JPH10192711A - Method for regenerating hydrogenation catalyst - Google Patents

Method for regenerating hydrogenation catalyst

Info

Publication number
JPH10192711A
JPH10192711A JP9004879A JP487997A JPH10192711A JP H10192711 A JPH10192711 A JP H10192711A JP 9004879 A JP9004879 A JP 9004879A JP 487997 A JP487997 A JP 487997A JP H10192711 A JPH10192711 A JP H10192711A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
temperature
hydrogenation
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9004879A
Other languages
Japanese (ja)
Other versions
JP3949204B2 (en
Inventor
Yasushi Shiraki
安司 白木
Kenichi Wakui
顕一 涌井
Shinichi Kono
伸一 河野
Harumi Takahashi
春美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP00487997A priority Critical patent/JP3949204B2/en
Publication of JPH10192711A publication Critical patent/JPH10192711A/en
Application granted granted Critical
Publication of JP3949204B2 publication Critical patent/JP3949204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To almost completely reactivate a palladium-base hydrogenation catalyst by removing the catalyst poison from the catalyst deteriorated in activity and improving the dispersion of metal. SOLUTION: A palladium-base hydrogenation catalyst contg. chlorine and deteriorated in activity is steamed and then catalytically treated with an oxygen- contg. gas at 100-500 deg.C. Consequently, the catalyst poison is removed, the dispersion of metal is improved, and an almost completely reactivated palladium-base hydrogenation catalyst is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素添加用触媒の再
生方法に関し、さらに詳しくは、活性が劣化したパラジ
ウム系水素添加用触媒における塩素やコークなどの被毒
物質を除去するとともに、パラジウム金属の粒子径を小
さくして金属分散度を向上させることにより、該パラジ
ウム系水素添加用触媒をほぼ完全に再活性化させる方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a hydrogenation catalyst, and more particularly, to a method for removing poisonous substances such as chlorine and coke from a palladium-based hydrogenation catalyst whose activity has deteriorated, The present invention relates to a method for almost completely reactivating the palladium-based hydrogenation catalyst by reducing the particle size and improving the degree of metal dispersion.

【0002】[0002]

【従来の技術】近年、パラジウム系水素添加用触媒は、
石油精製工業,石油化学工業,一般化学工業などの分野
において、様々な水素添加反応の触媒として多用されて
いる。例えば原油,ナフサ留分を除いた原油,直留ナフ
サ,灯油,軽油,減圧留出油,常圧残渣油,減圧残渣
油,エチレンプラントの熱分解装置で副生する熱分解ガ
ソリン,コーカーやビスブレーカーなどにより熱処理を
受けた炭化水素油,接触分解装置で生成したナフサ留分
やリサイクル油、さらにはシェールオイル,タールサン
ド油,石炭からの合成油などの炭化水素油の水素添加反
応や改質反応に、あるいは各種不飽和炭化水素の水素添
加反応、パラフィン系炭化水素の水素化分解反応などに
触媒として用いられている。
2. Description of the Related Art In recent years, palladium-based hydrogenation catalysts have
In the fields of petroleum refining industry, petrochemical industry, general chemical industry and the like, it is widely used as a catalyst for various hydrogenation reactions. For example, crude oil, crude oil excluding the naphtha fraction, straight run naphtha, kerosene, light oil, vacuum distillate, atmospheric residue, vacuum residue, pyrolysis gasoline, coker and bis Hydrogenation reaction and reforming of hydrocarbon oils heat-treated by breakers, naphtha fractions produced by catalytic crackers and recycled oils, and hydrocarbon oils such as shale oil, tar sands oil, and synthetic oils from coal It is used as a catalyst in reactions, hydrogenation reactions of various unsaturated hydrocarbons, and hydrocracking reactions of paraffinic hydrocarbons.

【0003】しかしながら、このような水素添加反応に
用いられるパラジウム系水素添加用触媒は、長期間の反
応により、次第に触媒活性が低下していくことが知られ
ている。この触媒活性の低下は、パラジウム金属上への
不純物の蓄積やコークの生成、さらにはパラジウム金属
の粒子径が大きくなること、即ち金属分散度が低下する
ことなどに起因するといわれている。そして、使用する
ことによって一度大きくなったパラジウム金属の粒子径
は、通常の再生処理では元に戻すことができないため、
永久劣化ともいわれ、この場合は、やむなくパラジウム
を回収し、再賦活させているのが実状である。活性が劣
化したパラジウム系水素添加用触媒の再生については、
これまで種々の方法が提案されている。例えば石油留分
中に含まれる砒素により被毒された白金又はパラジウム
触媒を、常温〜250℃の温度で酸素を含むガスにより
酸化処理することにより再活性化させる方法が提案され
ている(特公昭60−57897号公報)。しかしなが
ら、この方法においては、砒素化合物の除去は可能であ
っても、白金やパラジウムの金属分散度を向上させるこ
とはできないという問題がある。また、塩素と空気の混
合ガスに、さらに乾燥塩化水素を混合したガスを用い
て、300〜350℃の温度で白金,パラジウム触媒を
再活性化させる方法が提案されている(東ドイツ特許第
120589号明細書)。しかしながら、この方法は、
白金やパラジウムの触媒毒となりやすい塩素を用いてい
る上、白金やパラジウムの金属分散度を向上させる方法
ではないので、本質的な触媒の再活性化法とはいえな
い。
[0003] However, it is known that the catalytic activity of a palladium-based hydrogenation catalyst used in such a hydrogenation reaction gradually decreases over a long period of time. It is said that the decrease in the catalytic activity is caused by accumulation of impurities and formation of coke on the palladium metal, and further, an increase in the particle diameter of the palladium metal, that is, a reduction in the degree of metal dispersion. And, since the particle diameter of palladium metal once increased by using it can not be restored by normal regeneration processing,
It is also referred to as permanent deterioration, and in this case, the actual situation is that palladium is unavoidably recovered and reactivated. For the regeneration of the deactivated palladium hydrogenation catalyst,
Various methods have been proposed so far. For example, a method has been proposed in which a platinum or palladium catalyst poisoned by arsenic contained in a petroleum fraction is reactivated by oxidizing it with a gas containing oxygen at a temperature of room temperature to 250 ° C. 60-57897). However, this method has a problem that even if it is possible to remove an arsenic compound, it is impossible to improve the metal dispersion of platinum or palladium. Also, a method has been proposed in which platinum and palladium catalysts are reactivated at a temperature of 300 to 350 ° C. by using a gas obtained by further mixing dry hydrogen chloride with a mixed gas of chlorine and air (East German Patent No. 120589). Specification). However, this method
Since chlorine, which easily becomes a catalyst poison of platinum or palladium, is used, and it is not a method for improving the metal dispersion of platinum or palladium, it cannot be said that this is an essential method for reactivating the catalyst.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
状況下で、活性が劣化したパラジウム系水素添加用触媒
の被毒物質を除去するとともに、パラジウム金属の粒子
径を小さくする、すなわち金属分散度を向上させて、該
パラジウム系水素添加用触媒をほぼ完全に再活性化させ
る方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention is to remove the poisoning substance of the palladium-based hydrogenation catalyst whose activity has deteriorated and to reduce the particle diameter of palladium metal, It is an object of the present invention to provide a method for improving the degree of dispersion to almost completely reactivate the palladium-based hydrogenation catalyst.

【0005】[0005]

【課題を解決するための手段】本発明者らは、活性が劣
化したパラジウム系水素添加用触媒の再活性化法につい
て鋭意研究を重ねた結果、活性が劣化したパラジウム系
水素添加用触媒として、少なくとも塩素を付着又は吸着
してなる活性の劣化したパラジウム系水素添加用触媒を
用い、このものをスチーミング処理したのち、特定の温
度にて酸素含有気体により接触処理することによって、
被毒物質の塩素及びコークなどが効果的に除去されると
ともに、意外にもパラジウム金属の分散度が向上し、ほ
ぼ完全に再活性化しうることを見出した。本発明は、か
かる知見に基づいて完成したものである。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for reactivating a palladium-based hydrogenation catalyst whose activity has deteriorated, and as a result, as a palladium-based hydrogenation catalyst whose activity has deteriorated, By using a palladium-based hydrogenation catalyst degraded in activity by adhering or adsorbing at least chlorine, by steaming this, and then contacting it with an oxygen-containing gas at a specific temperature,
It has been found that while poisonous substances such as chlorine and coke are effectively removed, the degree of dispersion of the palladium metal is unexpectedly improved, and it can be almost completely reactivated. The present invention has been completed based on such findings.

【0006】すなわち、本発明は、(1)少なくとも塩
素を付着又は吸着してなる活性の劣化したパラジウム系
水素添加用触媒をスチーミング処理し、次いで酸素含有
気体により、100〜500℃の範囲の温度において接
触処理することを特徴とする水素添加用触媒の再生方
法、(2)イソブチレン重合物の水素添加反応に用いら
れる触媒であって、少なくとも塩素を付着又は吸着して
なる活性の劣化したパラジウム系水素添加用触媒を、1
50〜250℃の範囲の温度においてスチーミング処理
し、次いで酸素含有気体により、100〜500℃の範
囲の温度において接触処理することを特徴とする水素添
加用触媒の再生方法、及び(3)プロピレン中のメチル
アセチレン及び/又はプロパジエンの選択的水素添加反
応に用いられる触媒であって、少なくとも塩素を付着又
は吸着してなる活性の劣化したパラジウム系水素添加用
触媒を、200〜350℃の範囲の温度においてスチー
ミング処理し、次いで、酸素含有気体により、100〜
500℃の範囲の温度において接触処理することを特徴
とする水素添加用触媒の再生方法を提供するものであ
る。
That is, the present invention provides (1) a steaming treatment of a palladium-based hydrogenation catalyst having deteriorated activity by adhering or adsorbing at least chlorine, and then using an oxygen-containing gas in a temperature range of 100 to 500 ° C. A method for regenerating a catalyst for hydrogenation, which comprises carrying out a contact treatment at a temperature; (2) a catalyst used for a hydrogenation reaction of an isobutylene polymer, wherein the palladium has a reduced activity by adhering or adsorbing chlorine System hydrogenation catalyst, 1
(3) a method for regenerating a catalyst for hydrogenation, comprising performing a steaming treatment at a temperature in the range of 50 to 250 ° C, and then performing a contact treatment with an oxygen-containing gas at a temperature in the range of 100 to 500 ° C. A catalyst for use in the selective hydrogenation reaction of methylacetylene and / or propadiene in a palladium-based hydrogenation catalyst having a reduced activity by adhering or adsorbing at least chlorine to a catalyst in the range of 200 to 350 ° C. Steaming at temperature and then 100-
An object of the present invention is to provide a method for regenerating a hydrogenation catalyst, which comprises performing a contact treatment at a temperature in the range of 500 ° C.

【0007】[0007]

【発明の実施の形態】本発明の方法が適用される活性が
劣化したパラジウム系水素添加用触媒としては、少なく
とも塩素を付着又は吸着したものであればよく、その由
来については特に制限されず、石油精製工業,石油化学
工業及び一般化学工業などの分野において、水素添加反
応に触媒として使用されたものの中から任意に選択して
用いることができる。このようなものとしては、例えば
原油,ナフサ留分を除いた原油,直留ナフサ,灯油,軽
油,減圧留出油,常圧残渣油,減圧残渣油,エチレンプ
ラントの熱分解装置で副生する熱分解ガソリン,コーカ
ーやビスブレーカーなどにより熱処理を受けた炭化水素
油,接触分解装置で生成したナフサ留分やリサイクル
油、さらにはシェールオイル,タールサンド油,石炭か
らの合成油などの炭化水素油の水素化反応や改質反応な
どに使用されたもの、あるいはプロピレン,ブチレンな
どの低級オレフィンを酸触媒などを用いて2〜4量体程
度に重合して得られたオリゴマーを、水素添加してイソ
パラフィン系ガソリンを製造する際の水素添加反応に使
用されたもの、プロピレン中に存在するメチルアセチレ
ンやプロパジエンの選択的水素添加反応に使用されたも
のなどを挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a palladium-based hydrogenation catalyst with reduced activity to which the method of the present invention is applied, any catalyst may be used as long as it has at least chlorine attached or adsorbed. In the fields of petroleum refining industry, petrochemical industry, general chemical industry and the like, it can be arbitrarily selected from those used as catalysts in hydrogenation reactions. Examples of such products include crude oil excluding crude oil and naphtha fraction, straight run naphtha, kerosene, light oil, vacuum distillate, atmospheric residual oil, vacuum residual oil, and by-products in the thermal cracking unit of ethylene plant. Pyrolysis gasoline, hydrocarbon oils heat-treated by cokers, visbreakers, etc., naphtha fractions produced by catalytic crackers and recycled oils, and hydrocarbon oils such as shale oil, tar sands oil, and synthetic oils from coal Hydrogenation of oligomers obtained by polymerizing lower olefins such as propylene, butylene, etc. to about 2- to 4-mers using an acid catalyst, etc. Used for the hydrogenation reaction in the production of isoparaffinic gasoline, for the selective hydrogenation of methylacetylene and propadiene in propylene Or the like can be mentioned those that have been use.

【0008】また、パラジウム系水素添加用触媒の種類
については特に制限はなく、従来前記反応などに触媒と
して慣用されているものが挙げられる。このパラジウム
系水素添加用触媒としては、パラジウム単体でもよい
が、通常は適当な担体にパラジウムを担持したものが用
いられる。またパラジウムの他に第2金属としてAg,
Pb,Cu,Au,Sn,Zn,Cdなどを担持したも
のであってもよい。ここで、パラジウムの担体として
は、特に制限はなく、触媒の用途などに応じて適宜選定
される。この担体としては、例えばシリカ,アルミナ,
シリカアルミナ,チタニア,マグネシア,ジルコニア,
結晶性アルミノシリケート(ゼオライト)などが挙げら
れる。上記ゼオライトとしては、合成ゼオライト,天然
ゼオライトのいずれであってもよく、またX型,Y型,
L型,モルデナイト型,ZSM−5型など、任意のもの
であってもよい。さらに、パラジウムの担持量としては
特に制限はないが、通常はパラジウム金属として、触媒
全量に対し、0.01〜10重量%程度である。
The type of the palladium-based hydrogenation catalyst is not particularly limited, and examples thereof include those conventionally used as catalysts in the above-mentioned reactions and the like. As the palladium-based hydrogenation catalyst, palladium alone may be used, but usually a palladium supported on a suitable carrier is used. In addition to palladium, Ag, as a second metal,
What carried Pb, Cu, Au, Sn, Zn, Cd, etc. may be used. Here, the palladium carrier is not particularly limited, and is appropriately selected according to the use of the catalyst. As this carrier, for example, silica, alumina,
Silica alumina, titania, magnesia, zirconia,
Crystalline aluminosilicate (zeolite) and the like can be mentioned. The zeolite may be any of synthetic zeolite and natural zeolite, and may be X-type, Y-type,
Any type such as L type, mordenite type, ZSM-5 type and the like may be used. The amount of palladium carried is not particularly limited, but is usually about 0.01 to 10% by weight as palladium metal with respect to the total amount of the catalyst.

【0009】本発明においては、活性が劣化したパラジ
ウム系水素添加用触媒として、少なくとも塩素が付着又
は吸着したものを用いることが必要である。パラジウム
系水素添加用触媒に塩素が含まれていることにより、次
に示す触媒の再活性化処理において、パラジウム金属の
粒子径を小さくする(金属分散度の向上)効果が発揮さ
れる。この塩素の付着又は吸着量としては特に制限はな
いが、通常は0.005〜5重量%の範囲である。この量
が0.005重量%未満ではパラジウム金属の分散度向上
効果が充分に発揮されないおそれがあり、また5重量%
を超えるものは触媒活性の低下が著しく、通常は水素添
加反応に触媒として使用されることはないので、存在し
にくい。
In the present invention, it is necessary to use, as the palladium-based hydrogenation catalyst whose activity has been deteriorated, a catalyst to which at least chlorine is attached or adsorbed. When chlorine is contained in the palladium-based hydrogenation catalyst, an effect of reducing the particle diameter of palladium metal (improving the degree of metal dispersion) in the following catalyst reactivation process is exerted. The amount of chlorine adhering or adsorbing is not particularly limited, but is usually in the range of 0.005 to 5% by weight. If the amount is less than 0.005% by weight, the effect of improving the degree of dispersion of palladium metal may not be sufficiently exhibited.
If it exceeds, the catalytic activity is remarkably reduced, and it is not usually used as a catalyst in the hydrogenation reaction, so that it is difficult to exist.

【0010】本発明の方法においては、このように少な
くとも塩素が付着又は吸着してなる活性の劣化したパラ
ジウム系水素添加用触媒に対し、まずスチーミング処理
を施す。このスチーミング処理の条件については特に制
限はなく、活性が劣化した触媒の由来や種類、劣化度な
どに応じて、適宜選定されるが、通常は150〜350
℃の範囲の温度においてスチーミング処理される。この
温度が150℃未満では触媒が再活性化されにくく、長
時間を要し、実用的でない。また350℃を超えると温
度の割には再活性化速度の向上はあまりみられず、むし
ろ経済的に不利となり、場合によっては触媒の形状が破
壊されるおそれが生じる。さらに、スチーミング処理の
際のスチーム量、即ちLHSV(液時空間速度;単位時
間あたりのスチーム流通量/処理すべき触媒量)は、状
況に応じて適宜選定すればよいが、通常は0.5〜5hr
-1の範囲である。スチーミング処理の圧力については特
に制限はないが、通常は大気圧下にて処理が行われる。
また、処理時間は、活性が劣化した触媒の由来や種類,
劣化度,処理温度,LHSVなどの様々な条件により左
右され一概に定めることはできないが、通常は1〜50
時間程度で十分である。
[0010] In the method of the present invention, a steaming treatment is first performed on a palladium-based hydrogenation catalyst whose activity has been deteriorated due to the attachment or adsorption of at least chlorine. The conditions for the steaming treatment are not particularly limited, and are appropriately selected depending on the origin, type, degree of deterioration, and the like of the catalyst whose activity has deteriorated.
It is steamed at a temperature in the range of ° C. When this temperature is lower than 150 ° C., the catalyst is hardly reactivated, requires a long time, and is not practical. On the other hand, if the temperature exceeds 350 ° C., the reactivation rate does not improve much for the temperature, but it is economically disadvantageous, and in some cases, the shape of the catalyst may be destroyed. Furthermore, the amount of steam during the steaming treatment, that is, LHSV (liquid hourly space velocity; amount of steam circulated per unit time / amount of catalyst to be treated) may be appropriately selected depending on the situation. 5-5hr
It is in the range of -1 . The pressure of the steaming process is not particularly limited, but the process is usually performed under atmospheric pressure.
The processing time depends on the origin and type of the catalyst whose activity has deteriorated,
Dependent on various conditions such as the degree of deterioration, processing temperature, LHSV and the like, it cannot be determined unconditionally.
About an hour is enough.

【0011】本発明においては、活性の劣化したパラジ
ウム系水素添加用触媒が、特にイソブチレンの重合物、
例えば塩化アルミニウムなどの酸触媒の存在下に、イソ
ブチレンを重合して得られたものを水素添加して炭化水
素混合物を製造するのに用いた触媒である場合、150
〜250℃の範囲の温度において、また、プロピレン中
のメチルアセチレン及び/又はプロパジエンの選択的水
素添加反応に用いた触媒である場合、200〜350℃
の範囲の温度においてスチーミング処理するのが、触媒
の再活性化効率及び経済性などの面から有利である。な
お、その他のスチーミング処理条件については、前記と
同じである。
In the present invention, the palladium-based hydrogenation catalyst having deteriorated activity is preferably a polymer of isobutylene,
For example, when the catalyst obtained by polymerizing isobutylene in the presence of an acid catalyst such as aluminum chloride is used to produce a hydrocarbon mixture by hydrogenation,
At a temperature in the range of 250250 ° C. and 200-350 ° C. for the catalyst used for the selective hydrogenation of methylacetylene and / or propadiene in propylene.
It is advantageous to perform the steaming treatment at a temperature in the range of from the viewpoints of catalyst reactivation efficiency and economy. The other steaming processing conditions are the same as described above.

【0012】次に、このようにしてスチーミング処理さ
れた触媒は、さらに酸素含有気体により接触処理され
る。ここで、酸素含有気体としては、酸素ガス単独であ
ってもよく、また酸素ガスと不活性ガス、例えば窒素,
アルゴン,ヘリウムなどのガスとの混合物であってもよ
いが、デコーキング性及び経済性などの点から、特に空
気が好適である。この酸素含有気体による接触処理温度
は、100〜500℃の範囲で選ばれる。この温度が1
00℃未満では触媒が再活性化されにくく、実用的でな
い。また、500℃を超えると温度の割には再活性化速
度の向上はあまり得られず、むしろ経済的に不利とな
り、場合によっては触媒の形状が破壊されるおそれが生
じる。
Next, the catalyst subjected to the steaming treatment in this manner is further subjected to a contact treatment with an oxygen-containing gas. Here, the oxygen-containing gas may be oxygen gas alone, or an oxygen gas and an inert gas such as nitrogen,
A mixture with a gas such as argon or helium may be used, but air is particularly preferred from the viewpoint of decoking properties and economy. The contact treatment temperature with the oxygen-containing gas is selected in the range of 100 to 500 ° C. This temperature is 1
If the temperature is lower than 00 ° C., the catalyst is hardly reactivated and is not practical. On the other hand, if the temperature exceeds 500 ° C., the reactivation rate cannot be improved much for the temperature, but it is economically disadvantageous, and in some cases, the shape of the catalyst may be destroyed.

【0013】さらに、上記接触処理の際の酸素含有気体
量、つまりGHSV(ガス時空間速度;単位時間あたり
の酸素含有気体の流通量/処理すべき触媒量)は、状況
に応じて適宜選定すればよいが、通常は100〜200
0hr-1の範囲である。この接触処理の圧力については
特に制限はないが、通常は大気圧下にて処理が行われ
る。また、処理時間は、活性が劣化した触媒の由来や種
類,劣化度,処理温度,LHSVなどの様々な条件によ
り左右され一概に定めることはできないが、通常は1〜
100時間程度で十分である。本発明においては、活性
の劣化したパラジウム系水素添加用触媒が、特にイソブ
チレンの重合物、例えば塩化アルミニウムなどの酸触媒
の存在下にイソブチレンを重合して得られたものを水素
添加して炭化水素混合物を製造するのに用いた触媒であ
る場合、100〜500℃の範囲の温度において、ま
た、プロピレン中のメチルアセチレン及び/又はプロパ
ジエンの選択的水素添加反応に用いた触媒である場合、
100〜500℃の範囲の温度において、酸素含有気体
により接触処理するのが、触媒の再活性化効率及び経済
性などの面から有利である。なお、その他の接触処理条
件については、前記と同じである。
Further, the amount of oxygen-containing gas at the time of the contact treatment, that is, GHSV (gas hourly space velocity; flow rate of oxygen-containing gas per unit time / amount of catalyst to be treated) may be appropriately selected depending on the situation. Suffice, but usually 100-200
0 hr -1 . The pressure for this contact treatment is not particularly limited, but the treatment is usually performed under atmospheric pressure. In addition, the treatment time is influenced by various conditions such as the origin and type of the catalyst whose activity has deteriorated, the degree of deterioration, the treatment temperature, and the LHSV, and cannot be determined unconditionally.
About 100 hours is enough. In the present invention, the palladium-based hydrogenation catalyst with reduced activity is a polymer obtained by polymerizing isobutylene in the presence of an acid catalyst such as a polymer of isobutylene, for example, aluminum chloride. When the catalyst used to produce the mixture, at a temperature in the range of 100-500 ° C., and when used in the selective hydrogenation reaction of methylacetylene and / or propadiene in propylene,
It is advantageous to carry out the contact treatment with an oxygen-containing gas at a temperature in the range of 100 to 500 ° C. from the viewpoints of the catalyst reactivation efficiency and economy. Other contact processing conditions are the same as described above.

【0014】このようにして、少なくとも塩素が付着又
は吸着してなる活性が劣化したパラジウム系水素添加用
触媒を再生処理することにより、塩素及びコークなどの
被毒物質が除去されるとともに、パラジウム金属の分散
度が向上してなるほぼ完全に再活性化されたパラジウム
系水素添加用触媒が得られる。
In this way, by regenerating at least the palladium-based hydrogenation catalyst whose activity is deteriorated due to the adhesion or adsorption of chlorine, poisonous substances such as chlorine and coke are removed, and the palladium metal is removed. An almost completely reactivated palladium-based hydrogenation catalyst having an improved degree of dispersion is obtained.

【0015】[0015]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。なお、触媒の再生は下記の方法に従
い実施した。 <触媒の再生方法>外径1インチのステンレス鋼製反応
管に、使用済み触媒10ccを充填し、窒素下で所定温
度まで昇温し、所望温度に達したら、水をポンプで加熱
器に供給する。供給された水は所定の温度に加熱され、
水蒸気となってステンレス鋼製反応管に導入される。所
定時間後、水の供給を止め、空気に切替えて、空気を所
定温度まで昇温させ、所定温度にて所定時間接触処理
(空気酸化処理)することにより、使用済み触媒を再生
する。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The regeneration of the catalyst was performed according to the following method. <Catalyst regeneration method> A 1-inch outer diameter stainless steel reaction tube is filled with 10 cc of used catalyst, heated to a predetermined temperature under nitrogen, and when the desired temperature is reached, water is supplied to the heater by a pump. I do. The supplied water is heated to a predetermined temperature,
The water vapor is introduced into the stainless steel reaction tube. After a predetermined time, the supply of water is stopped, the air is switched to air, the temperature of the air is raised to a predetermined temperature, and a contact treatment (air oxidation treatment) is performed at a predetermined temperature for a predetermined time to regenerate the used catalyst.

【0016】実施例1 パラジウム担持γ−アルミナ触媒(パラジウム担持量:
0.5重量%)の使用済み触媒(イソブチレン反応に使
用、コーク量:0.63重量%、付着塩素量:1.20重量
%、金属分散度:0.27)10ccをステンレス鋼製反
応管に充填し、温度:200℃、水の供給量:35cc
/hrの条件で16時間スチーミング処理したのち、温
度:300℃、空気流量:6リットル/hrの条件で2
4時間空気による接触処理を行い、使用済み触媒の再生
処理を行った。再生触媒の物性を第1表に示す。なお、
金属分散度は、次に示す方法に従い求めた値である(以
下、同様)。 金属分散度の求め方:触媒を3〜5gをガラス管に充填
し、乾燥ヘリウム200cc/minの流量で150℃
にて、8時間加熱し、触媒上の水分を除去した。その
後、H2 下で200cc/minの流量で8時間予備還
元した。予備還元した触媒に1回0.65ccのCOをパ
ルス的にCO吸着がなくなるまで注入した。金属分散度
は(吸着したCOのモル数/触媒のPd原子モル)で求
めた。
Example 1 Palladium-supported γ-alumina catalyst (palladium-supported amount:
0.5% by weight of used catalyst (used for isobutylene reaction, coke amount: 0.63% by weight, adhered chlorine amount: 1.20% by weight, metal dispersity: 0.27) 10cc of stainless steel reaction tube , Temperature: 200 ° C, water supply: 35 cc
After steaming for 16 hours under the condition of / hr, temperature: 300 ° C, air flow rate: 2 l under the condition of 6 liter / hr
The contact treatment with air was performed for 4 hours, and the used catalyst was regenerated. Table 1 shows the physical properties of the regenerated catalyst. In addition,
The metal dispersity is a value determined according to the following method (the same applies hereinafter). Determining the degree of metal dispersion: 3 to 5 g of a catalyst is filled in a glass tube and dried at a flow rate of 200 cc / min.
For 8 hours to remove water on the catalyst. Thereafter, pre-reduction was performed at a flow rate of 200 cc / min under H 2 for 8 hours. 0.65 cc of CO was once injected into the pre-reduced catalyst in a pulsed manner until CO adsorption disappeared. The degree of metal dispersion was determined by (mol number of adsorbed CO / mol atom of Pd of catalyst).

【0017】比較例1 実施例1において、空気による接触処理温度を300℃
から80℃に変更した以外は、実施例1と同様にして使
用済み触媒の再生処理を行った。再生触媒の物性を第1
表に示す。
Comparative Example 1 In Example 1, the temperature of the contact treatment with air was set to 300 ° C.
The regeneration process of the used catalyst was performed in the same manner as in Example 1 except that the temperature was changed to 80 ° C. First property of regenerated catalyst
It is shown in the table.

【0018】比較例2 実施例1において、スチーミング処理を行わずに、かつ
空気による接触処理条件を、温度:200℃,時間:4
8時間に変更した以外は、実施例1と同様にして使用済
み触媒の再生処理を行った。再生触媒の物性を第1表に
示す。
COMPARATIVE EXAMPLE 2 In Example 1, the conditions of the contact treatment with air without performing the steaming treatment were as follows: temperature: 200 ° C., time: 4
Except for changing to 8 hours, the used catalyst was regenerated in the same manner as in Example 1. Table 1 shows the physical properties of the regenerated catalyst.

【0019】比較例3 実施例1において、使用済み触媒として、パラジウム担
持γ−アルミナ触媒(パラジウム担持量:0.5重量%)
の使用済み触媒(コーク量:0.50重量%、付着塩素
量:なし、金属分散度:0.25)を用いた以外は、実施
例1と同様にして使用済み触媒の再生処理を行った。再
生触媒の物性を第1表に示す。
Comparative Example 3 In Example 1, the used catalyst was a palladium-supported γ-alumina catalyst (amount of palladium supported: 0.5% by weight).
The used catalyst was subjected to a regeneration treatment in the same manner as in Example 1 except that the used catalyst (coke amount: 0.50% by weight, attached chlorine amount: none, metal dispersity: 0.25) was used. . Table 1 shows the physical properties of the regenerated catalyst.

【0020】[0020]

【表1】 [Table 1]

【0021】〔注〕 使用済み触媒A:付着塩素量1.20重量%、コーク量0.
63重量%、金属分散度0.27 使用済み触媒B:付着塩素量:なし、コーク量重量0.5
0%、金属分散度0.25
[Note] Spent catalyst A: 1.20% by weight of adhering chlorine, 0.
63% by weight, metal dispersity 0.27 Spent catalyst B: adhering chlorine: none, coke weight 0.5
0%, metal dispersion 0.25

【0022】実施例2 プロピレン中のメチルアセチレン及びプロパジエンの選
択的水素添加における使用済み触媒を用いた。パラジウ
ム担持γ−アルミナ触媒(パラジウム担持量:0.1重量
%)の使用済み触媒(コーク量:1.05重量%,付着塩
素量:2700重量ppm,金属分散度:0.015)1
0ccをステンレス鋼製反応管に充填し、温度:300
℃、水の供給量:35cc/hrの条件で10時間スチ
ーミング処理を行ったのち、温度:400℃、空気量:
2リットル/hrの条件で8時間空気による接触処理を
行い、使用済み触媒の再生処理を行った。再生触媒の物
性を第2表に示す。次に、この再生触媒10ccを、内
径10mm,外径12mmのステンレス鋼製反応管に充
填し、これにメチルアセチレン1.73重量%及びプロパ
ジエン1.54重量%を含有するプロピレンと水素とを、
水素/(メチルアセチレン+プロパジエン)モル比が1.
5になるように仕込み、圧力:20kg/cm2 G、温
度:40℃,LHSV:25hr-1の条件で、メチルア
セチレン及びプロパジエンの選択的水素添加反応を行っ
た。反応結果を第2表に示す。
Example 2 A spent catalyst in the selective hydrogenation of methylacetylene and propadiene in propylene was used. Spent catalyst of palladium-supported γ-alumina catalyst (palladium-supported amount: 0.1% by weight) (coke amount: 1.05% by weight, attached chlorine amount: 2700% by weight, metal dispersity: 0.015) 1
0 cc into a stainless steel reaction tube, temperature: 300
After steaming for 10 hours at a temperature of 35 ° C. and a supply amount of water of 35 cc / hr, a temperature of 400 ° C. and an air amount of:
The contact treatment with air was performed for 8 hours under the condition of 2 liters / hr, and the used catalyst was regenerated. Table 2 shows the physical properties of the regenerated catalyst. Next, 10 cc of the regenerated catalyst was filled in a stainless steel reaction tube having an inner diameter of 10 mm and an outer diameter of 12 mm, and propylene and hydrogen containing 1.73% by weight of methylacetylene and 1.54% by weight of propadiene were added thereto.
Hydrogen / (methylacetylene + propadiene) molar ratio is 1.
5, and a selective hydrogenation reaction of methylacetylene and propadiene was performed under the conditions of pressure: 20 kg / cm 2 G, temperature: 40 ° C., and LHSV: 25 hr −1 . Table 2 shows the reaction results.

【0023】比較例4 実施例2において、使用済み触媒の再生処理を行わず
に、そのまま触媒として用い、実施例2と同様にしてメ
チルアセチレン及びプロパジエンの選択的水素添加反応
を行った。使用済み触媒の物性及び反応結果を第2表に
示す。
Comparative Example 4 In Example 2, a selective hydrogenation reaction of methylacetylene and propadiene was carried out in the same manner as in Example 2 except that the used catalyst was not used for regeneration treatment but was used as a catalyst. Table 2 shows the physical properties and reaction results of the used catalyst.

【0024】比較例5 実施例2における触媒の再生処理において、使用済み触
媒のスチーミング処理を行わなかったこと以外は、実施
例2と同様にして実施した。再生触媒の物性及び反応結
果を第2表に示す。
Comparative Example 5 The procedure of Example 2 was repeated, except that the steam regeneration of the used catalyst was not performed in the regeneration of the catalyst in Example 2. Table 2 shows the physical properties and reaction results of the regenerated catalyst.

【0025】比較例6 実施例2における触媒の再生処理において、空気による
接触処理を行わなかったこと以外は、実施例2と同様に
して実施した。再生触媒の物性及び反応結果を第2表に
示す。
COMPARATIVE EXAMPLE 6 The procedure of Example 2 was repeated, except that the contact treatment with air was not performed in the regeneration treatment of the catalyst in Example 2. Table 2 shows the physical properties and reaction results of the regenerated catalyst.

【0026】[0026]

【表2】 [Table 2]

【0027】〔注〕比較例4は、触媒の再生処理を行わ
ずに、使用済み触媒をそのまま反応に用いたので、触媒
物性データは、使用済み触媒のデータである。
[Note] In Comparative Example 4, since the used catalyst was used for the reaction without performing the catalyst regeneration treatment, the catalyst physical property data is the data of the used catalyst.

【0028】実施例3 塩化アルミニウム触媒の存在下にイソブチレンを重合し
て得られたイソブチレン重合物の水素添加反応における
使用済み触媒を用いた。パラジウム担持γ−アルミナ触
媒(パラジウム担持量:0.5重量%)の使用済み触媒
(コーク量:0.63重量%,付着塩素量:1.2重量%,
金属分散度:0.27)10ccをステンレス鋼製反応管
に充填し、温度:200℃、水の供給量:35cc/h
rの条件で16時間スチーミング処理を行ったのち、温
度:400℃、空気量:6リットル/hrの条件で20
時間空気による接触処理を行い、使用済み触媒の再生処
理を行った。再生触媒の物性を第3表に示す。次に、こ
の再生触媒10ccを、内径10mm,外径12mmの
ステンレス鋼製反応管に充填し、これに塩化アルミニウ
ム触媒の存在下にイソブチレンを重合させて得られた平
均重合度3のイソブチレン重合物と水素とを、水素/イ
ソブチレン重合物モル比が2.0になるように仕込み、圧
力:25kg/cm2 G、温度:220℃の条件にてイ
ソブチレン重合物の水素添加反応を行った。反応結果を
第3表に示す。
Example 3 A used catalyst in a hydrogenation reaction of an isobutylene polymer obtained by polymerizing isobutylene in the presence of an aluminum chloride catalyst was used. Spent catalyst of palladium-supported γ-alumina catalyst (palladium-supported amount: 0.5% by weight) (coke amount: 0.63% by weight, attached chlorine amount: 1.2% by weight,
Metal dispersity: 0.27) Fill 10 cc into a stainless steel reaction tube, temperature: 200 ° C., water supply: 35 cc / h
After performing a steaming treatment for 16 hours under the conditions of r, the temperature is 400 ° C., the amount of air is 20 l under the conditions of 6 liters / hr.
The contact treatment with air was performed for a time, and the used catalyst was regenerated. Table 3 shows the physical properties of the regenerated catalyst. Next, 10 cc of the regenerated catalyst was filled into a stainless steel reaction tube having an inner diameter of 10 mm and an outer diameter of 12 mm, and isobutylene was polymerized in the presence of an aluminum chloride catalyst to obtain an isobutylene polymer having an average degree of polymerization of 3. And hydrogen were charged so that the hydrogen / isobutylene polymer molar ratio was 2.0, and a hydrogenation reaction of the isobutylene polymer was performed under the conditions of pressure: 25 kg / cm 2 G and temperature: 220 ° C. Table 3 shows the reaction results.

【0029】比較例7 実施例3において、使用済み触媒の再生処理を行わず
に、そのまま触媒として用い、実施例3と同様にしてイ
ソブチレン重合物の水素添加反応を行った。使用済み触
媒の物性及び反応結果を第3表に示す。
Comparative Example 7 A hydrogenation reaction of an isobutylene polymer was carried out in the same manner as in Example 3 except that the used catalyst was used as a catalyst in Example 3 without regenerating the used catalyst. Table 3 shows the physical properties of the used catalyst and the reaction results.

【0030】比較例8 実施例3における触媒の再生処理において、使用済み触
媒のスチーミング処理を行わなかったこと以外は、実施
例3と同様にして実施した。再生触媒の物性及び反応結
果を第3表に示す。
Comparative Example 8 The procedure of Example 3 was repeated, except that the steaming treatment of the used catalyst was not performed in the regeneration treatment of the catalyst in Example 3. Table 3 shows the physical properties and reaction results of the regenerated catalyst.

【0031】比較例9 実施例3における触媒の再生処理において、空気による
接触処理を行わなかったこと以外は、実施例3と同様に
して実施した。再生触媒の物性及び反応結果を第3表に
示す。
Comparative Example 9 The same procedure as in Example 3 was carried out, except that the contact treatment with air was not performed in the regeneration treatment of the catalyst in Example 3. Table 3 shows the physical properties and reaction results of the regenerated catalyst.

【0032】[0032]

【表3】 [Table 3]

【0033】〔注〕比較例7は、触媒の再生処理を行わ
ずに、使用済み触媒をそのまま反応に用いたので、触媒
物性データは、使用済み触媒のデータである。
[Note] In Comparative Example 7, since the used catalyst was used for the reaction without performing the catalyst regeneration treatment, the catalyst physical property data is the data of the used catalyst.

【0034】[0034]

【発明の効果】本発明の方法によれば、活性が劣化した
触媒とて、塩素を付着又は吸着してなるパラジウム系水
素添加用触媒を用いて再生処理することにより、塩素や
コークなどの被毒物質が除去されるとともに、金属分散
度が向上し、ほぼ完全に再活性化されたパラジウム系水
素添加用触媒を得ることができる。したがって、本発明
の方法は、触媒の取替交換頻度を著しく減少させること
ができ、工業的に利用価値が高い。
According to the method of the present invention, a catalyst whose activity has been reduced is subjected to a regeneration treatment using a palladium-based hydrogenation catalyst to which chlorine is attached or adsorbed, so that the catalyst such as chlorine or coke can be treated. The poisonous substance is removed, the degree of metal dispersion is improved, and a palladium-based hydrogenation catalyst almost completely reactivated can be obtained. Therefore, the method of the present invention can significantly reduce the frequency of catalyst replacement and replacement, and is industrially useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07B 61/00 300 C07B 61/00 300 C07C 5/03 C07C 5/03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07B 61/00 300 C07B 61/00 300 C07C 5/03 C07C 5/03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも塩素を付着又は吸着してなる
活性の劣化したパラジウム系水素添加用触媒をスチーミ
ング処理し、次いで酸素含有気体により、100〜50
0℃の範囲の温度において接触処理することを特徴とす
る水素添加用触媒の再生方法。
1. A palladium-based hydrogenation catalyst having a deteriorated activity by adhering or adsorbing at least chlorine is subjected to a steaming treatment, and then is subjected to a steam-treating process using an oxygen-containing gas.
A method for regenerating a catalyst for hydrogenation, comprising performing a contact treatment at a temperature in the range of 0 ° C.
【請求項2】 イソブチレン重合物の水素添加反応に用
いられる触媒であって、少なくとも塩素を付着又は吸着
してなる活性の劣化したパラジウム系水素添加用触媒
を、150〜250℃の範囲の温度においてスチーミン
グ処理し、次いで酸素含有気体により、100〜500
℃の範囲の温度において接触処理することを特徴とする
水素添加用触媒の再生方法。
2. A catalyst for use in a hydrogenation reaction of an isobutylene polymer, which is a catalyst for hydrogenation of a palladium-based catalyst whose activity has been deteriorated by adhering or adsorbing at least chlorine, at a temperature in the range of 150 to 250 ° C. Steaming, then 100-500 by oxygen containing gas
A method for regenerating a catalyst for hydrogenation, comprising performing a contact treatment at a temperature in the range of ° C.
【請求項3】 プロピレン中のメチルアセチレン及び/
又はプロパジエンの選択的水素添加反応に用いられる触
媒であって、少なくとも塩素を付着又は吸着してなる活
性の劣化したパラジウム系水素添加用触媒を、200〜
350℃の範囲の温度においてスチーミング処理し、次
いで酸素含有気体により、100〜500℃の範囲の温
度において接触処理することを特徴とする水素添加用触
媒の再生方法。
3. Methylacetylene and / or propylene in propylene
Or a catalyst used for the selective hydrogenation reaction of propadiene, which is a palladium-based hydrogenation catalyst having a reduced activity by adhering or adsorbing chlorine at least,
A method for regenerating a hydrogenation catalyst, comprising performing a steaming treatment at a temperature in the range of 350 ° C, and then performing a contact treatment with an oxygen-containing gas at a temperature in the range of 100 to 500 ° C.
JP00487997A 1997-01-14 1997-01-14 Regeneration method of hydrogenation catalyst Expired - Fee Related JP3949204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00487997A JP3949204B2 (en) 1997-01-14 1997-01-14 Regeneration method of hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00487997A JP3949204B2 (en) 1997-01-14 1997-01-14 Regeneration method of hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JPH10192711A true JPH10192711A (en) 1998-07-28
JP3949204B2 JP3949204B2 (en) 2007-07-25

Family

ID=11595971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00487997A Expired - Fee Related JP3949204B2 (en) 1997-01-14 1997-01-14 Regeneration method of hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP3949204B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526036A (en) * 2003-01-20 2006-11-16 ビーエーエスエフ アクチェンゲゼルシャフト Process for treating catalysts for color number hydrogenation of polytetrahydrofuran and / or its esters
JP2008207147A (en) * 2007-02-28 2008-09-11 Tosoh Corp Method for regenerating hydrogenation catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526036A (en) * 2003-01-20 2006-11-16 ビーエーエスエフ アクチェンゲゼルシャフト Process for treating catalysts for color number hydrogenation of polytetrahydrofuran and / or its esters
JP2008207147A (en) * 2007-02-28 2008-09-11 Tosoh Corp Method for regenerating hydrogenation catalyst

Also Published As

Publication number Publication date
JP3949204B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
EP0535619B1 (en) Process for regenerating a deactivated catalyst
US9511356B2 (en) Regeneration of spent paraffin dehydrogenation catalyst
US20020063082A1 (en) Production of naphtha and light olefins
AU2001276996A1 (en) Production of naphtha and light olefins
CA2004390A1 (en) Process for the conversion of a hydrocarbonaceous feedstock
US2749287A (en) Reactivation of hydroforming catalysts using dry air
US4354925A (en) Catalytic reforming process
US6294492B1 (en) Catalytic reforming catalyst activation
EP0494162B1 (en) Regeneration or activation of noble metal catalysts using fluorohalocarbons or fluorohalohydrocarbons
CA2056343A1 (en) Reactivation of spent cracking catalysts
WO2001000318A1 (en) Catalytic reforming catalyst activation
US4268376A (en) Cracking catalyst rejuvenation
CA2173724C (en) Sulfur removal
JPH10192711A (en) Method for regenerating hydrogenation catalyst
EP0219585A1 (en) Reactivation of noble metal-containing zeolite catalyst materials
US4752595A (en) Catalyst pretreatment for regenerated noble metal on zeolite catalyst
US7687049B2 (en) Apparatus and process for removal of carbon monoxide
US4316795A (en) Hydrocarbon conversion process with reduced sulfur oxide emissions
US20080029435A1 (en) Rejuvenation process for olefin polymerization and alkylation catalyst
US6593264B2 (en) Catalytic reforming catalyst activation
US4252632A (en) Catalyst and process for conversion of hydrocarbons
US3781219A (en) Halide addition and distribution in the reactivation of platinum-rhenium catalysts
JP3589669B2 (en) Paraffin raw material reforming method
EP0127709B1 (en) Hydrocarbon reforming catalyst regeneration process
EP0209233B1 (en) Method for reactivation of zeolite dewaxing catalysts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees