようになっ
ているので、この状態での動作を説明する。
Next, the operation of the air conditioning system using the heat pump configured as described above as a heat source will be described with reference to the psychrometric chart of FIG. In FIG. 1, desiccant 1
The positions of 03A, 103B, 103C, and 103D are such that the desiccant 103B is connected to the first adsorption process of the processing air, the desiccant 103A is connected to the second adsorption process of the processing air, and the desiccants 103C and 103D are connected to the regeneration air system. Therefore, the operation in this state will be described.

【0018】処理空気(状態K)は、処理空気入口から
経路110を経て送風機102に吸引され、昇圧されて
経路111を経てケーシング302の再生空気の第1の
入口からケーシング内部に流入し、第1のデシカント1
03Bに送られ、空気中の水分を吸着されて絶対湿度が
低下するとともに吸着熱により温度上昇する(状態
L)。湿度が下がり温度が上昇した空気は経路113を
経て顕熱熱交換器104に送られ、再生空気と熱交換し
て冷却される(状態M)。湿度と温度が下がった空気
は、経路114を経て第2のデシカント103Aに送ら
れ、第2の吸着工程によって再び空気中の水分を吸着さ
れて絶対湿度が低下するとともに吸着熱により温度上昇
する(状態N)。そして、処理空気は経路115を経て
ヒートポンプ200の低温熱源である熱交換器220に
送られてさらに冷却され、経路116を経て空調空間に
給気される(状態P)。このようにして処理空気(状態
K)と給気(状態P)との間にはエンタルピ差ΔQが生
じ、これによって空調空間の冷房が行われる。
The process air (state K) is sucked into the blower 102 from the process air inlet via the path 110, is pressurized, flows through the path 111, flows into the casing 302 from the first inlet of the regenerated air in the casing 302, and 1 desiccant 1
03B, the moisture in the air is adsorbed, the absolute humidity decreases, and the temperature rises due to the heat of adsorption (state L). The air whose humidity has decreased and the temperature has increased is sent to the sensible heat exchanger 104 via the path 113, and exchanges heat with the regenerated air to be cooled (state M). The air whose humidity and temperature have been lowered is sent to the second desiccant 103A via the path 114, and the moisture in the air is again adsorbed by the second adsorption step, whereby the absolute humidity decreases and the temperature rises due to heat of adsorption ( State N). Then, the processing air is sent to the heat exchanger 220, which is a low-temperature heat source of the heat pump 200, through the path 115 and is further cooled, and is supplied to the air-conditioned space through the path 116 (state P). In this way, an enthalpy difference ΔQ is generated between the processing air (state K) and the supply air (state P), thereby cooling the air-conditioned space.

【0019】上記の吸着工程において第2の吸着が起き
るのは、以下の理由による。すなわち、熱交換器104
により状態Lから状態Mまで等湿度で冷却すると相対湿
度が上がるので、再度デシカント103Aで吸着工程を
行うポテンシャルが生じる。その吸着ポテンシャルの差
を使って第2の吸着を行うことができる。
The second adsorption occurs in the above adsorption step for the following reason. That is, the heat exchanger 104
As the relative humidity rises when cooling from the state L to the state M at the same humidity, the potential for performing the adsorption step again with the desiccant 103A is generated. The second adsorption can be performed using the difference in the adsorption potential.

【0020】同じサイクルにおいて、他方のデシカント
103C,103Dは以下のように再生過程を経る。す
なわち、再生空気(状態Q)は経路120を経て送風機
140に吸引され、昇圧されて経路121を経て顕熱熱
交換器104に送られ、処理空気を冷却して自らは温度
上昇し(状態R)、経路122を経てヒートポンプ20
0の高熱源の熱交換器210に流入し、加熱されて60
〜80℃まで温度上昇し、相対湿度が低下する(状態
S)。相対湿度が低下した再生空気は経路123、経路
124Bを経てケーシング302に設けられた再生空気
入口から内部に流入し、デシカント103C,103D
を並列に通過してデシカントの水分を除去する(状態
T)。デシカント103C,103Dを通過した再生空
気は経路125B、経路126を経て再生空気の出口に
至る。この場合、経路124Aに接続した再生空気入口
は、ケーシング302内部でデシカントに連動したシャ
ッター301Aによって閉塞されているため、再生空気
は経路124Aに流通しない。
In the same cycle, the other desiccants 103C and 103D undergo a regeneration process as follows. That is, the regenerated air (state Q) is sucked into the blower 140 via the path 120, is pressurized and sent to the sensible heat exchanger 104 via the path 121, and cools the processing air to increase its temperature (state R). ), Heat pump 20 via path 122
0, flows into the heat exchanger 210 of the high heat source,
The temperature rises to 8080 ° C., and the relative humidity decreases (state S). The regeneration air having a reduced relative humidity flows into the interior through a regeneration air inlet provided in the casing 302 via a path 123 and a path 124B, and is desiccants 103C and 103D.
Are passed in parallel to remove the desiccant water (state T). The regenerated air that has passed through the desiccants 103C and 103D reaches the outlet of the regenerated air via the paths 125B and 126. In this case, the regeneration air inlet connected to the path 124A is closed by the shutter 301A interlocking with the desiccant inside the casing 302, so that the regeneration air does not flow through the path 124A.

【0021】この空調処理が所定時間行われてデシカン
ト中の水分が所定以上になると、モータ303を作動さ
せ、プーリベルト機構304,310〜313によって
デシカント103A,103B,103C,103Dを
ケーシング302に対して相対移動させて、図2に示す
ように、デシカント103A,103Bが再生空気経路
Bに、デシカント103Dが処理空気経路A中の第1の
吸着工程の経路に、103Cが第2の吸着工程の経路に
繋がるようにする。このようにして、デシカントの吸着
と再生はバッチ的に行われる。図2の場合には、再生空
気が経路124Bを流通し、経路124Aが閉塞される
が、動作は図1の場合と同様であるので説明を省略す
る。
When the air-conditioning process is performed for a predetermined time and the moisture content in the desiccant becomes equal to or more than a predetermined value, the motor 303 is operated, and the desiccants 103A, 103B, 103C and 103D are moved to the casing 302 by the pulley belt mechanisms 304 and 310-313. As shown in FIG. 2, the desiccants 103A and 103B are in the regeneration air path B, the desiccants 103D are in the path of the first adsorption step in the processing air path A, and 103C is in the second adsorption step. Connect to the route. In this manner, desiccant adsorption and regeneration are performed in batches. In the case of FIG. 2, the regeneration air flows through the path 124B and the path 124A is closed, but the operation is the same as that of FIG. 1 and the description is omitted.

【0022】このようにしてデシカントの再生と処理空
気の除湿、冷却を繰り返し行うことによって、デシカン
トによる空調を行う。なお、再生用空気として室内換気
に伴う排気を用いる方法も従来からデシカント空調では
広く行われているが、本発明においても室内からの排気
を再生用空気として使用しても差し支えなく、本実施例
と同様の効果が得られる。
In this manner, the desiccant is air-conditioned by repeating the desiccant regeneration and the dehumidification and cooling of the processing air. In addition, although the method of using the exhaust accompanying the indoor ventilation as the regeneration air has also been widely used in the desiccant air conditioning, the exhaust from the room may be used as the regeneration air in the present invention. The same effect can be obtained.

【0023】この空調システムでは、デシカントとデシ
カントの間に熱交換による冷却工程を含む2段階の吸着
工程としたことにより、同じ熱ΔQを汲み上げるヒート
ポンプの最低温度が、図7に示す場合と比べると、図3
において状態Nから状態Pに移動する。従って、ヒート
ポンプの温度ヘッドΔT2がΔT1と小さくなり、省エ
ネルギーとなる。また、同じデシカントを使って2回吸
着させるので、吸湿能力を大きくとれるため、相対的に
装置を小型化することができる。
In this air conditioning system, the minimum temperature of the heat pump for pumping the same heat ΔQ is lower than that shown in FIG. 7 by employing a two-stage adsorption step including a cooling step by heat exchange between the desiccant and the desiccant. , FIG.
Moves from the state N to the state P. Therefore, the temperature head ΔT2 of the heat pump becomes as small as ΔT1, and energy is saved. Further, since the adsorption is performed twice using the same desiccant, the hygroscopic capacity can be increased, so that the apparatus can be relatively downsized.

【0024】さらに、このように構成されたデシカント
空調システムでは、ヒートポンプの冷房効果は図3にお
ける状態Mと状態Pのエンタルピ差Δqであり、装置全
体における冷房効果ΔQよりも大幅に少なくて済み、ヒ
ートポンプの能力以上の冷房効果が出せる。従って、装
置を小型化することができ、コストが安い装置を提供す
ることができる。
Further, in the desiccant air-conditioning system configured as described above, the cooling effect of the heat pump is the enthalpy difference Δq between the state M and the state P in FIG. 3, which is much smaller than the cooling effect ΔQ of the entire apparatus. A cooling effect exceeding the capacity of the heat pump can be obtained. Therefore, the size of the device can be reduced, and a device with low cost can be provided.

【0025】このように構成されたデシカント空調機の
ヒートポンプ部分の熱の流れを図4に示す。図4におい
て、入熱は低熱源熱交換器からの入熱と圧縮機動力で、
出熱は全て高熱源熱交換器に加えられる。いま、圧縮機
動力を1の熱量とすると、この種のヒートポンプの温度
リフトは最低でも15℃の処理空気から熱を汲み上げて
70℃まで昇温させるために55℃の温度リフトとな
り、通常のヒートポンプの温度リフト45℃に比べて2
2%増加し、圧力比が若干高くなるため動作係数は大略
3程度に設計できる。従って、処理空気からの入熱量は
3となり、一方、出熱は合計1+3で4となり、この熱
量が全て再生空気を加熱してデシカント空調機に使用さ
れる。
FIG. 4 shows the flow of heat in the heat pump portion of the desiccant air conditioner thus constructed. In FIG. 4, the heat input is the heat input from the low heat source heat exchanger and the compressor power,
All the heat output is applied to the high heat source heat exchanger. Now, assuming that the power of the compressor is 1 calorie, the temperature lift of this type of heat pump is 55 ° C. to lift the heat from the processing air of at least 15 ° C. and raise the temperature to 70 ° C. 2 compared to 45 ° C temperature lift
Since the pressure ratio increases by 2% and the pressure ratio slightly increases, the operation coefficient can be designed to be approximately three. Therefore, the amount of heat input from the process air is 3, while the amount of heat output is 4 in total of 1 + 3, and all of this heat amount heats the regeneration air and is used for the desiccant air conditioner.

【0026】ヒートポンプを除いたデシカント空調機の
単体におけるエネルギー効率を示す動作係数(COP)
は図3における冷房効果ΔQを再生加熱量で除した値で
示されるが、大略最大で0.8〜1.2であることが一
般に報告されている。従って、デシカント空調機の動作
係数(COP)を大略1とすると、デシカント空調機に
よって1の冷房効果が得られることになるので、ヒート
ポンプの圧縮機入力を1とするとデシカント空調機の駆
動熱量は4となり、従って、この再生加熱によって4の
冷房効果が得られる。本空調システムでは、この他にヒ
ートポンプの蒸発器による冷房効果が3あるので合計7
の冷房効果が得られ、このデシカント外調機全体の動作
係数は、 動作係数=冷房効果/圧縮機入力=7 となる。この値は従来システムの値「4以下」を大幅に
上回るものである。
Operating coefficient (COP) indicating energy efficiency of a desiccant air conditioner excluding a heat pump
Is shown as a value obtained by dividing the cooling effect ΔQ in FIG. 3 by the regeneration heating amount, and it is generally reported that the maximum is approximately 0.8 to 1.2. Therefore, if the operation coefficient (COP) of the desiccant air conditioner is approximately 1, a cooling effect of 1 can be obtained by the desiccant air conditioner. Therefore, the cooling effect of 4 is obtained by this regeneration heating. In this air conditioning system, there are three other cooling effects by the evaporator of the heat pump, so that a total of seven
Is obtained, and the operation coefficient of the whole desiccant external controller is as follows: operation coefficient = cooling effect / compressor input = 7. This value greatly exceeds the value "4 or less" of the conventional system.

【0027】なお、上記の実施例では、ヒートポンプ2
00として蒸気圧縮式ヒートポンプを用いたが、前述し
た内容によれば、ヒートポンプ作用のある熱源機であれ
ば何でもよく、例えば、特願平7−333053に提案
したような吸収式ヒートポンプを採用しても差し支えな
く、同様の効果を得ることができる。また、熱移送媒体
として本実施例では冷媒の蒸発・凝縮作用を直接用いる
事例を示したが、冷媒の代わりに冷温水を利用してヒー
トポンプと接続しても差し支えない。
In the above embodiment, the heat pump 2
Although a vapor compression heat pump was used as 00, any heat source device having a heat pump action may be used according to the above-mentioned contents. For example, an absorption heat pump as proposed in Japanese Patent Application No. 7-333053 is adopted. However, a similar effect can be obtained. Further, in the present embodiment, an example in which the evaporation / condensation action of the refrigerant is directly used as the heat transfer medium has been described. However, the heat transfer medium may be connected to a heat pump using cold and hot water instead of the refrigerant.

【0028】また、デシカント103A,103Bの移
動機構としてモータに接続したプーリベルト機構を用い
たが、前述した内容によれば、直接運動を生じる機構で
あれば何でも良く、例えば再生空気又は処理空気用の送
風機の静圧を利用したダイヤフラムピストン機構、ある
いは空気圧を使用したシリンダピストン機構、あるいは
電動式のラックアンドピストン機構、あるいは螺旋ねじ
を用いたリサーキュレーティングボール機構、あるいは
リンク機構などを用いても差し支えない。
Although the pulley belt mechanism connected to the motor is used as the moving mechanism for the desiccants 103A and 103B, any mechanism that directly generates a motion can be used according to the above-described contents. A diaphragm piston mechanism using the static pressure of a blower, a cylinder piston mechanism using air pressure, an electric rack and piston mechanism, a recirculating ball mechanism using a spiral screw, or a link mechanism, etc. No problem.

【0029】さらに、上記実施例ではケーシングとデシ
カントを直線的に移動させたが、回転移動させてもよ
い。すなわち、ケーシングを円筒状に形成し、これを周
方向に分割してそれぞれに入口と出口を設け、一方、デ
シカントをこれに対応して互いに隔壁で周方向に仕切ら
れた円柱状として、ケーシング内部で回転移動させる構
造としてもよい。また、デシカントは互いに隔壁で仕切
られて空気の相互の流通を規制した構成としているが、
全く切り離した構成として所定の機構で連動させるよう
にしてもよく、逆に、場合によってはある程度相互の空
気流通性があっても差し支えない。
Further, in the above embodiment, the casing and the desiccant are moved linearly, but they may be rotated. That is, the casing is formed in a cylindrical shape, which is divided in the circumferential direction, and an inlet and an outlet are provided respectively. On the other hand, the desiccant is formed into a columnar shape corresponding to this and is circumferentially separated from each other by a partition wall. It is good also as a structure which rotates and moves. Also, desiccants are separated from each other by partition walls to regulate the mutual flow of air,
A completely separated structure may be used for interlocking with a predetermined mechanism. Conversely, in some cases, there may be a certain degree of mutual air circulation.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、少
なくとも4つのデシカント部を処理空気と再生空気に交
互に切り換えて流通可能にするとともに、デシカントと
デシカントの間に熱交換による冷却工程を含む2段階の
吸着工程としたことにより、ヒートポンプの温度ヘッド
が小さくなって省エネルギーとなり、また、同じデシカ
ントを使って2回吸着させるので吸湿能力を大きくとれ
るため、相対的に装置を小型化することができる。さら
に、再生空気経路にヒートポンプの高温熱源を配して再
生空気を加熱し、処理空気経路にヒートポンプの低温熱
源を配して処理空気を冷却しつつ、上記デシカント通過
後の処理空気と上記デシカント通過前の再生空気との間
で顕熱交換を行うことで、従来に比較し、ヒートポンプ
の冷却能力以上の冷房効果が発揮でき、エネルギー効率
が飛躍的に高い空調システムを提供することができる。
As described above, according to the present invention, at least four desiccant parts are alternately switched between the processing air and the regenerating air to allow the air to flow therethrough, and a cooling step by heat exchange between the desiccant and the desiccant is performed. By adopting a two-stage adsorption process, the temperature head of the heat pump becomes smaller and energy is saved. In addition, since the adsorption is performed twice using the same desiccant, the moisture absorption capacity can be increased. Can be. Further, the high-temperature heat source of the heat pump is disposed in the regeneration air path to heat the regeneration air, and the low-temperature heat source of the heat pump is disposed in the processing air path to cool the processing air. The processing air after passing the desiccant and the desiccant passing By performing sensible heat exchange with the previous regenerated air, a cooling effect greater than the cooling capacity of the heat pump can be exerted, and an air conditioning system with significantly higher energy efficiency can be provided as compared with the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空調システムの一実施例の基本構
成を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of an air conditioning system according to the present invention.

【図2】図1の実施例の他の動作状態を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing another operation state of the embodiment of FIG.

【図3】図1の空調システムの空気のデシカント空調サ
イクルを湿り空気線図で示す説明図である。
FIG. 3 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air-conditioning system of FIG. 1 in a psychrometric chart.

【図4】本発明の空調システムに係るヒートポンプの熱
の移動を示す説明図である。
FIG. 4 is an explanatory diagram showing heat transfer of a heat pump according to the air conditioning system of the present invention.

【図5】従来の空調システムの基本構成を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing a basic configuration of a conventional air conditioning system.

【図6】仮想的な空調システムの構成を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a configuration of a virtual air conditioning system.

【図7】図6の空調システムの空気のデシカント空調サ
イクルを湿り空気線図で示す説明図である。
FIG. 7 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air-conditioning system of FIG. 6 by a psychrometric chart.

【符号の説明】[Explanation of symbols]

102,140 送風機 103A〜103D デシカント部(デシカントロー
タ) 104 顕熱熱交換器 200 ヒートポンプ 210 冷却器(冷水熱交換器) 220 加熱器(温水熱交換器) 261 圧縮機 A 処理空気経路 B 再生空気経路 SA 給気 RA 還気 EX 排気 OA 外気 ΔQ 冷房効果 Δq 冷水による冷却量 ΔH 温水による加熱量
102,140 Blowers 103A to 103D Desiccant part (desiccant rotor) 104 Sensible heat exchanger 200 Heat pump 210 Cooler (Cold water heat exchanger) 220 Heater (Hot water heat exchanger) 261 Compressor A Processing air path B Regeneration air path SA air supply RA return air EX exhaust OA outside air ΔQ Cooling effect Δq Cooling amount by cold water ΔH Heating amount by hot water

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数のデシカント部を交互に処理空気経
路及び再生空気経路に流通するように切り換え可能に配
置し、前記再生空気経路にヒートポンプの高温熱源を配
して再生空気を加熱し、前記処理空気経路にヒートポン
プの低温熱源を配して処理空気を冷却し、処理空気経路
において前記デシカント部に処理空気中の水分を吸着
し、再生空気経路において再生空気によって前記デシカ
ント部を再生するようにした空調システムにおいて、 前記デシカント部を2つづつが前記処理空気経路及び再
生空気経路に配置されるように少なくとも4つ設け、前
記処理空気経路は、処理空気を1つの前記デシカント部
に導いて第1の吸着を行った後、上記デシカント通過前
の再生空気との間で顕熱交換を行う熱交換器に導いて冷
却し、他のデシカント部に導いて第2の吸着を行い、さ
らに前記ヒートポンプの低熱源に導いて熱交換を行って
冷却するようになっていることを特徴とする空調システ
ム。
1. A plurality of desiccant parts are disposed so as to be switchable so as to alternately flow through a processing air path and a regeneration air path, and a high-temperature heat source of a heat pump is arranged in the regeneration air path to heat the regeneration air. A low-temperature heat source of a heat pump is disposed in a processing air path to cool the processing air, adsorb moisture in the processing air to the desiccant part in the processing air path, and regenerate the desiccant part by the regeneration air in the regeneration air path. In the air conditioning system, at least four desiccant units are provided such that two desiccant units are arranged in the processing air path and the regeneration air path, and the processing air path guides the processing air to one desiccant unit. After performing the adsorption of 1, desiccant is led to a heat exchanger that performs sensible heat exchange with the regenerated air before passing through the desiccant. The second performs adsorption, air conditioning system, characterized by being adapted to further cool led performing heat exchange in the low-temperature heat source of said heat pump leading to.
【請求項2】 複数のデシカント部を処理空気経路及び
再生空気経路に対して相対移動して流通を切り換えるよ
うになっていることを特徴とする請求項1に記載の空調
システム。
2. The air conditioning system according to claim 1, wherein the plurality of desiccant units are moved relative to the processing air path and the regenerating air path to switch the flow.
【請求項3】 前記各デシカント部が機械的に結合され
て連動可能となっていることを特徴とする請求項2に記
載の空調システム。
3. The air conditioning system according to claim 2, wherein the desiccant units are mechanically connected to each other so as to be interlocked.
【請求項4】 前記相対移動が直線的移動であることを
特徴とする請求項3に記載の空調システム。
4. The air conditioning system according to claim 3, wherein the relative movement is a linear movement.
【請求項5】 前記相対移動が回転移動であることを特
徴とする請求項3に記載の空調システム。
5. The air conditioning system according to claim 3, wherein the relative movement is a rotational movement.
【請求項6】 前記ヒートポンプは蒸気圧縮式ヒートポ
ンプであることを特徴とする請求項1に記載の空調シス
テム。
6. The air conditioning system according to claim 1, wherein the heat pump is a vapor compression heat pump.
【請求項7】 前記ヒートポンプは吸収式ヒートポンプ
であることを特徴とする請求項1に記載の空調システ
ム。
7. The air conditioning system according to claim 1, wherein the heat pump is an absorption heat pump.
JP19573396A 1996-07-05 1996-07-05 Air conditioning system Pending JPH1019412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19573396A JPH1019412A (en) 1996-07-05 1996-07-05 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19573396A JPH1019412A (en) 1996-07-05 1996-07-05 Air conditioning system

Publications (1)

Publication Number Publication Date
JPH1019412A true JPH1019412A (en) 1998-01-23

Family

ID=16346065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19573396A Pending JPH1019412A (en) 1996-07-05 1996-07-05 Air conditioning system

Country Status (1)

Country Link
JP (1) JPH1019412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047407A (en) * 2007-07-23 2009-03-05 Panasonic Corp Humidity controller and air conditioner equipped with the humidity controller
US20110214446A1 (en) * 2008-11-07 2011-09-08 Yanmar Co., Ltd. Desiccant air conditioner
JP2013092339A (en) * 2011-10-27 2013-05-16 Mitsubishi Electric Corp Air conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047407A (en) * 2007-07-23 2009-03-05 Panasonic Corp Humidity controller and air conditioner equipped with the humidity controller
US20110214446A1 (en) * 2008-11-07 2011-09-08 Yanmar Co., Ltd. Desiccant air conditioner
US8850840B2 (en) * 2008-11-07 2014-10-07 Yanmar Co., Ltd. Desiccant air conditioner
JP2013092339A (en) * 2011-10-27 2013-05-16 Mitsubishi Electric Corp Air conditioning device

Similar Documents

Publication Publication Date Title
JPH109633A (en) Air-conditioning system
JPH09318127A (en) Air-conditioning system
US6205797B1 (en) Air-conditioning system and method of operating the same
JP5695752B2 (en) Dehumidification system
US6318106B1 (en) Dehumidifying air conditioner
US6199392B1 (en) Air conditioning system
JP5068235B2 (en) Refrigeration air conditioner
AU2004280429B2 (en) Air conditioning apparatus
JP2014087797A (en) Dehumidifier achieving low power consumption
JPH10288421A (en) Air conditioner system
JP4912382B2 (en) Refrigeration air conditioner
JPWO2005057087A1 (en) Air conditioning system
JP4296187B2 (en) Desiccant air conditioner
AU2006229152B2 (en) Humidity control system
JP7128774B2 (en) Ventilator and ventilation system
JPH1019412A (en) Air conditioning system
JP2001021175A (en) Dehumidifying apparatus
JPH09318129A (en) Air-conditioning system
JP2011257016A (en) Air conditioning system
JPH10288487A (en) Air-conditioning system and its operating method
JP2008096069A (en) Dehumidification air conditioner
JP4179052B2 (en) Humidity control device
JPH09318126A (en) Air-conditioning system
JPH109632A (en) Air-conditioning system
JP2001074275A (en) Dehumidifying device