JPH1019409A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH1019409A JPH1019409A JP17044096A JP17044096A JPH1019409A JP H1019409 A JPH1019409 A JP H1019409A JP 17044096 A JP17044096 A JP 17044096A JP 17044096 A JP17044096 A JP 17044096A JP H1019409 A JPH1019409 A JP H1019409A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- heat exchanger
- heat storage
- heat
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ヒートポンプ式の
冷凍サイクルを構成する圧縮機として2シリンダのロー
タリ式圧縮機を備え、かつ冷凍サイクルに蓄熱槽を備え
たバイパス路を付加し、暖房運転と除霜運転方式を改良
した空気調和機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type refrigeration cycle which includes a two-cylinder rotary compressor as a compressor, and a refrigeration cycle provided with a bypass passage having a heat storage tank to perform heating operation. The present invention relates to an air conditioner with an improved defrosting operation system.
【0002】[0002]
【従来の技術】ヒートポンプ式の冷凍サイクルを備え、
冷暖房運転の切換えを容易にした空気調和機において、
冷凍サイクルを構成する圧縮機として2シリンダのロー
タリ式圧縮機を用いることにより、圧縮効率と熱交換性
能の向上化が図られている。2. Description of the Related Art A heat pump type refrigeration cycle is provided.
In an air conditioner that facilitates switching between cooling and heating operations,
By using a two-cylinder rotary compressor as a compressor constituting a refrigeration cycle, compression efficiency and heat exchange performance are improved.
【0003】この種の空気調和機は、図14に示すよう
な、冷凍サイクル構成をなす。すなわち、Aは第1のシ
リンダa1 と、第2のシリンダa2 を有する2シリンダ
のロータリ式圧縮機である。[0003] This type of air conditioner has a refrigeration cycle configuration as shown in FIG. That is, A is a two-cylinder rotary compressor having a first cylinder a1 and a second cylinder a2.
【0004】この圧縮機Aの吐出部には四方弁Bと、室
内熱交換器Cと、減圧装置としての膨張弁Dと、室外熱
交換器Eが順次冷媒管Pを介して接続され、さらに室外
熱交換器Eは上記四方弁Bの別のポートを介して圧縮機
Aの各シリンダa1 ,a2 の吸込み部に連通される。A four-way valve B, an indoor heat exchanger C, an expansion valve D as a pressure reducing device, and an outdoor heat exchanger E are sequentially connected to a discharge portion of the compressor A via a refrigerant pipe P. The outdoor heat exchanger E is connected to the suction portions of the cylinders a1 and a2 of the compressor A via another port of the four-way valve B.
【0005】冷房運転と暖房運転との切換えは、上記四
方弁Bを切換えることで可能である。特に暖房運転時に
は、室外熱交換器Eが外気から吸熱し、この熱を室内熱
交換器Cにおいて放熱することにより、暖房作用が行な
われる。[0005] Switching between the cooling operation and the heating operation can be performed by switching the four-way valve B. In particular, during the heating operation, the outdoor heat exchanger E absorbs heat from the outside air, and the heat is radiated by the indoor heat exchanger C to perform the heating action.
【0006】[0006]
【発明が解決しようとする課題】ところで、外気温が低
い条件下での暖房起動時において、室内温度を短時間で
上昇させるために、暖房安定時よりも大きな能力が要求
されるが、外気からの吸熱だけでは不十分であり、室温
が設定温度に到達するまでに長い時間(約20分間)か
かってしまう。By the way, at the time of heating start under the condition of low outside air temperature, in order to raise the room temperature in a short time, larger capacity is required than at the time of stable heating. Is not sufficient, and it takes a long time (about 20 minutes) for the room temperature to reach the set temperature.
【0007】また、暖房運転時には、室外熱交換器Eが
蒸発器の作用をなすため、ドレン水が生成され、かつ外
気温が低いところから、ドレン水が凍結して霜に代わり
易い。この霜が固着したままであれば、当然、熱交換効
率の低下を招くので、適宜タイミングで除霜の必要があ
る。In the heating operation, since the outdoor heat exchanger E acts as an evaporator, drain water is generated, and when the outside air temperature is low, the drain water is frozen and easily replaced by frost. If the frost remains fixed, the heat exchange efficiency is naturally lowered, so it is necessary to defrost at an appropriate timing.
【0008】暖房運転から除霜運転に切換えるには、通
常、暖房サイクルから冷房サイクルに切換えて、室外熱
交換器Eで冷媒を凝縮させ、この凝縮熱で霜を溶融し除
霜するようになっている。To switch from the heating operation to the defrosting operation, normally, the operation is switched from the heating cycle to the cooling cycle, the refrigerant is condensed in the outdoor heat exchanger E, and the condensed heat is used to melt and defrost the frost. ing.
【0009】しかしながら、この除霜方式の欠点は、暖
房立上がりと同様、時間がかかることである。そして、
除霜運転の間は、暖房作用が中断されるから、快適空調
が損なわれてしまう。However, a disadvantage of this defrosting method is that it takes a long time as in the heating start. And
During the defrosting operation, the heating operation is interrupted, so that comfortable air conditioning is impaired.
【0010】そこで従来から、冷凍サイクルに蓄熱槽を
備えたバイパス路を付加し、除霜時には、冷媒をこのバ
イパス路に導いて蓄熱槽から吸熱し、これを室外熱交換
器Eで放熱して除霜する方式が考慮されている。Therefore, conventionally, a bypass having a heat storage tank is added to the refrigeration cycle, and at the time of defrosting, the refrigerant is guided to the bypass to absorb heat from the heat storage tank, and the heat is radiated by the outdoor heat exchanger E. A defrosting method is considered.
【0011】この場合は、上記蓄熱槽を単一の蒸発器と
して使用するので、室外熱交換器と蓄熱槽に対する多く
の部品からなる切換え手段が必要となり、コストに悪影
響を与える。In this case, since the heat storage tank is used as a single evaporator, switching means including many parts for the outdoor heat exchanger and the heat storage tank is required, which adversely affects the cost.
【0012】また、蓄熱槽に収容される蓄熱剤として、
蓄熱密度を高めるため、パラフィンなどの蒸発潜熱を利
用しているが、蒸発温度はパラフィンの融点(凝固温
度)である45°Cよりも低くしなければならず、した
がって蒸発温度レベルを高くすることができない。Further, as the heat storage agent stored in the heat storage tank,
In order to increase the heat storage density, latent heat of vaporization such as paraffin is used. However, the vaporization temperature must be lower than the melting point (solidification temperature) of paraffin, that is, 45 ° C. Can not.
【0013】そのため、蒸発温度が低いことによって圧
縮比が大きくなり、当然、圧縮機仕事量も大きくなるの
で、装置全体として電流制限を受ける一般的な空気調和
機の冷凍サイクルでは大能力化し難い。As a result, the compression ratio is increased due to the low evaporation temperature, and naturally the compressor work is also increased. Therefore, it is difficult to increase the capacity of a general refrigeration cycle of an air conditioner which is limited in current as a whole.
【0014】また、除霜時などに熱源としての必要能力
を確保するためには、蓄熱槽へ大量の冷媒を流して多く
の熱量を吸熱する必要があり、このような多くの熱量を
蓄えるために蓄熱槽を大型化しなければならず、空気調
和機として効率が悪い。Further, in order to secure the necessary capacity as a heat source during defrosting or the like, it is necessary to flow a large amount of refrigerant into the heat storage tank to absorb a large amount of heat, and to store such a large amount of heat. In addition, the heat storage tank must be enlarged, which is inefficient as an air conditioner.
【0015】加えて、パラフィンは可燃物であるため、
ヒータなどの利用を極力避けるためにサイクルで蓄熱す
ることが望ましく、効率が悪く回路が複雑化する。本発
明は、上記事情に鑑みなされたものであり、その目的と
するところは、2シリンダロータリ式圧縮機を用いると
ともに、バイパス路に蓄熱槽を備えることを前提とし
て、蓄熱槽に熱量を効率よく蓄熱するとともに、その蓄
熱された熱量を利用し、暖房立上がり時間および除霜完
了時間の短縮化を図って、快適空調を得られる空気調和
機を提供しようとするものである。In addition, since paraffin is a combustible material,
It is desirable to store heat in a cycle in order to minimize the use of a heater or the like, resulting in poor efficiency and a complicated circuit. The present invention has been made in view of the above circumstances, and a purpose thereof is to use a two-cylinder rotary compressor and to provide a heat storage tank in a bypass path efficiently, and efficiently store heat in the heat storage tank. An object of the present invention is to provide an air conditioner capable of obtaining comfortable air conditioning by storing heat and shortening a heating start-up time and a defrosting completion time by using the stored heat amount.
【0016】[0016]
【課題を解決するための手段】上記目的を満足するため
の本発明の空気調和機は、請求項1として、圧縮機と、
四方弁と、室内熱交換器と、膨張弁および室外熱交換器
をヒートポンプ式の冷凍サイクルを構成するように冷媒
管を介して連通する冷凍サイクル回路を備えた空気調和
機において、上記圧縮機は、第1のシリンダと第2のシ
リンダとを備えたロータリ式圧縮機であり、暖房運転時
の蒸発器である室外熱交換器の冷媒導出部と、上記ロー
タリ式圧縮機の第1のシリンダ吸込み部を第1の吸込み
管で連通し、暖房運転時の凝縮器である室内熱交換器の
冷媒導出部と上記膨張弁との間からバイパス路を分岐接
続し、このバイパス路に、開閉弁と、減圧機構および蓄
熱槽に収容される吸熱熱交換器を設け、このバイパス路
の上記蓄熱槽吸熱熱交換器と、上記ロータリ式圧縮機の
第2のシリンダの吸込み部を第2の吸込み管で連通し、
この第2の吸込み管と上記第1の吸込み管を、中途部に
逆止弁を備えた補助バイパス路で連通したことを特徴と
する。An air conditioner according to the present invention that satisfies the above objects has the following features.
A four-way valve, an indoor heat exchanger, an air conditioner provided with a refrigeration cycle circuit that communicates an expansion valve and an outdoor heat exchanger via a refrigerant pipe so as to constitute a heat pump type refrigeration cycle, wherein the compressor is , A rotary compressor having a first cylinder and a second cylinder, a refrigerant outlet of an outdoor heat exchanger which is an evaporator during a heating operation, and a first cylinder suction of the rotary compressor. And a first suction pipe, and a bypass is branched and connected between the refrigerant outlet of the indoor heat exchanger, which is a condenser during the heating operation, and the expansion valve. A heat absorbing heat exchanger accommodated in the decompression mechanism and the heat storage tank, and the heat absorbing tank heat absorbing heat exchanger of the bypass and the suction part of the second cylinder of the rotary compressor are connected by a second suction pipe. Communication,
The second suction pipe and the first suction pipe are communicated with each other via an auxiliary bypass provided with a check valve in the middle.
【0017】請求項2として、請求項1記載の上記蓄熱
槽は、上記ロータリ式圧縮機の吐出部と連通され、この
吐出部から吐出される高温・高圧ガスを導いて、蓄熱槽
に収容される蓄熱媒体に放熱する放熱熱交換器を備えた
ことを特徴とする。According to a second aspect of the present invention, the heat storage tank according to the first aspect is communicated with a discharge part of the rotary compressor and guides a high-temperature and high-pressure gas discharged from the discharge part to be stored in the heat storage tank. A heat radiation heat exchanger for radiating heat to the heat storage medium.
【0018】請求項3として、請求項1および請求項2
記載の上記蓄熱槽に収容される蓄熱媒体は、水および一
部空気層および/もしくは一部水蒸気層であり、上記蓄
熱槽には、制御手段に接続される加熱手段および水温検
出用のセンサが備えられ、上記制御手段は、水温検出用
センサが検出する水温が大気圧以上の飽和水温となるよ
うに、加熱手段の加熱作用を行なわせる制御をなすこと
を特徴とする。The third aspect is the first and second aspects.
The heat storage medium accommodated in the heat storage tank described above is water and a partial air layer and / or a partial steam layer. The heat storage tank includes a heating unit connected to a control unit and a sensor for detecting a water temperature. The control means is provided so as to perform a heating operation of the heating means so that the water temperature detected by the water temperature detecting sensor becomes a saturated water temperature equal to or higher than the atmospheric pressure.
【0019】請求項4として、請求項3記載の上記制御
手段は、上記水温検出用センサが検出する水温が設定水
温以下で、かつ上記ロータリ式圧縮機の回転数が所定回
転数以下のとき、加熱手段の加熱作用を行なわせる制御
をなすことを特徴とする。According to a fourth aspect, the control means according to the third aspect is configured such that when the water temperature detected by the water temperature detection sensor is equal to or lower than a set water temperature and the rotation speed of the rotary compressor is equal to or lower than a predetermined rotation speed, It is characterized in that control for performing the heating action of the heating means is performed.
【0020】請求項5として、請求項3記載の上記制御
手段は、室温が設定温度以下で、および/もしくは、外
気温が設定温度以下のとき、加熱手段の加熱作用を行な
わせる制御をなすことを特徴とする。According to a fifth aspect of the present invention, the control means of the third aspect controls the heating means to perform a heating operation when the room temperature is equal to or lower than the set temperature and / or when the outside air temperature is equal to or lower than the set temperature. It is characterized by.
【0021】請求項6として、請求項3記載の上記制御
手段は、暖房運転時に、室温が設定値以下で、および/
もしくは、外気温が設定値以下のとき、上記バイパス路
の開閉弁を開放する制御をなすことを特徴とする。According to a sixth aspect of the present invention, the control means according to the third aspect is arranged such that, during the heating operation, the room temperature is equal to or less than the set value;
Alternatively, when the outside air temperature is equal to or less than the set value, the control for opening the on-off valve of the bypass passage is performed.
【0022】請求項7として、請求項3記載の上記制御
手段は、暖房運転から除霜運転の切換えを、暖房サイク
ルを継続しつつ、上記バイパス路の開閉弁を開放し、か
つ主回路の膨張弁を全開にする制御をなすことを特徴と
する。According to a seventh aspect of the present invention, the control means switches between the heating operation and the defrosting operation, opens the on-off valve of the bypass passage while continuing the heating cycle, and expands the main circuit. It is characterized in that control for fully opening the valve is performed.
【0023】請求項8として、請求項1および請求項2
記載の上記ロータリ式圧縮機は、第2のシリンダの排除
容量を、第1のシリンダの排除容量よりも小さく設定し
たことを特徴とする。[0023] Claim 8 claims 1 and 2
The above described rotary compressor is characterized in that the displacement capacity of the second cylinder is set smaller than the displacement capacity of the first cylinder.
【0024】請求項9として、請求項3記載の上記ロー
タリ式圧縮機の冷媒吸込み側に、第1のシリンダと第2
のシリンダ共通のサクションカップが接続され、このサ
クションカップ内に上記逆止弁が収容されることを特徴
とする。According to a ninth aspect, a first cylinder and a second cylinder are provided on a refrigerant suction side of the rotary compressor according to the third aspect.
And a suction cup common to the cylinders is connected, and the check valve is housed in the suction cup.
【0025】以上のような課題を解決するための手段を
備えることにより、請求項1ないし請求項9記載の空気
調和機によれば、蓄熱槽に熱量を効率よく蓄熱し、その
蓄熱された熱量を利用するとともに高暖房化が得られ、
暖房立上がり時間が短縮するとともに除霜時間が短縮し
て、快適空調をなす。According to the air conditioner of the present invention, the heat amount is efficiently stored in the heat storage tank, and the stored heat amount is provided. And high heating can be obtained,
Heating rise time is shortened and defrosting time is shortened for comfortable air conditioning.
【0026】[0026]
【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。図1に、空気調和機の冷凍サイ
クルを示す。図中1は、互いに同一排出容量の第1のシ
リンダ1aと、第2のシリンダ1bとを備えたロータリ
式圧縮機である。この圧縮機1は、圧縮した冷媒ガスの
吐出部が共用されていて、ここに冷媒管Pが接続され
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigeration cycle of the air conditioner. In the drawing, reference numeral 1 denotes a rotary compressor provided with a first cylinder 1a and a second cylinder 1b having the same discharge capacity. The compressor 1 shares a discharge portion for the compressed refrigerant gas, and a refrigerant pipe P is connected to the discharge portion.
【0027】この冷媒管Pには、四方弁2の第1のポー
トb1 と第2のポートb2 を介して室内熱交換器3と、
自動電子膨張弁4および室外熱交換器5が順次設けられ
る。そして、室外熱交換器5から上記四方弁2の第3の
ポートb3 と、第4のポートb4 を介して、上記ロータ
リ式圧縮機1の吸込み部に接続される。これらで、冷凍
サイクルの主回路Sが構成される。The refrigerant pipe P is connected to the indoor heat exchanger 3 via the first port b1 and the second port b2 of the four-way valve 2.
An automatic electronic expansion valve 4 and an outdoor heat exchanger 5 are sequentially provided. The outdoor heat exchanger 5 is connected to the suction part of the rotary compressor 1 via the third port b3 of the four-way valve 2 and the fourth port b4. These constitute a main circuit S of the refrigeration cycle.
【0028】なお、上記ロータリ式圧縮機1に備えられ
る第1のシリンダ1aおよび第2のシリンダ1bは、そ
れぞれ吸込み部を有しており、上記四方弁2の第4ポー
トb4 から延出される冷媒管Pは、第1のシリンダ1a
の吸込み部に接続される。この冷媒管を、ここでは第1
の吸込み管Paと呼ぶ。The first cylinder 1a and the second cylinder 1b provided in the rotary compressor 1 each have a suction portion, and a refrigerant extending from a fourth port b4 of the four-way valve 2 is provided. The pipe P is a first cylinder 1a
Connected to the suction part of This refrigerant pipe is connected to the first
Is called a suction pipe Pa.
【0029】一方、この冷凍サイクルの主回路Sにはバ
イパス路Saが付加される。なお説明すれば、バイパス
路Saの一端部は、上記室内熱交換器3と電子自動膨張
弁4とを連通する冷媒管Pの中途部に接続される。On the other hand, a bypass passage Sa is added to the main circuit S of the refrigeration cycle. To be more specific, one end of the bypass passage Sa is connected to an intermediate portion of the refrigerant pipe P that connects the indoor heat exchanger 3 and the electronic automatic expansion valve 4.
【0030】このバイパス路Saには、上記室内熱交換
器3と膨張弁4とを連通する冷媒管P側から、順次、電
磁開閉弁6と、減圧機構としての膨張弁7および蓄熱槽
8が設けられる。In the bypass passage Sa, an electromagnetic on-off valve 6, an expansion valve 7 as a pressure reducing mechanism, and a heat storage tank 8 are sequentially arranged from the refrigerant pipe P communicating the indoor heat exchanger 3 and the expansion valve 4. Provided.
【0031】上記蓄熱槽8は、槽内に蓄熱剤Wが充填さ
れるとともに、吸熱熱交換器9と、加熱手段としての電
気ヒータ10および蓄熱剤温検知手段である温度センサ
(水温センサ)11が配設される。The heat storage tank 8 is filled with a heat storage agent W, has an endothermic heat exchanger 9, an electric heater 10 as a heating means, and a temperature sensor (water temperature sensor) 11 as a heat storage agent temperature detecting means. Is arranged.
【0032】図5に、上記蓄熱槽8の詳細を図示する。
耐圧性(3〜4Kg/cm2 )のある密閉容器である蓄熱槽
8の全外周面には断熱材12が貼着されて、断熱構造と
なっている。槽内の蓄熱剤Wは、水が9分目ほど収容さ
れているとともに水面上の残りの空間部に空気層が形成
される。すなわち、蓄熱剤Wは大部分が水であり、残り
一部が空気である。FIG. 5 shows the details of the heat storage tank 8.
A heat insulating material 12 is adhered to the entire outer peripheral surface of the heat storage tank 8 which is a closed container having a pressure resistance (3 to 4 kg / cm 2 ), thereby forming a heat insulating structure. In the heat storage agent W in the tank, water is stored for about 9 minutes, and an air layer is formed in the remaining space on the water surface. That is, the heat storage agent W is mostly water and the remaining part is air.
【0033】なお、蓄熱槽8への水の充填は、真空にさ
れた蓄熱槽8内に水を9分目ほど充填したあと、蓄熱槽
8を封印するため、上記空気層は水蒸気層であっても、
空気層と水蒸気層であっても、空気層と水蒸気層との混
合層であってもよい。The water is filled in the heat storage tank 8 after filling the evacuated heat storage tank 8 with water for about 9 minutes and then sealing the heat storage tank 8. Even
It may be an air layer and a water vapor layer, or a mixed layer of an air layer and a water vapor layer.
【0034】上記吸熱熱交換器9は、熱交換パイプを螺
旋状に曲成していて、その大部分が蓄熱剤Wである水内
に浸漬される。上記電気ヒータ10は、槽の底部近傍に
配置され、水に対する有効加熱を図っている。The heat-absorbing heat exchanger 9 has a heat-exchange pipe helically bent, and is mostly immersed in water as the heat storage agent W. The electric heater 10 is disposed near the bottom of the tank to achieve effective heating of water.
【0035】再び図1に示すように、上記バイパス路S
aは、蓄熱槽8の吸熱熱交換器9と連通しており、ここ
に冷媒が導かれ、槽内に収容される蓄熱剤Wと熱交換す
るようになっている。As shown in FIG. 1 again, the bypass S
a communicates with the endothermic heat exchanger 9 of the heat storage tank 8, where the refrigerant is guided and exchanges heat with the heat storage agent W stored in the tank.
【0036】そして、上記吸熱熱交換器9から延出され
る冷媒管Pは、上記ロータリ式圧縮機1の第2のシリン
ダ1b吸込み部に連通される。この冷媒管をここでは、
第2の吸込み管Pbと呼ぶ。The refrigerant pipe P extending from the endothermic heat exchanger 9 is communicated with the suction part of the second cylinder 1b of the rotary compressor 1. Here, this refrigerant pipe is
Called the second suction pipe Pb.
【0037】そして、上記第1の吸込み管Paと第2の
吸込み管Pbとは、中途部に逆止弁13を備えた補助バ
イパス路Sbによって連通される。上記逆止弁13は、
第1の吸込み管Pa側から第2の吸込み管Pb側への冷
媒の流れを許容し、第2の吸込み管Pb側から第1の吸
込み管Pb側への冷媒の流れを阻止する。The first suction pipe Pa and the second suction pipe Pb are connected to each other by an auxiliary bypass passage Sb provided with a check valve 13 in the middle. The check valve 13 is
The flow of the refrigerant from the first suction pipe Pa to the second suction pipe Pb is allowed, and the flow of the refrigerant from the second suction pipe Pb to the first suction pipe Pb is prevented.
【0038】このような冷凍サイクルが構成される空気
調和機であり、別途備えられる制御手段としての制御部
15には、上記ロータリ式圧縮機1と、四方弁2と、電
子自動膨張弁4の他、上記バイパス路Saに設けられる
電磁開閉弁6、膨張弁7および蓄熱槽8内の電気ヒータ
10、温度センサ11などが電気的に接続されており、
後述するような制御がなされる。The control unit 15, which is an air conditioner having such a refrigeration cycle and is provided separately as control means, includes the rotary compressor 1, the four-way valve 2, and the electronic automatic expansion valve 4. In addition, the electromagnetic on-off valve 6, the expansion valve 7, the electric heater 10 in the heat storage tank 8, the temperature sensor 11, and the like provided in the bypass passage Sa are electrically connected.
Control is performed as described below.
【0039】たとえば暖房運転を行なうには、予め、蓄
熱槽8に対する加熱作用をなす。すなわち、制御部15
は電気ヒータ10に対して加熱信号を送り、蓄熱剤Wを
加熱する。温度センサ11はこの蓄熱剤Wの温度上昇を
検知して、逐一、検知信号を制御部へ送る。For example, to perform the heating operation, the heat storage tank 8 is previously heated. That is, the control unit 15
Sends a heating signal to the electric heater 10 to heat the heat storage agent W. The temperature sensor 11 detects the temperature rise of the heat storage agent W and sends a detection signal to the control unit one by one.
【0040】上記制御部15は、この温度センサ11で
検出される水温が大気圧以上の飽和水温(設定水温:た
とえば120°C)となるように、電気ヒータ10を通
電制御する。The controller 15 controls the energization of the electric heater 10 so that the water temperature detected by the temperature sensor 11 becomes a saturated water temperature higher than the atmospheric pressure (set water temperature: for example, 120 ° C.).
【0041】なお、120°Cは、圧力が0.2MPaの雰囲
気中で水が沸騰する温度であるが、密閉容器である蓄熱
槽8内は蓄熱剤Wの温度上昇によって気圧が0.4MPa程度
になるので、上記の設定温度120°Cでは容器中の水
は沸騰することがなく、蓄熱槽8の安全性は確保され
る。The temperature of 120 ° C. is a temperature at which water boils in an atmosphere having a pressure of 0.2 MPa. The pressure in the heat storage tank 8, which is a closed container, becomes about 0.4 MPa due to a rise in the temperature of the heat storage agent W. Therefore, at the above set temperature of 120 ° C., the water in the container does not boil, and the safety of the heat storage tank 8 is ensured.
【0042】蓄熱剤Wの温度が設定温度に到達したこと
を確認できたら、暖房運転を立上げる。このときは、バ
イパス路Saの電磁開閉弁6を開放する。すなわち、同
図に実線矢印に示すように、ロータリ式圧縮機1から吐
出される高温高圧の冷媒ガスは、四方弁2を介して室内
熱交換器3に導かれ、被空調室内へ凝縮熱を放熱して温
度上昇させ、冷媒自体は液化する。When it is confirmed that the temperature of the heat storage agent W has reached the set temperature, the heating operation is started. At this time, the solenoid on-off valve 6 of the bypass passage Sa is opened. That is, as shown by a solid line arrow in the figure, the high-temperature and high-pressure refrigerant gas discharged from the rotary compressor 1 is guided to the indoor heat exchanger 3 via the four-way valve 2 and condenses heat into the room to be air-conditioned. The heat is released to increase the temperature, and the refrigerant itself liquefies.
【0043】この液冷媒は、一部は電子自動膨張弁4を
介して室外熱交換器5に導かれ、蒸発する。そして、四
方弁2を介して第1の吸込み管Paから上記ロータリ式
圧縮機1の第1のシリンダ1aに吸込まれて圧縮され
る。This liquid refrigerant is partially guided to the outdoor heat exchanger 5 via the electronic automatic expansion valve 4 and evaporates. Then, it is sucked into the first cylinder 1a of the rotary compressor 1 from the first suction pipe Pa via the four-way valve 2 and is compressed.
【0044】室内熱交換器3から導出される残りの液冷
媒は、主回路Sからバイパス路Saに分流される。すな
わち、電磁開閉弁6と膨張弁7を介して蓄熱槽8の吸熱
熱交換器9に導かれる。ここで、蓄熱槽8内の蓄熱剤W
から吸熱して蒸発する。The remaining liquid refrigerant derived from the indoor heat exchanger 3 is diverted from the main circuit S to the bypass Sa. That is, the heat is guided to the endothermic heat exchanger 9 of the heat storage tank 8 via the electromagnetic switching valve 6 and the expansion valve 7. Here, the heat storage agent W in the heat storage tank 8
Endothermic from and evaporates.
【0045】上記吸熱熱交換器9から導出される蒸発冷
媒は、第2の吸込み管Pbを介して圧縮機1の第2のシ
リンダ1bに吸込まれ圧縮される。この第2のシリンダ
1bと、上記第1のシリンダ1aで圧縮された冷媒ガス
は、一旦、圧縮機内に吐出され、ここで先に述べた経路
を循環する。The evaporative refrigerant discharged from the endothermic heat exchanger 9 is sucked into the second cylinder 1b of the compressor 1 via the second suction pipe Pb and is compressed. The refrigerant gas compressed by the second cylinder 1b and the first cylinder 1a is once discharged into the compressor, and circulates through the above-described path.
【0046】なお、上記制御部は、室外熱交換器5のS
H(スーパヒート)量が最適になるように電子自動膨張
弁4の開度を調整するとともに、上記吸熱熱交換器9で
のSH量が充分大きな最適量となすよう、バイパス路S
の膨張弁7の開度調整を行なう。したがって、吸熱熱交
換器9での蒸発圧力は、室外熱交換器5での蒸発圧力よ
りも大になる。The above-mentioned control unit operates the S of the outdoor heat exchanger 5.
The degree of opening of the electronic automatic expansion valve 4 is adjusted so that the H (superheat) amount becomes optimal, and the bypass passage S is formed so that the SH amount in the endothermic heat exchanger 9 becomes a sufficiently large optimal amount.
Of the expansion valve 7 is adjusted. Therefore, the evaporation pressure in the endothermic heat exchanger 9 becomes larger than the evaporation pressure in the outdoor heat exchanger 5.
【0047】このようにして、暖房立上がり運転は、主
回路Sの室外熱交換器5が外気から吸熱するとともに、
バイパス路Saの吸熱熱交換器9が蓄熱槽蓄熱剤Wから
吸熱するところから、比較的短時間で室温が設定温度に
到達する。As described above, during the heating start-up operation, while the outdoor heat exchanger 5 of the main circuit S absorbs heat from the outside air,
Since the endothermic heat exchanger 9 of the bypass passage Sa absorbs heat from the heat storage tank heat storage agent W, the room temperature reaches the set temperature in a relatively short time.
【0048】この暖房立上がり運転状態を、図12に、
モリエル線図として表す。線分e−fは、室外熱交換器
5の外気からの吸熱であり、線分f−bは第1シリンダ
1Aでの圧縮となる。線分d−gは、吸熱熱交換器9の
蓄熱剤Wからの吸熱であり、線分g−aは第2シリンダ
1Bでの圧縮となる。FIG. 12 shows this heating start-up operation state.
Expressed as a Mollier diagram. The line segment ef is heat absorption from the outside air of the outdoor heat exchanger 5, and the line segment fb is compression in the first cylinder 1A. The line segment dg is heat absorption from the heat storage agent W of the heat absorption heat exchanger 9, and the line segment ga is compression in the second cylinder 1B.
【0049】凝縮(暖房立上がり)のエンタルピは、こ
れらの和となり、空気側である室外熱交換器5で吸熱す
ることのほか、従来に比べ高い温度に維持されている蓄
熱槽8の蓄熱剤Wから吸熱熱交換器9で吸熱することに
より、吸熱熱交換器での冷媒の蒸発温度を従来に比べ高
くするとともに、圧縮比も小さくできるので、圧縮機仕
事量を抑えて効率のよいサイクルを構成でき、暖房能力
が顕著に大となる。The enthalpy of condensation (rise of heating) becomes the sum of these, and in addition to absorbing heat in the outdoor heat exchanger 5 on the air side, the heat storage agent W in the heat storage tank 8 maintained at a higher temperature than in the past. By absorbing heat from the endothermic heat exchanger 9, the evaporation temperature of the refrigerant in the endothermic heat exchanger can be increased as compared with the conventional case, and the compression ratio can be reduced. The heating capacity can be significantly increased.
【0050】室温が設定温度に到達したことを制御部1
5が確認したら、制御部は通常暖房運転に切換える制御
信号を、バイパス路Saの電磁開閉弁6と、膨張弁7お
よび電気ヒータ10に送る。The control unit 1 notifies that the room temperature has reached the set temperature.
When 5 is confirmed, the control unit sends a control signal for switching to the normal heating operation to the electromagnetic on-off valve 6, the expansion valve 7, and the electric heater 10 of the bypass passage Sa.
【0051】すなわち、電磁開閉弁6に閉成信号が送ら
れ、電気ヒータ10に対して断電信号が送られる。な
お、圧縮機1と、四方弁2および電子自動膨張弁4は、
暖房立上がり運転と同一の状態を保持する。That is, a closing signal is sent to the electromagnetic switching valve 6, and a disconnection signal is sent to the electric heater 10. In addition, the compressor 1, the four-way valve 2, and the electronic automatic expansion valve 4
The same state as the heating start-up operation is maintained.
【0052】図2に、実線矢印で示すように、冷媒はロ
ータリ式圧縮機1−四方弁2−室内熱交換器3−電子自
動膨張弁4−室外熱交換器5−四方弁2と順次送られ、
ここから第1の吸込み管Paから圧縮機1の第1のシリ
ンダ1aに吸込まれる冷媒と、補助バイパス路Sbの逆
止弁13を介して第2の吸込み管Pbに導かれ、圧縮機
1の第2のシリンダ1bに吸込まれる冷媒に分流され
る。As shown by the solid arrows in FIG. 2, the refrigerant is sequentially sent to the rotary compressor 1-four-way valve 2-indoor heat exchanger 3-electronic automatic expansion valve 4-outdoor heat exchanger 5-four-way valve 2. And
From here, the refrigerant sucked into the first cylinder 1a of the compressor 1 from the first suction pipe Pa and the second suction pipe Pb through the check valve 13 of the auxiliary bypass passage Sb are led to the compressor 1 Is diverted into the refrigerant sucked into the second cylinder 1b.
【0053】結局、第1,第2のシリンダ1A,1Bで
は、これまで通りの圧縮作用が行なわれ、通常の暖房運
転モードとなる。なお、上記蓄熱運転は、暖房運転に先
立って行なわれるばかりでなく、暖房運転中においても
熱放出にともなう温度低下があれば、当然、行なわれ
る。After all, in the first and second cylinders 1A and 1B, the same compression action is performed as before, and the normal heating operation mode is set. The heat storage operation is performed not only prior to the heating operation but also during the heating operation if there is a temperature decrease due to heat release.
【0054】この場合の制御部15の制御条件として、
電気ヒータ10に対する通電信号を、設定水温以下で、
圧縮機1の回転数が所定回転数以下(たとえば、最高回
転数の1/4以下:約30Hz)のときに送る。In this case, the control conditions of the control unit 15 are as follows.
When the energization signal to the electric heater 10 is set to a value equal to or lower than the set water temperature,
This is sent when the rotation speed of the compressor 1 is equal to or lower than a predetermined rotation speed (for example, 1/4 or less of the maximum rotation speed: about 30 Hz).
【0055】これによれば、圧縮機1の入力電流が少な
いときに電気ヒータ10に通電するため、装置全体とし
ての消費電流が電流制限値を上回ることがなく、効率的
な蓄熱運転が行なえる。According to this, the electric heater 10 is energized when the input current of the compressor 1 is small, so that the current consumption of the entire apparatus does not exceed the current limit value, and an efficient heat storage operation can be performed. .
【0056】あるいは、制御部15は、室温が設定値
(10°C以下)の場合、および/もしくは、外気温が
設定値(5°C以下)の場合に、電気ヒータ10に通電
信号を送り蓄熱運転を行なう。Alternatively, the controller 15 sends an energization signal to the electric heater 10 when the room temperature is a set value (10 ° C. or less) and / or when the outside air temperature is a set value (5 ° C. or less). Perform heat storage operation.
【0057】これによれば、室温や外気温が低い暖房運
転の高負荷時に、蓄熱を利用しての暖房運転の継続が可
能であり、効率のよい暖房運転が行なえる。また、暖房
運転中に、蓄熱利用運転を行なうことができる。すなわ
ち、制御部15は、暖房運転時に室温が設定温度以下
(10°C以下)の場合、および/もしくは、外気温が
設定値以下(5°C以下)の場合に、バイパス路Saの
電磁開閉弁6を開放して蓄熱槽8の吸熱熱交換器9に冷
媒を導く制御をなす。吸熱熱交換器9は蓄熱剤Wから充
分な量の熱を吸収して、凝縮温度を高く保持し、設定温
度に到達させる。According to this, the heating operation using the heat storage can be continued at the time of the high load of the heating operation in which the room temperature or the outside air temperature is low, and the efficient heating operation can be performed. In addition, during the heating operation, the heat storage operation can be performed. That is, when the room temperature is equal to or lower than the set temperature (10 ° C. or lower) during the heating operation and / or when the outside air temperature is equal to or lower than the set value (5 ° C. or lower), the electromagnetic opening and closing of the bypass path Sa is performed. The valve 6 is opened to control the refrigerant to be guided to the endothermic heat exchanger 9 of the heat storage tank 8. The endothermic heat exchanger 9 absorbs a sufficient amount of heat from the heat storage agent W, keeps the condensation temperature high, and reaches the set temperature.
【0058】一方、外気温が低下して、室外熱交換器5
に付着する霜が厚くなると熱交換効率が低下する。この
とき制御部15は、除霜運転に切換える制御をなす。図
3に示すように、制御部15はバイパス回路Saの電磁
開閉弁6を開放制御し、主回路Sの電子自動膨張弁4に
対して全開信号を送る。すなわち、蓄熱利用運転をもっ
て、除霜運転となす。On the other hand, when the outside air temperature decreases, the outdoor heat exchanger 5
When the frost attached to the surface becomes thick, the heat exchange efficiency decreases. At this time, the control unit 15 performs control for switching to the defrosting operation. As shown in FIG. 3, the control unit 15 controls the opening and closing of the electromagnetic on-off valve 6 of the bypass circuit Sa and sends a fully open signal to the electronic automatic expansion valve 4 of the main circuit S. That is, the defrosting operation is performed by the heat storage operation.
【0059】この除霜運転では、冷媒は実線矢印に示す
ように導かれる。すなわち、冷媒は暖房立上がり運転と
同一の状態で導かれるが、上記電子自動膨張弁4は全開
状態になっているので、室内熱交換器3から導出される
液冷媒は、電子自動膨張弁4をそのまま導通して室外熱
交換器5に導かれ、ここでも凝縮熱を放出する。したが
って、室外熱交換器5に付着する霜は、凝縮熱を吸収し
て早急に溶融し、除去される。In this defrosting operation, the refrigerant is guided as shown by the solid arrow. That is, the refrigerant is guided in the same state as in the heating start-up operation, but since the electronic automatic expansion valve 4 is fully opened, the liquid refrigerant derived from the indoor heat exchanger 3 passes through the electronic automatic expansion valve 4. It conducts as it is and is led to the outdoor heat exchanger 5, where it also releases the heat of condensation. Therefore, the frost adhering to the outdoor heat exchanger 5 absorbs the heat of condensation and is quickly melted and removed.
【0060】バイパス回路Saを導かれる冷媒は、膨張
弁7で減圧されたあと蓄熱槽8で吸熱熱交換器10に導
きかれ、ここで蓄熱剤Wから吸熱する。冷媒は蒸発して
第2のシリンダ1bに吸込まれ、圧縮される。The refrigerant guided to the bypass circuit Sa is decompressed by the expansion valve 7 and then guided to the heat absorption heat exchanger 10 in the heat storage tank 8 where it absorbs heat from the heat storage agent W. The refrigerant evaporates, is sucked into the second cylinder 1b, and is compressed.
【0061】すなわち、特に第2のシリンダ1bに導か
れる冷媒は、蓄熱剤Wから吸熱するところから、室外熱
交換器5で外気から吸熱する以上に高温である。結局、
室外熱交換器5により高温の冷媒を導き、多量の凝縮熱
を放出して、比較的短時間で除霜を完了させ得る。That is, the temperature of the refrigerant guided to the second cylinder 1b is higher than that of the outdoor heat exchanger 5 where it absorbs heat from the heat storage agent W and absorbs heat from the outside air. After all,
High-temperature refrigerant is guided by the outdoor heat exchanger 5, and a large amount of heat of condensation is released, so that defrosting can be completed in a relatively short time.
【0062】そして、除霜と暖房の熱量をほとんどを蓄
熱槽8の蓄熱剤Wから吸熱するので、暖房運転を中断せ
ず、継続したまま除霜運転を行なえる。換言すれば、除
霜運転を気付かれることなく開始し、かつ終了するの
で、快適空調が保持される。Since most of the heat for defrosting and heating is absorbed from the heat storage agent W in the heat storage tank 8, the defrosting operation can be performed without interrupting the heating operation. In other words, the defrosting operation starts and ends without being noticed, so that comfortable air conditioning is maintained.
【0063】図13に、この除霜運転時のモリエル線図
を示す。線分h−jで暖房が行なわれる。線分k−lで
室外熱交換器5に対する除霜をなし、線分l−iで第1
シリンダ1aの圧縮がなされる。線分m−nで蓄熱槽8
での吸熱がなされ、線分n−oで第2のシリンダ1bの
圧縮がなされる。すなわち、充分な除霜用のエンタルピ
を得る。FIG. 13 shows a Mollier chart during the defrosting operation. Heating is performed at line h-j. Defrosting is performed on the outdoor heat exchanger 5 by the line segment k-l, and the first heat is removed by the line segment l-i.
The compression of the cylinder 1a is performed. Thermal storage tank 8 with line segment mn
And the second cylinder 1b is compressed at the line segment no. That is, a sufficient enthalpy for defrosting is obtained.
【0064】除霜運転中の暖房運転が不要である場合に
は、図4に示すような制御である、一般的なリバース除
霜制御を行なうとよい。すなわち、四方弁2を暖房運転
モードから冷房運転モードに切換える。それ以外の制御
は不要である。If the heating operation during the defrosting operation is unnecessary, a general reverse defrosting control as shown in FIG. 4 may be performed. That is, the four-way valve 2 is switched from the heating operation mode to the cooling operation mode. No other control is required.
【0065】ロータリ式圧縮機1から吐出される高温冷
媒は、直接、室外熱交換器5に導かれ、ここで凝縮熱を
放出して付着した霜を早急に溶融除去する。室外熱交換
器5から導出された液冷媒は、電子自動膨張弁4で減圧
されたあと、一部は室内熱交換器3に導かれて蒸発し、
四方弁2を介して圧縮機1の第1のシリンダ1aに吸込
まれる。The high-temperature refrigerant discharged from the rotary compressor 1 is directly guided to the outdoor heat exchanger 5, where the heat of condensation is released to quickly melt and remove the attached frost. The liquid refrigerant derived from the outdoor heat exchanger 5 is decompressed by the electronic automatic expansion valve 4 and then partially guided to the indoor heat exchanger 3 to evaporate.
It is sucked into the first cylinder 1a of the compressor 1 via the four-way valve 2.
【0066】残りの冷媒は主回路Sからバイパス路Sa
に導かれ、蓄熱槽8において吸熱熱交換器9が蓄熱剤W
から吸熱する。そして、第2のシリンダ1bで圧縮され
る。ここでも蓄熱剤Wから吸熱して高い蒸発温度を保持
でき、除霜時間のより短縮化を得られる。The remaining refrigerant flows from the main circuit S to the bypass passage Sa.
And the endothermic heat exchanger 9 in the heat storage tank 8
Endothermic from. Then, it is compressed by the second cylinder 1b. Also in this case, heat can be absorbed from the heat storage agent W to maintain a high evaporation temperature, and the defrosting time can be further reduced.
【0067】なお、上記実施の形態では、ロータリ式圧
縮機1における第1のシリンダ1aの排除容積と、第2
のシリンダ1bの排除容積を同一としたが、これに限定
されるものではない。In the above embodiment, the displacement volume of the first cylinder 1a in the rotary compressor 1
Although the excluded volume of the cylinder 1b is the same, the present invention is not limited to this.
【0068】図6に示すように、第2のシリンダ1b1
の排除容積を,第1のシリンダ1a1 の排除容積よりも
小とした、ロータリ式圧縮機1Aであってもよい。すな
わち、図1のように圧縮機1における第1のシリンダ1
aと第2のシリンダ1bとの排除容積を同一とした場
合、バイパス路Saを流れる冷媒の蒸発温度および圧力
が高く設定されるので、室外熱交換器5に比べバイパス
路Saにより多くの冷媒が流入することになる。As shown in FIG. 6, the second cylinder 1b1
May be smaller than the excluded volume of the first cylinder 1a1. That is, as shown in FIG.
When the displacement volume of the second cylinder 1b is equal to that of the second cylinder 1b, the evaporation temperature and pressure of the refrigerant flowing through the bypass passage Sa are set to be high, so that more refrigerant flows into the bypass passage Sa than the outdoor heat exchanger 5. Will flow in.
【0069】すると、室外熱交換器5が有効に利用され
なくなるとともに、蓄熱槽8の蓄熱剤Wの熱量が必要以
上に多く消費されることになり、蓄熱利用時間が短縮さ
れ、蓄熱利用の効率が低下することもある。Then, the outdoor heat exchanger 5 is not effectively used, and the heat amount of the heat storage agent W in the heat storage tank 8 is consumed more than necessary, so that the heat storage use time is shortened, and the heat storage use efficiency is reduced. May decrease.
【0070】なおこの場合、上記膨張弁7を絞ることに
よってバイパス路Saに流入する冷媒量を制限すること
も可能であるが、膨張弁7を絞ることは冷媒の蒸発温度
および圧力を低下させることになるので、上述した実施
の態様で説明した効果を充分に利用できないことにな
る。In this case, it is possible to restrict the amount of the refrigerant flowing into the bypass passage Sa by restricting the expansion valve 7. However, restricting the expansion valve 7 lowers the evaporation temperature and pressure of the refrigerant. Therefore, the effect described in the above embodiment cannot be sufficiently utilized.
【0071】そこで、上記蓄熱槽8の吸熱熱交換器9に
連通する第2のシリンダ1b1 の排除容積を、室外熱交
換器5に連通する第1のシリンダ1a1 の排除容積より
も小とする。Therefore, the excluded volume of the second cylinder 1b1 communicating with the endothermic heat exchanger 9 of the heat storage tank 8 is made smaller than the excluded volume of the first cylinder 1a1 communicating with the outdoor heat exchanger 5.
【0072】これによれば、バイパス路Saを流れる冷
媒は、蒸発温度および圧力が高いままで、密度の濃い冷
媒となっているので、第2のシリンダ1b1 の排除容積
が小さくても冷媒循環量は多く、実質的に排除容積の大
きな第1のシリンダ1a1 と同等の冷媒循環量を得るこ
とができ、吸熱熱交換器9と室外熱交換器5とに流れる
冷媒の流量がバランスし、室外熱交換器5を有効に利用
するとともに、蓄熱利用時間を延長させ、電気ヒータ1
0のランニングコストを抑制して、蓄熱利用の効率が低
下させないようにすることができる。According to this, since the refrigerant flowing through the bypass passage Sa is a high-density refrigerant while the evaporation temperature and the pressure remain high, even if the excluded volume of the second cylinder 1b1 is small, the amount of the circulated refrigerant is small. The amount of refrigerant circulating can be substantially equal to that of the first cylinder 1a1 having a large excluded volume, the flow rate of the refrigerant flowing through the endothermic heat exchanger 9 and the outdoor heat exchanger 5 is balanced, and the outdoor heat The heat exchanger 1 is effectively used, the heat storage utilization time is extended, and the electric heater 1 is used.
The running cost of 0 can be suppressed, and the efficiency of heat storage utilization can be prevented from lowering.
【0073】また、上記実施の形態では、第1の吸込み
管1aと、第2の吸込み管1bを補助バイパス路Sbで
連通し、この補助バイパス路の中途部に逆止弁13を設
けたが、これに限定されるものではない。In the above embodiment, the first suction pipe 1a and the second suction pipe 1b communicate with each other via the auxiliary bypass passage Sb, and the check valve 13 is provided in the middle of the auxiliary bypass passage. However, the present invention is not limited to this.
【0074】図7に示すように、第1のシリンダ1a
と、第2のシリンダ1bとに接続される各吸込み管P
a,Pbを単体のサクションカップ20に接続してもよ
い。そして、第1の吸込み管Pa端部には逆止弁13が
設けられる。As shown in FIG. 7, the first cylinder 1a
And each suction pipe P connected to the second cylinder 1b
a and Pb may be connected to a single suction cup 20. A check valve 13 is provided at the end of the first suction pipe Pa.
【0075】本来、サクションカップは、圧縮機の吸込
み部に接続される配管途中に設けられていて、圧縮機に
吸込まれる直前の蒸発冷媒を導入し、ここで気液分離を
なすとともに整圧し、かつ消音機能を有するものであ
る。Originally, the suction cup was provided in the middle of the pipe connected to the suction part of the compressor, and introduced evaporative refrigerant immediately before being sucked into the compressor, where gas-liquid separation and pressure regulation were performed. , And has a sound deadening function.
【0076】これまで説明した実施の態様では図示を省
略したが、第1,第2の吸込み管Pa,Pbそれぞれに
専用のサクションカップを備えても、各サクションカッ
プの大きさは、図7の共通化サクションカップ20のお
よそ2/3程度であり、さらにこれらサクションカップ
の吸込み側に上記補助バイパス路Sbを備え、中途部に
逆止弁13を設ける必要があり、圧縮機1の周囲の配管
スペースを大きくとらなければならない。Although not shown in the above-described embodiment, even if each of the first and second suction pipes Pa and Pb is provided with a dedicated suction cup, the size of each suction cup is as shown in FIG. It is necessary to provide the above-mentioned auxiliary bypass passage Sb on the suction side of these suction cups, and to provide the check valve 13 in the middle of the suction cup. You have to take up a lot of space.
【0077】図7の実施の形態では、サクションカップ
20を共通化し、かつこの内部に逆止弁13を収容する
ことにより、コンパクト化を図れる。そして、ロー付け
箇所が低減して、製造性の向上を図れる。In the embodiment shown in FIG. 7, the suction cup 20 is made common, and the check valve 13 is housed in the suction cup 20, so that the size can be reduced. Then, the number of brazing portions is reduced, and the productivity can be improved.
【0078】なお、蓄熱槽8の吸熱熱交換器9に接続さ
れる第2の吸込み管Pbは、補助サクションカップ21
を設ける。また、各上記実施の形態では、蓄熱槽8に収
容する熱交換器として吸熱熱交換器9のみを収容した
が、これに限定されるものではなく、図8および図9に
示すような蓄熱槽8Aであってもよい。The second suction pipe Pb connected to the heat absorption heat exchanger 9 of the heat storage tank 8 is connected to the auxiliary suction cup 21.
Is provided. Further, in each of the above embodiments, only the endothermic heat exchanger 9 is housed as the heat exchanger housed in the heat storage tank 8, but the present invention is not limited to this, and the heat storage tank shown in FIGS. 8A.
【0079】上記蓄熱槽8Aとして、電気ヒータ10、
温度センサ11および蓄熱剤Wは同一であり、さらに蓄
熱剤Wに浸漬される後述する吸熱熱交換器9Aおよび放
熱熱交換器30を備えている。As the heat storage tank 8A, an electric heater 10,
The temperature sensor 11 and the heat storage agent W are the same, and further include an endothermic heat exchanger 9A and a heat radiation heat exchanger 30, which will be described later, which are immersed in the heat storage agent W.
【0080】すなわち、これら吸熱熱交換器9Aおよび
放熱熱交換器30とも同一の形態をなす熱交換器である
が、熱交換容量として、吸熱熱交換器9Aは放熱熱交換
器30よりも遥かに大きな熱交換容量を有する。That is, the heat absorbing heat exchanger 9A and the heat radiating heat exchanger 30 are heat exchangers having the same form. However, the heat absorbing heat exchanger 9A has a much larger heat exchange capacity than the heat radiating heat exchanger 30. Has a large heat exchange capacity.
【0081】上記吸熱熱交換器9Aは、第2のシリンダ
1bに第2の吸込み管Pbを介して連通することは、こ
の実施の形態でも同様である。(同図では、作図上の理
由から、第1,第2のシリンダ1a,1bの位置が、こ
れまで説明した実施の形態とは左右逆になっているが、
実質的に同一である。以下同じ)一方、上記放熱熱交換
器30の一端部は、上記ロータリ式圧縮機1の吐出部と
連通される。他端部は、上記四方弁2の第1のポートb
1 に連通される。すなわち、ロータリ式式圧縮機1の吐
出部と、四方弁2との間に上記放熱熱交換器30が設け
られることになる。The heat absorbing heat exchanger 9A communicates with the second cylinder 1b via the second suction pipe Pb in the same manner in this embodiment. (In the figure, the positions of the first and second cylinders 1a and 1b are left and right opposite to those of the embodiment described so far for drawing reasons,
Substantially the same. On the other hand, one end of the heat radiation heat exchanger 30 is communicated with the discharge part of the rotary compressor 1. The other end is the first port b of the four-way valve 2
Communicated with 1. That is, the heat radiation heat exchanger 30 is provided between the discharge part of the rotary compressor 1 and the four-way valve 2.
【0082】この場合の上記電気ヒータ10も、水温セ
ンサ11が水温を検知し、ここでは図示しない制御部1
5が大気圧以上の飽和水温となるように通電制御する。
さらにまた、蓄熱槽8Aの水温が設定水温以下で、かつ
上記ロータリ式圧縮機1の回転数が所定回転数以下のと
きも通電される。In this case, also in the electric heater 10, the water temperature sensor 11 detects the water temperature and the control unit 1 not shown here.
The energization control is performed so that 5 becomes a saturated water temperature higher than the atmospheric pressure.
Furthermore, power is supplied also when the water temperature of the heat storage tank 8A is equal to or lower than the set water temperature and the rotation speed of the rotary compressor 1 is equal to or lower than a predetermined rotation speed.
【0083】そして、いずれの運転モードでも、ロータ
リ式圧縮機1から吐出される冷媒ガスは、はじめに蓄熱
槽8Aの放熱熱交換器30に導かれ、ここで蓄熱剤Wで
ある水に放熱する。In any of the operation modes, the refrigerant gas discharged from the rotary compressor 1 is first guided to the radiating heat exchanger 30 of the heat storage tank 8A, where it is radiated to water as the heat storage agent W.
【0084】暖房立上がり運転や、通常暖房運転、蓄熱
利用の暖房運転、蓄熱利用の除霜運転および冷房モード
での除霜運転など、全て先に説明した冷凍サイクルと同
一であるので、ここではその説明を省略する。Since the heating start-up operation, the normal heating operation, the heating operation using the heat storage, the defrosting operation using the heat storage, and the defrosting operation in the cooling mode are all the same as the refrigeration cycle described above, here, Description is omitted.
【0085】上記蓄熱槽8Aの水温は、電気ヒータ10
の発熱と、放熱熱交換器30の放熱によって早急に上昇
する。そして、所定水温に到達した状態では、吸熱熱交
換器9Aによる蓄熱剤Wからの吸熱作用があっても、そ
の熱は放熱熱交換器30が補充することになり、蓄熱剤
温度の低下の影響が少ない。したがって、電気ヒータ1
0に通電する時間が少なくてすみ、ランニングコスト低
減に寄与する。The water temperature of the heat storage tank 8A is controlled by the electric heater 10
And the heat radiation of the heat radiation heat exchanger 30 causes the temperature to rise quickly. In the state where the temperature reaches the predetermined water temperature, even if there is a heat absorbing action from the heat storage agent W by the heat absorbing heat exchanger 9A, the heat is replenished by the heat radiating heat exchanger 30 and the effect of the decrease in the heat storing agent temperature. Less is. Therefore, the electric heater 1
The time for energizing to 0 can be reduced, which contributes to a reduction in running cost.
【0086】図10に示すように、蓄熱槽8Aに吸熱熱
交換器9Aと放熱熱交換器30を備えることを前提とし
て、ロータリ式圧縮機1Aは、第2のシリンダ1b1 の
排除容積を、第1のシリンダ1a1 の排除容積よりも小
としてもよい。As shown in FIG. 10, on the premise that the heat storage tank 8A is provided with an endothermic heat exchanger 9A and a heat radiating heat exchanger 30, the rotary compressor 1A has a displacement capacity of the second cylinder 1b1 equal to the second cylinder 1b1. It may be smaller than the displacement volume of one cylinder 1a1.
【0087】すなわち、第1のシリンダ1a1 は四方弁
2を介して室外熱交換器5に連通しており、蓄熱槽8A
の吸熱熱交換器9Aに連通する第2のシリンダ1b1 よ
りも大きな圧縮仕事をなす。That is, the first cylinder 1a1 communicates with the outdoor heat exchanger 5 via the four-way valve 2 and the heat storage tank 8A
Performs larger compression work than the second cylinder 1b1 communicating with the endothermic heat exchanger 9A.
【0088】換言すれば、室外熱交換器5で充分な吸熱
を行なわせ、蓄熱槽8Aでの吸熱を抑え気味にできる。
蓄熱槽8Aの蓄熱剤Wは熱を奪われることがさらに少な
くなって、電気ヒータ10のランニングコストを抑制で
きる。In other words, sufficient heat absorption can be performed in the outdoor heat exchanger 5, and the heat absorption in the heat storage tank 8A can be suppressed.
The heat storage agent W in the heat storage tank 8A is less likely to lose heat, and the running cost of the electric heater 10 can be suppressed.
【0089】図11に示すように、第1のシリンダ1a
と、第2のシリンダ1bとに接続される各吸込み管P
a,Pbを単体のサクションカップ20に接続し、サク
ションカップ20内の第1の吸込み管Pa端部に逆止弁
13を設けてもよい。As shown in FIG. 11, the first cylinder 1a
And each suction pipe P connected to the second cylinder 1b
a, Pb may be connected to a single suction cup 20, and a check valve 13 may be provided at the end of the first suction pipe Pa in the suction cup 20.
【0090】したがって、サクションカップ20を共通
化してコンパクト化を図るとともに、この内部に逆止弁
13を収容することにより、ロー付け箇所が低減して、
製造性の向上を図れる。さらに、蓄熱槽8の吸熱熱交換
器9に接続される第2の吸込み管Pbは、補助サクショ
ンカップ21を設ける。Therefore, the suction cup 20 is made common and compact, and the check valve 13 is housed in the suction cup 20 to reduce the number of brazing points.
Manufacturability can be improved. Further, the second suction pipe Pb connected to the heat absorption heat exchanger 9 of the heat storage tank 8 is provided with an auxiliary suction cup 21.
【0091】[0091]
【発明の効果】以上説明したように請求項1の発明で
は、2シリンダのロータリ式圧縮機を備え、室外熱交換
器の冷媒導出部と第1のシリンダ吸込み部を第1の吸込
み管で連通し、室内熱交換器の冷媒導出部と膨張弁との
間からバイパス路を分岐接続し、このバイパス路に、開
閉弁と、減圧機構および蓄熱槽に収容される吸熱熱交換
器を設け、この熱交換器と第2のシリンダ吸込み部を第
2の吸込み管で連通し、この第2の吸込み管と第1の吸
込み管を、中途部に逆止弁を備えた補助バイパス路で連
通した。As described above, according to the first aspect of the present invention, the rotary compressor of two cylinders is provided, and the refrigerant outlet of the outdoor heat exchanger and the first cylinder suction part are communicated by the first suction pipe. Then, a bypass is branched and connected between the refrigerant outlet of the indoor heat exchanger and the expansion valve, and an on-off valve, an endothermic heat exchanger accommodated in a pressure reducing mechanism and a heat storage tank are provided in the bypass, The heat exchanger and the second cylinder suction section were communicated by a second suction pipe, and the second suction pipe and the first suction pipe were communicated by an auxiliary bypass having a check valve in the middle.
【0092】したがって、特に、外気温の低い条件下で
の暖房立上がり運転時および通常暖房運転時において、
外気からの吸熱に加えて蓄熱槽からの吸熱があり、冷媒
を高い蒸発温度の保持できるので、短時間の立上がりが
可能となり、高い暖房能力を得られる。そして、除霜運
転も同様に、蓄熱槽からの吸熱があるところから、短時
間で除霜が完了し、快適空調を保持できるなどの効果を
奏する。Therefore, particularly during the heating start-up operation and the normal heating operation under the condition of low outside air temperature,
In addition to heat absorption from the outside air, there is heat absorption from the heat storage tank, and the refrigerant can be kept at a high evaporation temperature, so that it can be started up in a short time and high heating performance can be obtained. In the defrosting operation, similarly, there is an effect that the defrosting is completed in a short time from the place where heat is absorbed from the heat storage tank, and the comfortable air conditioning can be maintained.
【0093】請求項2の発明では、蓄熱槽は、ロータリ
式圧縮機の吐出部と連通され、この吐出部から吐出され
る高温・高圧ガスを導いて、蓄熱槽に収容される蓄熱媒
体に放熱する放熱熱交換器を備えた。According to the second aspect of the present invention, the heat storage tank communicates with the discharge part of the rotary compressor, guides the high-temperature and high-pressure gas discharged from the discharge part, and radiates heat to the heat storage medium accommodated in the heat storage tank. Radiating heat exchanger.
【0094】したがって、蓄熱槽からの吸熱を抑え、加
熱手段の加熱ランニングコストの低減を得られる。請求
項3の発明では、蓄熱槽に収容される蓄熱媒体は、水お
よび一部空気層および/もしくは一部水蒸気層であり、
蓄熱槽には制御手段に接続される加熱手段および水温検
出用のセンサが備えられ、制御手段は、蓄熱剤水温が大
気圧以上の飽和水温となるよう加熱手段を加熱する。Therefore, the heat absorption from the heat storage tank can be suppressed, and the heating running cost of the heating means can be reduced. In the invention of claim 3, the heat storage medium accommodated in the heat storage tank is water and a partial air layer and / or a partial steam layer,
The heat storage tank is provided with a heating means connected to the control means and a sensor for detecting a water temperature, and the control means heats the heating means so that the temperature of the heat storage agent becomes a saturated water temperature equal to or higher than the atmospheric pressure.
【0095】請求項4の発明では、制御手段は、水温検
出用センサが検出する水温が設定水温以下で、かつロー
タリ式圧縮機の回転数が所定回転数以下のとき加熱手段
を加熱する。According to the fourth aspect of the present invention, the control means heats the heating means when the water temperature detected by the water temperature detecting sensor is equal to or lower than the set water temperature and the rotational speed of the rotary compressor is equal to or lower than a predetermined rotational speed.
【0096】請求項5の発明では、制御手段は、室温が
設定温度以下で、および/もしくは、外気温が設定温度
以下のとき、加熱手段を加熱する。請求項6の発明で
は、制御手段は、暖房運転時に、室温が設定値以下で、
および/もしくは、外気温が設定値以下のとき、バイパ
ス路の開閉弁を開放する。According to the fifth aspect of the present invention, the control means heats the heating means when the room temperature is lower than the set temperature and / or when the outside air temperature is lower than the set temperature. In the invention according to claim 6, the control means is configured such that the room temperature is equal to or less than the set value during the heating operation,
And / or when the outside air temperature is equal to or lower than the set value, the on-off valve of the bypass is opened.
【0097】したがって、請求項3ないし請求項6の発
明によれば、制御手段による効率のよい温度制御をな
す。請求項7の発明では、制御手段は、暖房運転から除
霜運転の切換えを、暖房サイクルを継続し、バイパス路
の開閉弁を開放し、かつ主回路の膨張弁を全開にする。Therefore, according to the third to sixth aspects of the present invention, efficient temperature control is performed by the control means. In the invention of claim 7, the control means switches the operation from the heating operation to the defrosting operation, continues the heating cycle, opens the on-off valve of the bypass passage, and fully opens the expansion valve of the main circuit.
【0098】したがって、暖房サイクルを継続しつつ除
霜が可能であり、快適空調の向上を図れる。請求項8の
発明では、第2のシリンダの排除容量を、第1のシリン
ダの排除容量よりも小さく設定したロータリ式圧縮機を
備えた。[0098] Therefore, defrosting is possible while continuing the heating cycle, so that comfortable air conditioning can be improved. According to the eighth aspect of the present invention, there is provided the rotary compressor in which the displacement of the second cylinder is set smaller than the displacement of the first cylinder.
【0099】したがって、蓄熱槽からの吸熱による第2
のシリンダの圧縮仕事を、第1のシリンダの圧縮仕事よ
りも抑制できるとともに、第1および第2のシリンダに
よる冷媒循環量をほぼ同等とすることができ、蓄熱槽か
らの吸熱を抑え気味にして、高い暖房能力が継続して得
られる。、蓄熱槽からの吸熱を抑え気味にして高い暖房
能力を得られる。Therefore, the second heat generated by heat absorption from the heat storage tank
Compression work of the first cylinder can be suppressed more than the compression work of the first cylinder, the amount of refrigerant circulated by the first and second cylinders can be made substantially equal, and heat absorption from the heat storage tank is suppressed. , High heating capacity is continuously obtained. In addition, the heat absorption from the heat storage tank can be suppressed and a high heating capacity can be obtained.
【0100】請求項9の発明では、ロータリ式圧縮機の
冷媒吸込み側に、第1のシリンダと第2のシリンダ共通
のサクションカップを接続し、このサクションカップ内
に逆止弁を収容する。したがって、サクションカップに
よる占有スペースの低減を図るとともに、ロー付け作業
などの作業手間が軽減して、製造コストの低減を得られ
る。According to the ninth aspect of the invention, a suction cup common to the first cylinder and the second cylinder is connected to the refrigerant suction side of the rotary compressor, and a check valve is housed in the suction cup. Therefore, the space occupied by the suction cup can be reduced, and the labor for brazing work and the like can be reduced, and the manufacturing cost can be reduced.
【図1】本発明の実施の形態を示す、空気調和機の冷凍
サイクルと電気回路図。FIG. 1 is a refrigeration cycle and an electric circuit diagram of an air conditioner, showing an embodiment of the present invention.
【図2】同実施の形態の、通常暖房運転時の冷凍サイク
ル図。FIG. 2 is a refrigeration cycle diagram during normal heating operation of the embodiment.
【図3】同実施の形態の、蓄熱利用の除霜運転時の冷凍
サイクル図。FIG. 3 is a refrigeration cycle diagram during defrosting operation using heat storage according to the embodiment.
【図4】同実施の形態の、運転モードを変更しての除霜
運転時の冷凍サイクル図。FIG. 4 is a refrigeration cycle diagram during a defrosting operation according to the embodiment in which the operation mode is changed.
【図5】同実施の形態の、蓄熱槽の概略の縦断面図。FIG. 5 is a schematic longitudinal sectional view of the heat storage tank of the embodiment.
【図6】他の実施の形態の、異なる構造の圧縮機を備え
た冷凍サイクル図。FIG. 6 is a refrigeration cycle diagram including a compressor having a different structure according to another embodiment.
【図7】さらに他の実施の形態の、異なる構成の冷凍サ
イクル図。FIG. 7 is a refrigeration cycle diagram of a different configuration according to still another embodiment.
【図8】さらに他の実施の形態の、異なる構成の冷凍サ
イクル図。FIG. 8 is a refrigeration cycle diagram of a different configuration according to still another embodiment.
【図9】同実施の形態の、蓄熱槽の概略の縦断面図。FIG. 9 is a schematic longitudinal sectional view of the heat storage tank of the embodiment.
【図10】他の実施の形態の、異なる構造の圧縮機を備
えた冷凍サイクル図。FIG. 10 is a refrigeration cycle diagram including a compressor having a different structure according to another embodiment.
【図11】さらに他の実施の形態の、異なる構成の冷凍
サイクル図。FIG. 11 is a refrigeration cycle diagram of a different configuration according to still another embodiment.
【図12】暖房運転時のモリエル線図。FIG. 12 is a Mollier chart during a heating operation.
【図13】除霜運転時のモリエル線図。FIG. 13 is a Mollier chart during a defrosting operation.
【図14】従来の、冷凍サイクル図。FIG. 14 is a conventional refrigeration cycle diagram.
1,1A…ロータリ式圧縮機、2…四方弁、3…室内熱
交換器、4…電子自動膨張弁、5…室外熱交換器、P…
冷媒管、S…主回路、1a,1a1 …第1のシリンダ、
1b,1b1 …第2のシリンダ、Pa…第1の吸込み
管、Sa…バイパス路、6…電磁開閉弁、7…減圧機構
(膨張弁)、8,8A…蓄熱槽、9,9A…吸熱熱交換
器、13…逆止弁、Sb…補助バイパス路、30…放熱
熱交換器、10…加熱手段(電気ヒータ)、11…水温
検出用センサ、20…サクションカップ、21…補助サ
クションカップ。1, 1A: rotary compressor, 2: four-way valve, 3: indoor heat exchanger, 4: automatic electronic expansion valve, 5: outdoor heat exchanger, P:
Refrigerant pipe, S: main circuit, 1a, 1a1: first cylinder,
1b, 1b1 ... second cylinder, Pa ... first suction pipe, Sa ... bypass passage, 6 ... electromagnetic on-off valve, 7 ... pressure reducing mechanism (expansion valve), 8, 8A ... heat storage tank, 9, 9A ... endothermic heat Exchanger, 13: check valve, Sb: auxiliary bypass path, 30: heat radiation heat exchanger, 10: heating means (electric heater), 11: water temperature detection sensor, 20: suction cup, 21: auxiliary suction cup.
Claims (9)
張弁および室外熱交換器をヒートポンプ式の冷凍サイク
ルを構成するように冷媒管を介して連通する冷凍サイク
ル回路を備えた空気調和機において、 上記圧縮機は、第1のシリンダと第2のシリンダとを備
えたロータリ式圧縮機であり、 暖房運転時の蒸発器である室外熱交換器の冷媒導出部
と、上記ロータリ式圧縮機の第1のシリンダ吸込み部を
第1の吸込み管で連通し、 暖房運転時の凝縮器である室内熱交換器の冷媒導出部と
上記膨張弁との間からバイパス路を分岐接続し、 このバイパス路に、開閉弁と、減圧機構および蓄熱槽に
収容される吸熱熱交換器を設け、 このバイパス路の上記蓄熱槽吸熱熱交換器と、上記ロー
タリ式圧縮機の第2のシリンダの吸込み部を第2の吸込
み管で連通し、 この第2の吸込み管と上記第1の吸込み管を、中途部に
逆止弁を備えた補助バイパス路で連通したことを特徴と
する空気調和機。1. A refrigeration cycle circuit for communicating a compressor, a four-way valve, an indoor heat exchanger, an expansion valve and an outdoor heat exchanger via a refrigerant pipe so as to constitute a heat pump type refrigeration cycle. In the air conditioner, the compressor is a rotary compressor including a first cylinder and a second cylinder, and a refrigerant outlet of an outdoor heat exchanger that is an evaporator during a heating operation; A first cylinder suction portion of the compressor is communicated with a first suction pipe, and a bypass passage is branched and connected between a refrigerant outlet portion of an indoor heat exchanger, which is a condenser during a heating operation, and the expansion valve. An on-off valve, a pressure reducing mechanism, and an endothermic heat exchanger housed in a heat storage tank are provided in the bypass passage; and the heat storage tank endothermic heat exchanger in the bypass passage is connected to a second cylinder of the rotary compressor. The suction part is a second suction pipe Communicating, the second suction tube and the first suction pipe, an air conditioner, characterized in that communicating the auxiliary bypass passage provided with a check valve in the middle part.
リ式圧縮機の吐出部と連通され、この吐出部から吐出さ
れる高温・高圧ガスを導いて、蓄熱槽に収容される蓄熱
媒体に放熱する放熱熱交換器を備えたことを特徴とする
空気調和機。2. The heat storage tank according to claim 1, wherein the heat storage tank communicates with a discharge part of the rotary compressor, guides a high-temperature and high-pressure gas discharged from the discharge part, and is stored in the heat storage tank. An air conditioner characterized by comprising a radiating heat exchanger for radiating heat to the air conditioner.
に収容される蓄熱媒体は、水および一部空気層および/
もしくは一部水蒸気層であり、 上記蓄熱槽には、制御手段に接続される加熱手段および
水温検出用のセンサが備えられ、 上記制御手段は、水温検出用センサが検出する水温が大
気圧以上の飽和水温となるように、上記加熱手段の加熱
作用を行なわせる制御をなすことを特徴とする空気調和
機。3. The heat storage medium stored in the heat storage tank according to claim 1 or 2 is a water and partial air layer and / or
Alternatively, the heat storage tank is provided with a heating unit connected to a control unit and a sensor for detecting a water temperature, and the control unit includes a control unit configured to control the water temperature detected by the water temperature detection sensor to be equal to or higher than the atmospheric pressure. An air conditioner characterized by performing control for performing a heating operation of the heating means so as to obtain a saturated water temperature.
用センサが検出する水温が設定水温以下で、かつ上記ロ
ータリ式圧縮機の回転数が所定回転数以下のとき、上記
加熱手段の加熱作用を行なわせる制御をなすことを特徴
とする空気調和機。4. The control means according to claim 3, wherein when the water temperature detected by the water temperature detecting sensor is equal to or lower than a set water temperature and the rotational speed of the rotary compressor is equal to or lower than a predetermined rotational speed, An air conditioner characterized by performing control for performing a heating action.
定温度以下で、および/もしくは、外気温が設定温度以
下のとき、上記加熱手段の加熱作用を行なわせる制御を
なすことを特徴とする空気調和機。5. The control means according to claim 3, wherein the control means performs a heating operation of the heating means when the room temperature is equal to or lower than a set temperature and / or when the outside air temperature is equal to or lower than the set temperature. And air conditioner.
時に、室温が設定値以下で、および/もしくは、外気温
が設定値以下のとき、上記バイパス路の開閉弁を開放す
る制御をなすことを特徴とする空気調和機。6. The control means according to claim 3, wherein the control means opens the on-off valve of the bypass passage when the room temperature is equal to or less than a set value and / or the outside air temperature is equal to or less than the set value during the heating operation. An air conditioner characterized by what it does.
から除霜運転の切換えを、暖房サイクルを継続しつつ、
上記バイパス路の開閉弁を開放し、かつ主回路の膨張弁
を全開にする制御をなすことを特徴とする空気調和機。7. The control means according to claim 3, wherein the switching from the heating operation to the defrosting operation is performed while the heating cycle is continued.
An air conditioner characterized by performing control to open the on-off valve of the bypass passage and fully open the expansion valve of the main circuit.
リ式圧縮機は、第2のシリンダの排除容量を、第1のシ
リンダの排除容量よりも小さく設定したことを特徴とす
る空気調和機。8. The air conditioner according to claim 1, wherein the displacement of the second cylinder is set smaller than the displacement of the first cylinder. .
媒吸込み側に、第1のシリンダと第2のシリンダ共通の
サクションカップが接続され、このサクションカップ内
に上記逆止弁が収容されることを特徴とする空気調和
機。9. A suction cup common to the first cylinder and the second cylinder is connected to a refrigerant suction side of the rotary compressor according to claim 3, and the check valve is housed in the suction cup. An air conditioner characterized by that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17044096A JP3558784B2 (en) | 1996-06-28 | 1996-06-28 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17044096A JP3558784B2 (en) | 1996-06-28 | 1996-06-28 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1019409A true JPH1019409A (en) | 1998-01-23 |
JP3558784B2 JP3558784B2 (en) | 2004-08-25 |
Family
ID=15904967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17044096A Expired - Fee Related JP3558784B2 (en) | 1996-06-28 | 1996-06-28 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3558784B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080733A (en) * | 2009-10-09 | 2011-04-21 | Hitachi Appliances Inc | Air conditioner |
KR101324314B1 (en) * | 2011-08-29 | 2013-11-01 | 김현기 | Hot water manufacturing and Heat pump system |
JP2014032009A (en) * | 2013-11-20 | 2014-02-20 | Hitachi Appliances Inc | Air conditioner |
CN110966794A (en) * | 2019-11-19 | 2020-04-07 | 珠海格力电器股份有限公司 | Heat pump system, air conditioner and control method of heat pump system |
WO2020132894A1 (en) * | 2018-12-25 | 2020-07-02 | 广东美的白色家电技术创新中心有限公司 | Compressor, heat pump system, water heater and clothes drying machine |
JP2021517230A (en) * | 2018-03-09 | 2021-07-15 | サンアンプ リミテッド | Vapor-compression refrigerator |
-
1996
- 1996-06-28 JP JP17044096A patent/JP3558784B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080733A (en) * | 2009-10-09 | 2011-04-21 | Hitachi Appliances Inc | Air conditioner |
KR101324314B1 (en) * | 2011-08-29 | 2013-11-01 | 김현기 | Hot water manufacturing and Heat pump system |
JP2014032009A (en) * | 2013-11-20 | 2014-02-20 | Hitachi Appliances Inc | Air conditioner |
JP2021517230A (en) * | 2018-03-09 | 2021-07-15 | サンアンプ リミテッド | Vapor-compression refrigerator |
US11680739B2 (en) | 2018-03-09 | 2023-06-20 | Sunamp Limited | Vapour compression apparatus |
WO2020132894A1 (en) * | 2018-12-25 | 2020-07-02 | 广东美的白色家电技术创新中心有限公司 | Compressor, heat pump system, water heater and clothes drying machine |
CN110966794A (en) * | 2019-11-19 | 2020-04-07 | 珠海格力电器股份有限公司 | Heat pump system, air conditioner and control method of heat pump system |
Also Published As
Publication number | Publication date |
---|---|
JP3558784B2 (en) | 2004-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3662557B2 (en) | Heat pump system | |
JP4937244B2 (en) | Heat pump device and heat pump water heater and air conditioner equipped with the same | |
JP4298990B2 (en) | Refrigeration equipment using carbon dioxide as refrigerant | |
JP3882056B2 (en) | Refrigeration air conditioner | |
JP2002295922A (en) | Air conditioning method, heat pump and air conditioning apparatus | |
JP3558784B2 (en) | Air conditioner | |
JP2001263848A (en) | Air conditioner | |
JP2000291985A (en) | Air conditioner | |
JP3800721B2 (en) | Heat pump type water heater | |
JP2005098586A (en) | Air conditioner | |
JP4075633B2 (en) | Heat pump water heater | |
JP3289373B2 (en) | Heat pump water heater | |
JP3809875B2 (en) | Air conditioner | |
JP2985759B2 (en) | Heat pump system | |
JP2004347272A (en) | Refrigerating plant | |
JP3750287B2 (en) | Heat storage device | |
JPH0328673A (en) | Thermal accumulating type air conditioner | |
JP2006048638A (en) | Vending machine with cooling/heating system | |
JP2002061897A (en) | Heat storage type air conditioner | |
JPH1054617A (en) | Air conditioner | |
JP2004218855A (en) | Vapor compression type refrigerating machine | |
JP3164079B2 (en) | Refrigeration equipment | |
JPH10170095A (en) | Engine driven heat pump | |
JP3987990B2 (en) | Heat pump water heater | |
JP3253276B2 (en) | Thermal storage type air conditioner and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040519 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090528 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20090528 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100528 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110528 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120528 |
|
LAPS | Cancellation because of no payment of annual fees |