JPH10190055A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH10190055A
JPH10190055A JP34294196A JP34294196A JPH10190055A JP H10190055 A JPH10190055 A JP H10190055A JP 34294196 A JP34294196 A JP 34294196A JP 34294196 A JP34294196 A JP 34294196A JP H10190055 A JPH10190055 A JP H10190055A
Authority
JP
Japan
Prior art keywords
layer
side electrode
semiconductor
light emitting
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34294196A
Other languages
Japanese (ja)
Other versions
JP3737226B2 (en
Inventor
Takeshi Tsutsui
毅 筒井
Shunji Nakada
俊次 中田
Yukio Shakuda
幸男 尺田
Masayuki Sonobe
雅之 園部
Norikazu Ito
範和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP34294196A priority Critical patent/JP3737226B2/en
Publication of JPH10190055A publication Critical patent/JPH10190055A/en
Application granted granted Critical
Publication of JP3737226B2 publication Critical patent/JP3737226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture at low price by simultaneously forming both electrodes by a method wherein an n side electrode and a p side electrode are formed of the same metal material. SOLUTION: Semiconductor layers 2 to 5 for forming a light emitting area on a surface of a substrate 1 are laminated to form a semiconductor lamination part, and a p side electrode 8 is formed on the surface via a diffusion metal layer 7. Further, an n side electrode 9 is formed in the n type layer in which a part of the laminated semiconductor layers 3 to 5 is removed. Therein, the p side electrode 8 and n side electrode 9 comprise a lamination structure of metal thin films 8a, 9a, Ti layers 8b, 9b, and Au layers 8c, 9c containing Ni or Zn each, and both the electrodes 8, 9 are formed with the same material and thickness. On the substrate 1, the low temperature buffer layer 2, the n type layer 3, for example, an active layer 4 composed of an InGaN system compound semiconductor, and the p type layer 5 composed of a p type AlGan system compound semiconductor layer 5a and a GaN layer 5b are sequentially laminated, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は基板上に、チッ化ガ
リウム系化合物半導体が積層される青色系(紫外線から
黄色)の光を発生する半導体発光素子に関する。さらに
詳しくは、n形層およびp形層に設けられる電極のオー
ミックコンタクトおよび接着強度を向上させながら両者
の材料を共通化した半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device which emits blue (from ultraviolet to yellow) light in which a gallium nitride compound semiconductor is laminated on a substrate. More specifically, the present invention relates to a semiconductor light emitting device in which the materials provided in the n-type layer and the p-type layer are made common while improving the ohmic contact and the adhesive strength of the electrodes.

【0002】[0002]

【従来の技術】従来、青色系の光を発光する半導体発光
素子は、たとえば図3に示されるような構造になってい
る。すなわち、サファイア基板21上にたとえばn形の
GaNからなる低温バッファ層22と、高温でGaNが
エピタキシャル成長されたn形層(クラッド層)23
と、バンドギャップエネルギーがクラッド層のそれより
も小さく発光波長を定める材料、たとえばInGaN系
(InとGaの比率が種々変わり得ることを意味する、
以下同じ)化合物半導体からなる活性層(発光層)24
と、p形のGaNからなるp形層(クラッド層)25と
からなり、その表面にp側(上部)電極28が設けら
れ、積層された半導体層の一部がエッチングされて露出
したn形層23の表面にn側(下部)電極29が設けら
れることにより形成されている。なお、n形層23およ
びp形層25はキャリアの閉じ込め効果を向上させるた
め、活性層23側にAlGaN系(AlとGaの比率が
種々変わり得ることを意味する、以下同じ)化合物半導
体層が用いられることがある。
2. Description of the Related Art Conventionally, a semiconductor light emitting device that emits blue light has a structure as shown in FIG. 3, for example. That is, a low-temperature buffer layer 22 made of, for example, n-type GaN and an n-type layer (cladding layer) 23 on which GaN is epitaxially grown at a high temperature are formed on a sapphire substrate 21.
And a material whose band gap energy is smaller than that of the cladding layer and determines the emission wavelength, for example, an InGaN-based material (meaning that the ratio of In to Ga can be variously changed.
Active layer (light emitting layer) 24 made of a compound semiconductor
And a p-type layer (cladding layer) 25 made of p-type GaN, a p-side (upper) electrode 28 is provided on the surface thereof, and an n-type layer in which a part of the stacked semiconductor layers is exposed by etching. It is formed by providing an n-side (lower) electrode 29 on the surface of the layer 23. The n-type layer 23 and the p-type layer 25 include an AlGaN-based (which means that the ratio of Al and Ga can be variously changed, hereinafter the same) compound semiconductor layer on the active layer 23 side in order to improve the effect of confining carriers. May be used.

【0003】この構造で、p側電極28はTiおよびA
uの積層構造で形成され、n側電極29はTiとAlが
それぞれ積層されて合金化された金属層により形成され
ている。p側電極28は積層された半導体層の表面に設
けられるNiおよびAuの合金からなる拡散メタル層
(図示せず)を介して設けられる場合が多い。したがっ
て、p形層のドーパントとの関係でp形層と拡散メタル
とのオーミックコンタクト特性は好ましくないものの、
拡散メタル層とp側電極との接触および接着は良好に行
われる。一方、n側電極29はn型層23の表面に直接
設けられているが、TiおよびAlの合金により充分な
オーミックコンタクトが得られると考えられている。
In this structure, the p-side electrode 28 is made of Ti and A
The n-side electrode 29 is formed of a metal layer in which Ti and Al are laminated and alloyed. The p-side electrode 28 is often provided via a diffusion metal layer (not shown) made of an alloy of Ni and Au provided on the surface of the stacked semiconductor layers. Therefore, although the ohmic contact property between the p-type layer and the diffusion metal is not preferable in relation to the dopant of the p-type layer,
The contact and adhesion between the diffusion metal layer and the p-side electrode are performed well. On the other hand, although the n-side electrode 29 is provided directly on the surface of the n-type layer 23, it is considered that a sufficient ohmic contact can be obtained by an alloy of Ti and Al.

【0004】[0004]

【発明が解決しようとする課題】従来のチッ化ガリウム
系化合物半導体を用いた半導体発光素子は、前述のよう
に、オーミックコンタクト特性を考慮して、n側電極と
p側電極とで異なる材料が使用されている。チッ化ガリ
ウム系化合物半導体を使用した半導体発光素子は、前述
の図3に示されるように、サファイアなどからなる絶縁
基板上に半導体層が積層されるため、n側およびp側の
両電極とも基板の同一面側に設けられることが多い。し
かし、n側電極とp側電極の材料が異なるため、両電極
はそれぞれ別々に形成されている。そのため、電極を形
成する工数が2倍かかり、コストアップの原因となって
いる。
As described above, in a conventional semiconductor light emitting device using a gallium nitride compound semiconductor, different materials are used for an n-side electrode and a p-side electrode in consideration of ohmic contact characteristics. It is used. In a semiconductor light emitting device using a gallium nitride-based compound semiconductor, as shown in FIG. 3 described above, a semiconductor layer is laminated on an insulating substrate made of sapphire or the like. Are often provided on the same surface side. However, since the materials of the n-side electrode and the p-side electrode are different, both electrodes are separately formed. Therefore, the man-hour for forming the electrode is doubled, which causes an increase in cost.

【0005】また、n側電極はn形層とのオーミックコ
ンタクト特性を向上させる観点からTiおよびAlの合
金が用いられているが、表面側に設けられるAlの表面
は腐食しやすく金線によるワイヤボンディングの接着強
度が弱いという問題がある。
The n-side electrode is made of an alloy of Ti and Al from the viewpoint of improving the ohmic contact characteristics with the n-type layer. There is a problem that the bonding strength of bonding is weak.

【0006】本発明はこのような状況に鑑みてなされた
もので、チッ化ガリウム系化合物半導体の積層体を有す
る半導体発光素子において、オーミックコンタクト特性
およびワイヤボンディングの接着強度を向上させなが
ら、n側電極とp側電極との材料を共通化することによ
り、両電極を同時に形成して安価に製造することができ
る半導体発光素子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation. In a semiconductor light emitting device having a laminated body of a gallium nitride compound semiconductor, the n-side is improved while improving the ohmic contact characteristics and the bonding strength of wire bonding. An object of the present invention is to provide a semiconductor light emitting device that can be formed at a low cost by simultaneously forming both electrodes by using the same material for the electrode and the p-side electrode.

【0007】[0007]

【課題を解決するための手段】本発明による半導体発光
素子は、基板と、該基板上に設けられるチッ化ガリウム
系化合物半導体からなるn形層およびp形層を含む半導
体積層部と、前記n形層およびp形層にそれぞれ接続し
て設けられるn側電極およびp側電極とからなり、前記
n側電極およびp側電極が同じ金属材料で形成されてい
る。
According to the present invention, there is provided a semiconductor light emitting device comprising: a substrate; a semiconductor laminated portion including an n-type layer and a p-type layer made of a gallium nitride compound semiconductor provided on the substrate; An n-side electrode and a p-side electrode connected to the p-type layer and the p-type layer, respectively, wherein the n-side electrode and the p-side electrode are formed of the same metal material.

【0008】ここにチッ化ガリウム系化合物半導体と
は、III 族元素のGaとV族元素のNとの化合物または
III 族元素のGaの一部がAl、Inなどの他のIII 族
元素と置換したものおよび/またはV族元素のNの一部
がP、Asなどの他のV族元素と置換した化合物からな
る半導体をいう。
Here, the gallium nitride compound semiconductor is a compound of a group III element Ga and a group V element N or
Compounds in which part of the group III element Ga is replaced by another group III element such as Al or In and / or compound in which part of the group V element N is replaced by another group V element such as P or As. Semiconductor.

【0009】前記n側電極およびp側電極は、それぞれ
NiまたはZnを含む薄膜層と、該薄膜層上に設けられ
るAu層とからなったり、Ti層およびAu層の積層体
からなるものでもよい。半導体層と接する面に前記薄膜
層またはTi層が存在することにより、良好なオーミッ
クコンタクトが得られ、表面にはAu層が存在すること
により、良好なワイヤボンディング強度が得られる。前
記NiまたはZnを含む薄膜層とAu層とからなる場合
は、その間にTi層が設けられることにより、Au層の
表面までは合金化され難いため、ワイヤボンディングの
信頼性が向上して好ましい。
The n-side electrode and the p-side electrode may each be composed of a thin film layer containing Ni or Zn and an Au layer provided on the thin film layer, or a laminate of a Ti layer and an Au layer. . The presence of the thin film layer or the Ti layer on the surface in contact with the semiconductor layer provides good ohmic contact, and the presence of the Au layer on the surface provides good wire bonding strength. When the thin film layer includes the thin film layer containing Ni or Zn and the Au layer, the Ti layer is provided between the thin film layer and the surface of the Au layer.

【0010】[0010]

【発明の実施の形態】つぎに、図面を参照しながら本発
明の半導体発光素子について説明をする。図1には、チ
ッ化ガリウム系化合物半導体層がサファイア基板上に積
層される本発明の半導体発光素子の一実施形態の断面説
明図が示されている。
Next, a semiconductor light emitting device of the present invention will be described with reference to the drawings. FIG. 1 is a sectional explanatory view of one embodiment of the semiconductor light emitting device of the present invention in which a gallium nitride-based compound semiconductor layer is laminated on a sapphire substrate.

【0011】本発明の半導体発光素子は、図1に示され
るように、たとえばサファイア(Al2 3 単結晶)な
どからなる基板1の表面に発光領域を形成するための半
導体層2〜5が積層されて半導体積層部を形成し、その
表面に拡散メタル層7を介してp側電極(上部電極)8
が形成されている。また、積層された半導体層3〜5の
一部が除去されて露出したn形層3にn側電極(下部電
極)9が形成されている。この例では、p側電極8およ
びn側電極9が、共にNiまたはZnを含有する金属薄
膜8a、9aとTi層8b、9bとAu層8c、9cと
の積層構造からなっており、このように両電極8、9が
同じ材料で同じ厚さに形成されていることに本発明の特
徴がある。拡散メタル層7は、たとえばNiとAuとの
合金からなっている。
As shown in FIG. 1, the semiconductor light emitting device of the present invention comprises semiconductor layers 2 to 5 for forming light emitting regions on the surface of a substrate 1 made of, for example, sapphire (Al 2 O 3 single crystal). The semiconductor device is laminated to form a semiconductor laminated portion, and a p-side electrode (upper electrode) 8 is formed on the surface thereof via a diffusion metal layer 7.
Are formed. Further, an n-side electrode (lower electrode) 9 is formed on the n-type layer 3 exposed by removing a part of the stacked semiconductor layers 3 to 5. In this example, the p-side electrode 8 and the n-side electrode 9 both have a laminated structure of metal thin films 8a, 9a containing Ni or Zn, Ti layers 8b, 9b and Au layers 8c, 9c. The present invention is characterized in that both electrodes 8 and 9 are formed of the same material and have the same thickness. Diffusion metal layer 7 is made of, for example, an alloy of Ni and Au.

【0012】基板1上に積層される半導体層は、たとえ
ばGaNからなる低温バッファ層2が0.01〜0.2μ
m程度堆積され、ついでクラッド層となるn形層3が1
〜5μm程度堆積され、さらに、バンドギャップエネル
ギーがクラッド層のそれよりも小さくなる材料、たとえ
ばInGaN系化合物半導体からなる活性層4が0.0
05〜0.3μm程度、p形のAlGaN系化合物半導
体層5aおよびGaN層5bからなるp形層(クラッド
層)5が0.2〜1μm程度、それぞれ順次積層される
ことにより構成されている。
The semiconductor layer laminated on the substrate 1 has a low-temperature buffer layer 2 made of, for example, GaN of 0.01 to 0.2 μm.
m and then an n-type layer 3 serving as a cladding layer is 1
The active layer 4 made of a material having a band gap energy smaller than that of the clad layer, for example, an InGaN-based compound semiconductor, is deposited to a thickness of about 5 μm.
A p-type layer (cladding layer) 5 composed of a p-type AlGaN-based compound semiconductor layer 5a and a GaN layer 5b of about 0.5 to 0.3 μm is sequentially laminated to about 0.2 to 1 μm.

【0013】なお、p形層5はAlGaN系化合物半導
体層5aとGaN層5bとの複層になっているが、キャ
リアの閉じ込め効果の点からAlを含む層が設けられる
ことが好ましいためで、GaN層だけでもよい。また、
n形層3にもAlGaN系化合物半導体層を設けて複層
にしてもよく、またこれらを他のチッ化ガリウム系化合
物半導体層で形成することもできる。さらに、この例で
は、n形層3とp形層5とで活性層4が挟持されたダブ
ルヘテロ接合構造であるが、n形層とp形層とが直接接
合するpn接合構造のものでもよい。
Although the p-type layer 5 is a multilayer of the AlGaN-based compound semiconductor layer 5a and the GaN layer 5b, it is preferable to provide a layer containing Al from the viewpoint of carrier confinement effect. The GaN layer alone may be used. Also,
The n-type layer 3 may also be provided with an AlGaN-based compound semiconductor layer to form a multi-layer, or they may be formed of another gallium nitride-based compound semiconductor layer. Furthermore, in this example, the active layer 4 is sandwiched between the n-type layer 3 and the p-type layer 5, but the double hetero-junction structure is used. Good.

【0014】本発明の半導体発光素子では、前述のよう
に、p側電極8とn側電極9とが同じ厚さの同じ材料か
らなっている。すなわち、両電極8、9共に図2(a)
に示されるように、NiおよびAuの合金層からなる金
属薄膜8a、9a(図では単にaで示す)が、たとえば
NiおよびAuをそれぞれ5nmづつ成膜してシンター
することにより、半導体層にも一部が浸透し、全体で2
〜7nm程度の厚さに形成されている。その上にTi層
8b、9b(図では単にbで示す)が0.1μm程度、
およびAu層8c、9c(図では単にcで示す)が0.
3μm程度それぞれ積層され、電極形状にパターニング
されることにより形成されている。
In the semiconductor light emitting device of the present invention, as described above, the p-side electrode 8 and the n-side electrode 9 are made of the same material having the same thickness. That is, both electrodes 8 and 9 are shown in FIG.
As shown in FIG. 5, metal thin films 8a and 9a (simply indicated by a in the figure) made of an alloy layer of Ni and Au are formed on the semiconductor layer by, for example, forming Ni and Au in a thickness of 5 nm each and sintering them. Partly penetrated, 2 in total
It is formed to a thickness of about 7 nm. On top of this, Ti layers 8b and 9b (simply indicated by b in the figure) are about 0.1 μm,
And the Au layers 8c and 9c (simply indicated by c in the figure) have a thickness of 0.2.
They are formed by being laminated about 3 μm each and patterned into an electrode shape.

【0015】つぎに、本発明の半導体発光素子のp側電
極8およびn側電極9が同じ材料で形成されていても、
オーミックコンタクト特性が良好で、かつ、ワイヤボン
ディングの接着力が十分な強さになる理由について説明
をする。
Next, even if the p-side electrode 8 and the n-side electrode 9 of the semiconductor light emitting device of the present invention are formed of the same material,
The reason why the ohmic contact characteristics are good and the adhesive strength of wire bonding becomes sufficient will be described.

【0016】p側電極8は拡散メタル層7上に設けられ
るため、p形層5と拡散メタル層7とのオーミックコン
タクトはともかく、p側電極8と拡散メタル層7との間
は比較的良好な接続が得られる。一方、n側電極9は、
n形層3に直接設けられ、Siドープのチッ化ガリウム
系化合物半導体からなるn形層3とのオーミックコンタ
クトはTiとAlとの積層膜が最適と考えられていた。
しかし、電極の最表層には、金線などがワイヤボンディ
ングされ、Alの酸化膜が形成されると、ワイヤボンデ
ィングの接着強度が低下する。さらに、せっかくp側電
極8とn側電極9とが同じ方向に設けられていても、そ
の材料が異なることから電極を別々に形成しなければな
らない。
Since the p-side electrode 8 is provided on the diffusion metal layer 7, the ohmic contact between the p-type layer 5 and the diffusion metal layer 7 is aside, and the space between the p-side electrode 8 and the diffusion metal layer 7 is relatively good. Connection is obtained. On the other hand, the n-side electrode 9
It has been considered that a laminated film of Ti and Al is optimal for the ohmic contact with the n-type layer 3 which is provided directly on the n-type layer 3 and is made of a Si-doped gallium nitride compound semiconductor.
However, when a gold wire or the like is wire-bonded to the outermost layer of the electrode and an Al oxide film is formed, the bonding strength of the wire bonding decreases. Furthermore, even if the p-side electrode 8 and the n-side electrode 9 are provided in the same direction, the electrodes must be formed separately because of the different materials.

【0017】そこで本発明者らがオーミックコンタクト
特性の向上およびワイヤボンディングの接着力を向上さ
せるため、鋭意検討を重ねた結果、Au/Ni合金など
のNiまたはZnを含み、Siがドープされたチッ化ガ
リウム系化合物半導体と共に合金化した薄膜で、2〜7
nm程度に薄く形成されることにより、その表面に設け
られる金属の材料にかかわらず、比較的良好なオーミッ
クコンタクト特性が得られることを見出したものであ
る。すなわち、従来のn形層3に直接前述のTiおよび
Alの合金層で設けられる場合と本発明のように、金属
薄膜9aを介して前述のTi層9bおよびAu層9cの
積層構造で設けられる場合とで、直列抵抗を比較した結
果、両者の差は殆どなく、むしろ金属薄膜9aを介在さ
せる方が直列抵抗が小さくなることを見出した。これ
は、金属薄膜がオーミックコンタクトメタルの役割を果
たし、電気的導通を向上するためと考えられる。
The inventors of the present invention have conducted intensive studies to improve the ohmic contact characteristics and the bonding force of wire bonding. As a result, a chip containing Ni or Zn such as an Au / Ni alloy and doped with Si has been developed. A thin film alloyed with a gallium arsenide compound semiconductor, 2-7
It has been found that a relatively good ohmic contact characteristic can be obtained irrespective of the metal material provided on the surface by being formed as thin as about nm. That is, the conventional n-type layer 3 is provided directly with the above-described alloy layer of Ti and Al, and as in the present invention, provided with the above-described laminated structure of the Ti layer 9b and the Au layer 9c via the metal thin film 9a. As a result of comparing the series resistance with the case, it was found that there was almost no difference between the two, and rather the series resistance was smaller when the metal thin film 9a was interposed. This is considered to be because the metal thin film plays the role of an ohmic contact metal and improves electrical conduction.

【0018】その結果、p側電極とn側電極とを同条件
で同時に形成することができると共に、その最表面をA
u層とすることができ、ワイヤボンディングの接着力を
充分に強くすることができる。すなわち、ワイヤボンデ
ィングのワイヤには金線が用いられ、Au同士の接着で
あるため、確実にボンディングされ、従来ボンディング
剥れによる不良率が20%程度あったものが、0%にな
った。
As a result, the p-side electrode and the n-side electrode can be formed simultaneously under the same conditions, and
It can be a u layer, and the adhesive force of wire bonding can be sufficiently increased. That is, a gold wire was used as the wire for wire bonding, and the bonding between Au was performed securely, so that the bonding was reliably performed, and the defect rate due to the conventional bonding peeling was about 20%, but it became 0%.

【0019】このように、金属薄膜8a、9aはオーミ
ックコンタクトを達成するものであるため、チッ化ガリ
ウム系化合物半導体と共に合金化された薄い金属薄膜が
介在されておればよい。したがって、半導体層の表面に
盛り上がるほど設けられていなくても、半導体層中に合
金化された分だけで、その表面に突出する部分を王水な
どにより除去してもよい。この観点から、前述のNiと
Auの合金でなくても、図2(b)〜(g)に示される
ように、Ni、Au-Ge-Ni、Zn-Ni、In-N
i、In-Zn、In-Zn-Ni、などのチッ化ガリウ
ム系化合物半導体と合金化しやすい他の金属または合金
の薄膜でもよい。
As described above, since the metal thin films 8a and 9a achieve ohmic contact, a thin metal thin film alloyed with a gallium nitride compound semiconductor may be interposed. Therefore, even if it is not provided so as to swell on the surface of the semiconductor layer, a portion protruding from the surface may be removed by aqua regia just by being alloyed in the semiconductor layer. From this viewpoint, even if it is not the alloy of Ni and Au described above, as shown in FIGS. 2B to 2G, Ni, Au-Ge-Ni, Zn-Ni, In-N
A thin film of another metal or alloy which is easily alloyed with a gallium nitride-based compound semiconductor such as i, In-Zn, In-Zn-Ni may be used.

【0020】さらに、前述のように、金属薄膜8a、9
aが合金薄膜からなっておれば、その表面にTi層が設
けられていなくても、さらなる合金化は進みにくい。し
たがって、Ti層がなくて直接Au層が設けられても表
面にAu層が残り、オーミックコンタクト特性およびワ
イヤボンディングの接着力共に良好な電極となる。この
場合、Au層は熱処理の際に多少金属薄膜の金属と合金
化されるため、1μm程度以上の厚さに設けられること
が好ましい。
Further, as described above, the metal thin films 8a, 9
If a is composed of an alloy thin film, further alloying is unlikely to proceed even if the surface is not provided with a Ti layer. Therefore, even if the Au layer is provided directly without the Ti layer, the Au layer remains on the surface, and an electrode having good ohmic contact characteristics and good adhesive strength for wire bonding can be obtained. In this case, since the Au layer is somewhat alloyed with the metal of the metal thin film during the heat treatment, it is preferably provided with a thickness of about 1 μm or more.

【0021】また、前述の各例は、主として合金化され
る金属薄膜を介在させることにより、オーミックコンタ
クトを得ると共に、その表面に設けられるAu層との合
金化を防いで、最表面にAu層が設けられる構造とした
が、金属薄膜でなくてTiを設けて半導体層と合金化さ
せることにより、その上にAlがなくても充分にオーミ
ックコンタクトが得られることを見出した。その結果、
その表面に直接Au層を設けても同様に良好なオーミッ
クコンタクト特性およびワイヤボンディングの接着力が
得られた。
In each of the above examples, an ohmic contact is obtained mainly by interposing a metal thin film to be alloyed, alloying with an Au layer provided on the surface is prevented, and an Au layer is formed on the outermost surface. Was formed, but by providing Ti instead of a metal thin film and alloying it with the semiconductor layer, it was found that a sufficient ohmic contact could be obtained even without Al. as a result,
Even if an Au layer was directly provided on the surface, similarly good ohmic contact characteristics and adhesive strength of wire bonding were obtained.

【0022】つぎに、図1に示される半導体発光素子の
製法について説明をする。
Next, a method of manufacturing the semiconductor light emitting device shown in FIG. 1 will be described.

【0023】有機金属化学気相成長法(MOCVD法)
により、キャリアガスのH2 と共にトリメチリガリウム
(TMG)、アンモニア(NH3 )などの反応ガスおよ
びn形にする場合のドーパントガスとしてのSiH4
どを供給して、まず、たとえばサファイアからなる絶縁
基板1上に、たとえば400〜600℃程度の低温で、
GaNからなる低温バッファ層2を0.01〜0.2μm
程度、600〜1200℃程度の高温にして同じ組成で
n形のn形層(クラッド層)3を1〜5μm程度成膜す
る。さらにドーパントガスを止めて、反応ガスとしてト
リメチルインジウム(以下、TMInという)を追加
し、InGaN系化合物半導体からなる活性層4を0.
005〜0.3μm程度成膜する。
Metalorganic chemical vapor deposition (MOCVD)
Thus, a reactive gas such as trimethyl gallium (TMG) and ammonia (NH 3 ) and SiH 4 as an n-type dopant gas are supplied together with H 2 of a carrier gas, and first, for example, insulation made of sapphire On the substrate 1, for example, at a low temperature of about 400 to 600 ° C.
The low-temperature buffer layer 2 made of GaN has a thickness of 0.01 to 0.2 μm.
The temperature is raised to about 600 to 1200 ° C., and an n-type n-type layer (cladding layer) 3 having the same composition is formed to a thickness of about 1 to 5 μm. Further, the dopant gas is stopped, and trimethylindium (hereinafter, referred to as TMIn) is added as a reaction gas, so that the active layer 4 made of an InGaN-based compound semiconductor has a thickness of 0.1%.
A film having a thickness of about 005 to 0.3 μm is formed.

【0024】ついで、反応ガスのTMInをトリメチル
アルミニウム(以下、TMAという)に変更し、ドーパ
ントガスとしてシクロペンタジエニルマグネシウム(C
2Mg)またはジメチル亜鉛(DMZn)を導入し
て、p形のAlGaN系化合物半導体層5aを0.1〜
0.5μm程度、さらに再度反応ガスのTMAを止めて
p形のGaN層5bを0.1〜0.5μm程度それぞれ積
層し、p形層5を形成する。
Next, TMIn of the reaction gas was changed to trimethylaluminum (hereinafter referred to as TMA), and cyclopentadienyl magnesium (C
p 2 Mg) or dimethylzinc (DMZn) to introduce a p-type AlGaN-based compound semiconductor layer 5a of 0.1 to 0.1 μm.
The p-type layer 5 is formed by laminating the p-type GaN layer 5b to a thickness of about 0.1 to 0.5 μm while stopping the TMA of the reaction gas again about 0.5 μm.

【0025】その後、表面にSiNなどの保護膜を設け
てp形ドーパントの活性化のため、400〜800℃程
度で10〜60分程度のアニールを行い、たとえばNi
およびAuを蒸着してシンターすることにより拡散メタ
ル層7を2〜100nm程度形成する。ついで、下部電
極を形成するためn形層3が露出するように、積層され
た半導体層の一部を塩素ガスなどによる反応性イオンエ
ッチングによりエッチングをする。
Thereafter, a protective film such as SiN is provided on the surface, and annealing is performed at about 400 to 800 ° C. for about 10 to 60 minutes to activate the p-type dopant.
And Au are deposited and sintered to form a diffusion metal layer 7 of about 2 to 100 nm. Next, a part of the laminated semiconductor layer is etched by reactive ion etching using a chlorine gas or the like so that the n-type layer 3 is exposed to form a lower electrode.

【0026】つぎに、p側電極およびn側電極の形成場
所のみが露出するように、たとえばレジストを塗布して
パターニングをし、NiおよびAuをそれぞれ5nm程
度づつ真空蒸着により付着し、300〜500℃程度で
5〜15分程度の熱処理を行いシンターする。その結
果、NiとAuは合金化し、その一部は半導体層に侵入
してその表面には2〜7nm程度の厚さで、両電極の形
成部分のみに金属薄膜8a、9aが形成される。その
後、さらに同様にレジスト膜を設けて電極形成部分のみ
が露出するようにパターニングをし、Ti層8b、9b
およびAu層8c、9cをそれぞれ0.1μm程度と0.
3μm程度づつ真空蒸着などにより成膜する(リフトオ
フ法)。そして、300〜500℃程度で5〜15分程
度シンターすることにより、上部電極8および下部電極
9を形成する。その結果、図1に示される半導体発光素
子が得られる。
Next, for example, a resist is applied and patterned so as to expose only the formation site of the p-side electrode and the n-side electrode, and Ni and Au are deposited by vacuum evaporation in a thickness of about 5 nm each, and 300 to 500 A heat treatment is performed at about 5 ° C. for about 5 to 15 minutes to perform sintering. As a result, Ni and Au are alloyed, part of which penetrates into the semiconductor layer and has a thickness of about 2 to 7 nm on its surface, and metal thin films 8a and 9a are formed only in the portions where both electrodes are formed. Thereafter, a resist film is further provided in the same manner, and patterning is performed so that only the electrode forming portion is exposed, and the Ti layers 8b and 9b are patterned.
And Au layers 8c and 9c are about 0.1 μm and 0.1 μm, respectively.
Films are formed by vacuum evaporation or the like by about 3 μm (lift-off method). Then, the upper electrode 8 and the lower electrode 9 are formed by sintering at about 300 to 500 ° C. for about 5 to 15 minutes. As a result, the semiconductor light emitting device shown in FIG. 1 is obtained.

【0027】Au-Ni合金以外の合金薄膜を形成する
場合、同様に各金属の薄膜を積層してシンターすること
により、それらの金属の合金薄膜が形成される。たとえ
ばAu-Ge-Ni薄膜を形成する場合には、Ni層を5
nm程度、Ge層を5nm程度、Au層を5nm程度そ
れぞれ真空蒸着により積層し、200〜500℃程度で
5〜40分程度の熱処理をすることにより形成される。
他のZn-Ni、In-Ni、In-Zn、In-Zn-N
iについても同様である。
In the case of forming an alloy thin film other than the Au—Ni alloy, thin films of the respective metals are similarly laminated and sintered to form an alloy thin film of those metals. For example, when forming an Au—Ge—Ni thin film, the Ni layer should be 5
It is formed by laminating about 5 nm of a Ge layer, about 5 nm of a Ge layer, and about 5 nm of an Au layer by vacuum evaporation, and performing heat treatment at about 200 to 500 ° C. for about 5 to 40 minutes.
Other Zn-Ni, In-Ni, In-Zn, In-Zn-N
The same applies to i.

【0028】以上のように、本発明によれば、p側電極
とn側電極とが同じ材料で、同じ厚さに形成されている
ため、同じ工程で同時に形成される。そのため、工程数
が減少し、工数も減ってコストダウンに大きく寄与す
る。
As described above, according to the present invention, since the p-side electrode and the n-side electrode are formed of the same material and of the same thickness, they are formed simultaneously in the same step. Therefore, the number of steps is reduced, and the number of steps is also reduced, which greatly contributes to cost reduction.

【0029】[0029]

【発明の効果】本発明によれば、オーミックコンタクト
特性を維持しながらワイヤボンディングの接着力が向上
し、信頼性が大幅に向上する。しかも、p側電極とn側
電極とが同じ材料であるため、両電極を同時に形成する
ことができ、工数を削減することができる。その結果、
信頼性が高く、安価な半導体発光素子が得られる。
According to the present invention, the adhesive force of wire bonding is improved while maintaining the ohmic contact characteristics, and the reliability is greatly improved. Moreover, since the p-side electrode and the n-side electrode are made of the same material, both electrodes can be formed simultaneously, and the number of steps can be reduced. as a result,
A highly reliable and inexpensive semiconductor light emitting device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体発光素子の一実施形態の断面説
明図である。
FIG. 1 is an explanatory sectional view of one embodiment of a semiconductor light emitting device of the present invention.

【図2】図1のp側電極およびn側電極の構成例を示す
図である。
FIG. 2 is a diagram illustrating a configuration example of a p-side electrode and an n-side electrode of FIG. 1;

【図3】従来の半導体発光素子の一例の斜視説明図であ
る。
FIG. 3 is a perspective view illustrating an example of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 基板 3 n形層 4 活性層 5 p形層 8 p側電極 8a 金属薄膜 8b Ti層 8c Au層 9 n側電極 9a 金属薄膜 9b Ti層 9c Au層 Reference Signs List 1 substrate 3 n-type layer 4 active layer 5 p-type layer 8 p-side electrode 8a metal thin film 8b Ti layer 8c Au layer 9 n-side electrode 9a metal thin film 9b Ti layer 9c Au layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 園部 雅之 京都市右京区西院溝崎町21番地 ローム株 式会社内 (72)発明者 伊藤 範和 京都市右京区西院溝崎町21番地 ローム株 式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masayuki Sonobe 21st Ryoin Mizozakicho, Ukyo-ku, Kyoto City (72) Inventor Noriwa Ito 21st Rohm Co., Ltd., Saiin-Mizozakicho, Ukyo-ku, Kyoto

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に設けられるチッ化ガ
リウム系化合物半導体からなるn形層およびp形層を含
む半導体積層部と、前記n形層およびp形層にそれぞれ
接続して設けられるn側電極およびp側電極とからな
り、前記n側電極およびp側電極が同じ金属材料で形成
されてなる半導体発光素子。
1. A substrate, a semiconductor laminated portion including an n-type layer and a p-type layer made of a gallium nitride-based compound semiconductor provided on the substrate, and connected to the n-type layer and the p-type layer, respectively. A semiconductor light-emitting device comprising an n-side electrode and a p-side electrode, wherein the n-side electrode and the p-side electrode are formed of the same metal material.
【請求項2】 前記n側電極およびp側電極が、それぞ
れNiまたはZnを含む薄膜層と、該薄膜層上に設けら
れるAu層とからなる請求項1記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the n-side electrode and the p-side electrode each include a thin film layer containing Ni or Zn, and an Au layer provided on the thin film layer.
【請求項3】 前記薄膜層とAu層との間にTi層が設
けられてなる請求項2記載の半導体発光素子。
3. The semiconductor light emitting device according to claim 2, wherein a Ti layer is provided between said thin film layer and said Au layer.
【請求項4】 前記n側電極およびp側電極の金属層
が、それぞれTiと、Au層とからなる請求項1記載の
半導体発光素子。
4. The semiconductor light emitting device according to claim 1, wherein the metal layers of the n-side electrode and the p-side electrode are each made of Ti and Au layers.
JP34294196A 1996-12-24 1996-12-24 Semiconductor light emitting device Expired - Fee Related JP3737226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34294196A JP3737226B2 (en) 1996-12-24 1996-12-24 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34294196A JP3737226B2 (en) 1996-12-24 1996-12-24 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10190055A true JPH10190055A (en) 1998-07-21
JP3737226B2 JP3737226B2 (en) 2006-01-18

Family

ID=18357709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34294196A Expired - Fee Related JP3737226B2 (en) 1996-12-24 1996-12-24 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3737226B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210868A (en) * 1999-12-22 2001-08-03 Lumileds Lighting Us Llc Multilayer/high reflectivity ohmic contact point for semiconductor device
JP2002314130A (en) * 2001-04-19 2002-10-25 Nichia Chem Ind Ltd Nitride semiconductor element
JP2004343139A (en) * 2001-11-19 2004-12-02 Sanyo Electric Co Ltd Compound semiconductor light emitting element
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
JP2005064485A (en) * 2003-07-25 2005-03-10 Showa Denko Kk Compound semiconductor light-emitting element and method of manufacturing the same
JP2005072603A (en) * 2003-08-25 2005-03-17 Samsung Electronics Co Ltd Nitride-based light-emitting element and manufacturing method thereof
JPWO2003044872A1 (en) * 2001-11-19 2005-03-24 三洋電機株式会社 Compound semiconductor light emitting device
JP2005203765A (en) * 2003-12-17 2005-07-28 Showa Denko Kk Semiconductor light emitting element of gallium nitride compound and its negative electrode
US7005684B2 (en) * 2001-06-06 2006-02-28 Toyoda Gosei Co., Ltd. Group III nitride based semiconductor luminescent element
EP1536481A3 (en) * 2003-10-27 2006-10-18 Samsung Electronics Co., Ltd. GaN-based III-V group compound semiconductor device and p-type electrode for the same
KR100650992B1 (en) 2005-03-21 2006-11-29 주식회사 이츠웰 GaN-based Semiconductor Light Emitting Diode containing Nickel forming part of n-type ohmic metal
JP2011029574A (en) * 2009-03-31 2011-02-10 Toyoda Gosei Co Ltd Method for producing group iii nitride-based compound semiconductor device
JP2011066053A (en) * 2009-09-15 2011-03-31 Toyoda Gosei Co Ltd Method of manufacturing light emitting element, and light emitting element
JP2014090220A (en) * 1998-12-22 2014-05-15 Honeywell Internatl Inc Efficient solid-state light emitting device with excited phosphors for producing visible light output
CN114242866A (en) * 2021-12-10 2022-03-25 厦门乾照光电股份有限公司 LED chip with vertical structure and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090220A (en) * 1998-12-22 2014-05-15 Honeywell Internatl Inc Efficient solid-state light emitting device with excited phosphors for producing visible light output
JP2001210868A (en) * 1999-12-22 2001-08-03 Lumileds Lighting Us Llc Multilayer/high reflectivity ohmic contact point for semiconductor device
JP2002314130A (en) * 2001-04-19 2002-10-25 Nichia Chem Ind Ltd Nitride semiconductor element
US7005684B2 (en) * 2001-06-06 2006-02-28 Toyoda Gosei Co., Ltd. Group III nitride based semiconductor luminescent element
JP2004343139A (en) * 2001-11-19 2004-12-02 Sanyo Electric Co Ltd Compound semiconductor light emitting element
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
JPWO2003044872A1 (en) * 2001-11-19 2005-03-24 三洋電機株式会社 Compound semiconductor light emitting device
JP2005064485A (en) * 2003-07-25 2005-03-10 Showa Denko Kk Compound semiconductor light-emitting element and method of manufacturing the same
JP2005072603A (en) * 2003-08-25 2005-03-17 Samsung Electronics Co Ltd Nitride-based light-emitting element and manufacturing method thereof
EP1536481A3 (en) * 2003-10-27 2006-10-18 Samsung Electronics Co., Ltd. GaN-based III-V group compound semiconductor device and p-type electrode for the same
US7285857B2 (en) 2003-10-27 2007-10-23 Samsung Electronics Co., Ltd. GaN-based III—V group compound semiconductor device and p-type electrode for the same
JP2005203765A (en) * 2003-12-17 2005-07-28 Showa Denko Kk Semiconductor light emitting element of gallium nitride compound and its negative electrode
KR100650992B1 (en) 2005-03-21 2006-11-29 주식회사 이츠웰 GaN-based Semiconductor Light Emitting Diode containing Nickel forming part of n-type ohmic metal
JP2011029574A (en) * 2009-03-31 2011-02-10 Toyoda Gosei Co Ltd Method for producing group iii nitride-based compound semiconductor device
JP2011066053A (en) * 2009-09-15 2011-03-31 Toyoda Gosei Co Ltd Method of manufacturing light emitting element, and light emitting element
CN114242866A (en) * 2021-12-10 2022-03-25 厦门乾照光电股份有限公司 LED chip with vertical structure and manufacturing method thereof
CN114242866B (en) * 2021-12-10 2024-01-26 厦门乾照光电股份有限公司 LED chip with vertical structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP3737226B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4004378B2 (en) Semiconductor light emitting device
JP3625377B2 (en) Semiconductor light emitting device
JP5533675B2 (en) Semiconductor light emitting device
KR100594534B1 (en) ? group nitride based semiconductor luminescent element and light-emitting device
JP3739951B2 (en) Semiconductor light emitting device and manufacturing method thereof
US20200220046A1 (en) Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JP2006066903A (en) Positive electrode for semiconductor light-emitting element
JP3737226B2 (en) Semiconductor light emitting device
JP3917223B2 (en) Manufacturing method of semiconductor light emitting device
JP2006269912A (en) Light emitting device and manufacturing method thereof
US7235818B2 (en) Flip chip type nitride semiconductor light emitting device and manufacturing method thereof
TWI260099B (en) Positive electrode structure and gallium nitride-based compound semiconductor light-emitting device
JP4411871B2 (en) Nitride semiconductor light emitting device
KR20060115751A (en) Semiconductor light-emitting device and method for manufacturing same
TWI281758B (en) Transparent positive electrode
JP3776538B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3344296B2 (en) Electrodes for semiconductor light emitting devices
JP2006024913A (en) Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
JP3239350B2 (en) Electrode of n-type nitride semiconductor layer
JPH10173226A (en) Semiconductor light-emitting element
JP5143977B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP2002313749A (en) LIGHT-EMITTING DEVICE n TYPE ELECTRODE, ITS MANUFACTURING METHOD AND III GROUP NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE USING THE SAME
JP2006013474A (en) Gallium nitride based compound semiconductor light emitting device
JP3187284B2 (en) Electrode of n-type nitride semiconductor layer
TWI257721B (en) Gallium nitride-based compound semiconductor light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees